Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
New Phytol ; 235(4): 1543-1557, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35524450

RESUMEN

A gene upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) infection was revealed as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (NbDXR). DXR is the key enzyme in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway that catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol-4-phosphate. Knockdown and overexpression of NbDXR followed by BaMV inoculation revealed that NbDXR is involved in BaMV accumulation. Treating leaves with fosmidomycin, an inhibitor of DXR function, reduced BaMV accumulation. Subcellular localization confirmed that DXR is a chloroplast-localized protein by confocal microscopy. Furthermore, knockdown of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase, one of the enzymes in the MEP pathway, also reduced BaMV accumulation. The accumulation of BaMV increased significantly in protoplasts treated with isopentenyl pyrophosphate. Thus, the metabolites of the MEP pathway could be involved in BaMV infection. To identify the critical components involved in BaMV accumulation, we knocked down the crucial enzyme of isoprenoid synthesis, NbGGPPS11 or NbGGPPS2. Only NbGGPPS2 was involved in BaMV infection. The geranylgeranyl pyrophosphate (GGPP) synthesized by NbGGPPS2 is known for gibberellin synthesis. We confirmed this result by supplying gibberellic acid exogenously on leaves, which increased BaMV accumulation. The de novo synthesis of gibberellic acid could assist BaMV accumulation.


Asunto(s)
Giberelinas , Nicotiana/virología , Potexvirus , Eritritol/análogos & derivados , Eritritol/biosíntesis , Giberelinas/metabolismo , Potexvirus/fisiología , Fosfatos de Azúcar/biosíntesis , Nicotiana/metabolismo
2.
Carbohydr Res ; 510: 108445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607125

RESUMEN

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Hexosaminas/biosíntesis , Fosfatos de Azúcar/biosíntesis , Proteínas Bacterianas/química , Conformación de Carbohidratos , Carbohidrato Epimerasas/química , Hexosaminas/química , Staphylococcus aureus/enzimología , Fosfatos de Azúcar/química
3.
Protein Expr Purif ; 188: 105972, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34517109

RESUMEN

3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with d-erythrose 4-phosphate (E4P) and plays an important role in regulating carbon flux toward aromatic amino acid biosynthesis in bacteria and plants. Sequence analysis of the DAHP synthases AroG1 and AroG2 from Bacillus methanolicus MGA3 suggested this thermophilic, methylotrophic bacterium possesses two type Iß DAHP synthases. This study describes production of AroG1 and AroG2 in Escherichia coli as hexa-histidine fused proteins, which were purified by affinity chromatography. Treatment with TEV protease afforded native proteins for characterization and kinetic analysis. AroG1 and AroG2 are, respectively, 30.1 kDa and 40.0 kDa proteins. Both enzymes have maximal activity over a pH range of 6.3-7.2. The apparent kinetic parameters at 50 °C and pH 7.2 for AroG1 are KmPEP 1100 ± 100 µM, KmE4P 530 ± 100 µM, and kcat 10.3 ± 1.2 s-1. The kinetic parameters for AroG2 are KmPEP 90 ± 20 µM, KmE4P 130 ± 40 µM, and kcat 2.0 ± 0.2 s-1. At 50 °C AroG2 retains 50% of its activity after 96 min whereas AroG1 retains less than 5% of its activity after 10 min. AroG2, which contains an N-terminal regulatory domain, is inhibited by chorismate and prephenate but not l-phenylalanine, l-tyrosine, or l-tryptophan. AroG1 is not inhibited by any of the molecules examined. Understanding DAHP synthase regulation in B. methanolicus is a first step toward generating biocatalysts that exploit the target-rich aromatic amino acid biosynthetic pathway for synthesis of chemicals from methanol.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Bacillus/enzimología , Proteínas Bacterianas/metabolismo , Metanol/metabolismo , Fosfatos de Azúcar/biosíntesis , 3-Desoxi-7-Fosfoheptulonato Sintasa/genética , Secuencia de Aminoácidos , Bacillus/química , Proteínas Bacterianas/genética , Biocatálisis , Ácido Corísmico/farmacología , Clonación Molecular , Ácidos Ciclohexanocarboxílicos/farmacología , Ciclohexenos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Concentración de Iones de Hidrógeno , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Peso Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Fosfatos de Azúcar/antagonistas & inhibidores
4.
PLoS Comput Biol ; 17(6): e1009093, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129600

RESUMEN

Microbial communities have become a major research focus due to their importance for biogeochemical cycles, biomedicine and biotechnological applications. While some biotechnological applications, such as anaerobic digestion, make use of naturally arising microbial communities, the rational design of microbial consortia for bio-based production processes has recently gained much interest. One class of synthetic microbial consortia is based on specifically designed strains of one species. A common design principle for these consortia is based on division of labor, where the entire production pathway is divided between the different strains to reduce the metabolic burden caused by product synthesis. We first show that classical division of labor does not automatically reduce the metabolic burden when metabolic flux per biomass is analyzed. We then present ASTHERISC (Algorithmic Search of THERmodynamic advantages in Single-species Communities), a new computational approach for designing multi-strain communities of a single-species with the aim to divide a production pathway between different strains such that the thermodynamic driving force for product synthesis is maximized. ASTHERISC exploits the fact that compartmentalization of segments of a product pathway in different strains can circumvent thermodynamic bottlenecks arising when operation of one reaction requires a metabolite with high and operation of another reaction the same metabolite with low concentration. We implemented the ASTHERISC algorithm in a dedicated program package and applied it on E. coli core and genome-scale models with different settings, for example, regarding number of strains or demanded product yield. These calculations showed that, for each scenario, many target metabolites (products) exist where a multi-strain community can provide a thermodynamic advantage compared to a single strain solution. In some cases, a production with sufficiently high yield is thermodynamically only feasible with a community. In summary, the developed ASTHERISC approach provides a promising new principle for designing microbial communities for the bio-based production of chemicals.


Asunto(s)
Algoritmos , Biotecnología/métodos , Microbiología Industrial/métodos , Microbiota/fisiología , Biomasa , Técnicas de Química Sintética/métodos , Biología Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Programas Informáticos , Especificidad de la Especie , Fosfatos de Azúcar/biosíntesis , Biología Sintética/métodos , Termodinámica
5.
Carbohydr Res ; 488: 107902, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31911362

RESUMEN

Trehalose 6-phosphate (Tre6P) is an important intermediate for trehalose biosynthesis. Recent researches have revealed that Tre6P is an endogenous signaling molecule that regulates plant development and stress responses. The necessity of Tre6P in physiological studies is expected to be increasing. To achieve the cost-effective production of Tre6P, a novel approach is required. In this study, we utilized trehalose 6-phosphate phosphorylase (TrePP) from Lactococcus lactis to produce Tre6P. In the reverse phosphorolysis by the TrePP, 91.9 mM Tre6P was produced from 100 mM ß-glucose 1-phosphate (ß-Glc1P) and 100 mM glucose 6-phosphate (Glc6P). The one-pot reaction of TrePP and maltose phosphorylase (MP) enabled production of 65 mM Tre6P from 100 mM maltose, 100 mM Glc6P, and 20 mM inorganic phosphate. Addition of ß-phosphoglucomutase to this reaction produced Glc6P from ß-Glc1P and thus reduced requirement of Glc6P as a starting material. Within the range of 20-469 mM inorganic phosphate tested, the 54 mM concentration yielded the highest amount of Tre6P (33 mM). Addition of yeast increased the yield because of its glucose consumption. Finally, from 100 mmol maltose and 60 mmol inorganic phosphate, we successfully achieved production of 37.5 mmol Tre6P in a one-pot reaction (100 mL), and 9.4 g Tre6P dipotassium salt was obtained.


Asunto(s)
Glucosiltransferasas/metabolismo , Lactococcus lactis/enzimología , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Levaduras/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Clonación Molecular , Glucosa-6-Fosfatasa/metabolismo , Glucofosfatos/metabolismo , Glucosiltransferasas/genética , Lactococcus lactis/genética , Fosfatos/metabolismo , Trehalosa/biosíntesis , Levaduras/genética
6.
Sci Rep ; 9(1): 14876, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619732

RESUMEN

Gymnema sylvestre is a highly valuable medicinal plant in traditional Indian system of medicine and used in many polyherbal formulations especially in treating diabetes. However, the lack of genomic resources has impeded its research at molecular level. The present study investigated functional gene profile of G. sylvestre via RNA sequencing technology. The de novo assembly of 88.9 million high quality reads yielded 23,126 unigenes, of which 18116 were annotated against databases such as NCBI nr database, gene ontology (GO), KEGG, Pfam, CDD, PlantTFcat, UniProt & GreeNC. Total 808 unigenes mapped to 78 different Transcription Factor families, whereas 39 unigenes assigned to CYP450 and 111 unigenes coding for enzymes involved in the biosynthesis of terpenoids including transcripts for synthesis of important compounds like Vitamin E, beta-amyrin and squalene. Among them, presence of six important enzyme coding transcripts were validated using qRT-PCR, which showed high expression of enzymes involved in methyl-erythritol phosphate (MEP) pathway. This study also revealed 1428 simple sequence repeats (SSRs), which may aid in molecular breeding studies. Besides this, 8 putative long non-coding RNAs (lncRNAs) were predicted from un-annotated sequences, which may hold key role in regulation of essential biological processes in G. sylvestre. The study provides an opportunity for future functional genomic studies and to uncover functions of the lncRNAs in G. sylvestre.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Gymnema sylvestre/genética , ARN Largo no Codificante/genética , Terpenos/metabolismo , Transcriptoma , Mapeo Cromosómico , Eritritol/análogos & derivados , Eritritol/biosíntesis , Perfilación de la Expresión Génica , Ontología de Genes , Gymnema sylvestre/metabolismo , India , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/biosíntesis , Plantas Medicinales , ARN Largo no Codificante/metabolismo , Escualeno/metabolismo , Fosfatos de Azúcar/biosíntesis , Vitamina E/biosíntesis
7.
Biosci Biotechnol Biochem ; 81(8): 1512-1519, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28537141

RESUMEN

Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce ß-d-glucose 1-phosphate (ß-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, ß-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From ß-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Lactococcus lactis/enzimología , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glucofosfatos/metabolismo , Glucosiltransferasas/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Lactococcus lactis/química , Manosafosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Fosfatos de Azúcar/metabolismo , Temperatura
8.
J Biosci Bioeng ; 123(3): 300-307, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27856234

RESUMEN

1-Deoxy-d-xylulose 5-phosphate synthase (DXS) is a rate-limiting enzyme in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, which is responsible for production of two precursors of all isoprenoids, isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). Previously, we attempted the overexpression of endogenous DXS in Synechocystis sp. PCC6803, and revealed that although the mRNA level was 4-fold higher, the DXS protein level was only 1.5-fold higher compared with those of the original strain, suggesting the lability of endogenous DXS protein. Therefore, for the creation of a robust isoprenoid synthesis system, it is necessary to build a novel MEP pathway by combining stable enzymes. In this study, we expressed 11 dxs genes from 9 organisms in Escherichia coli and analyzed their protein solubility. Furthermore, we purified the recombinant DXSes and evaluated their specific activities and protease tolerance, thermostability, and feedback inhibition tolerance. Among DXSes we examined in this study, the highest protein solubility was observed in Paracoccus aminophilus DXS (PaDXS). The DXS with the highest activity was one from Rhodobacter capsulatus (RcDXSA). The highest protease tolerance, thermostability, and tolerance of feedback inhibition were found in Bacillus subtilis DXS (BsDXS), RcDXSA, PaDXS, BsDXS, respectively. These DXSes can be potentially used for the design of robust isoprenoid synthesis system.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Terpenos/metabolismo , Transferasas/genética , Transferasas/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Estabilidad de Enzimas , Eritritol/análogos & derivados , Eritritol/biosíntesis , Hemiterpenos/biosíntesis , Hemiterpenos/metabolismo , Compuestos Organofosforados/metabolismo , Paracoccus/enzimología , Paracoccus/genética , Pentosafosfatos/biosíntesis , Péptido Hidrolasas/metabolismo , Rhodobacter capsulatus/enzimología , Rhodobacter capsulatus/genética , Solubilidad , Fosfatos de Azúcar/biosíntesis , Synechocystis/genética , Synechocystis/metabolismo , Transferasas/química
9.
J Biol Chem ; 292(3): 945-954, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27903647

RESUMEN

Trehalose-6-phosphate synthase OtsA from streptomycetes is unusual in that it uses GDP-glucose as the donor substrate rather than the more commonly used UDP-glucose. We now confirm that OtsA from Streptomyces venezuelae has such a preference for GDP-glucose and can utilize ADP-glucose to some extent too. A crystal structure of the enzyme shows that it shares twin Rossmann-like domains with the UDP-glucose-specific OtsA from Escherichia coli However, it is structurally more similar to Streptomyces hygroscopicus VldE, a GDP-valienol-dependent pseudoglycosyltransferase enzyme. Comparison of the donor binding sites reveals that the amino acids associated with the binding of diphosphoribose are almost all identical in these three enzymes. By contrast, the amino acids associated with binding guanine in VldE (Asn, Thr, and Val) are similar in S. venezuelae OtsA (Asp, Ser, and Phe, respectively) but not conserved in E. coli OtsA (His, Leu, and Asp, respectively), providing a rationale for the purine base specificity of S. venezuelae OtsA. To establish which donor is used in vivo, we generated an otsA null mutant in S. venezuelae The mutant had a cell density-dependent growth phenotype and accumulated galactose 1-phosphate, glucose 1-phosphate, and GDP-glucose when grown on galactose. To determine how the GDP-glucose is generated, we characterized three candidate GDP-glucose pyrophosphorylases. SVEN_3027 is a UDP-glucose pyrophosphorylase, SVEN_3972 is an unusual ITP-mannose pyrophosphorylase, and SVEN_2781 is a pyrophosphorylase that is capable of generating GDP-glucose as well as GDP-mannose. We have therefore established how S. venezuelae can make and utilize GDP-glucose in the biosynthesis of trehalose 6-phosphate.


Asunto(s)
Azúcares de Guanosina Difosfato/metabolismo , Streptomyces/metabolismo , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosa/genética , Galactosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Azúcares de Guanosina Difosfato/genética , Streptomyces/genética , Fosfatos de Azúcar/genética , Trehalosa/biosíntesis , Trehalosa/genética
10.
Proc Natl Acad Sci U S A ; 111(50): 17815-20, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453104

RESUMEN

Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.


Asunto(s)
Vías Biosintéticas/fisiología , Brucella/metabolismo , Carbohidrato Epimerasas/metabolismo , Eritritol/metabolismo , Fosfatos de Azúcar/biosíntesis , Brucella/patogenicidad , Isótopos de Carbono/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Fosforilación , Espectrofotometría
11.
Microb Cell Fact ; 13: 160, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25403509

RESUMEN

BACKGROUND: ß-carotene is a carotenoid compound that has been widely used not only in the industrial production of pharmaceuticals but also as nutraceuticals, animal feed additives, functional cosmetics, and food colorants. Currently, more than 90% of commercial ß-carotene is produced by chemical synthesis. Due to the growing public concern over food safety, the use of chemically synthesized ß-carotene as food additives or functional cosmetic agents has been severely controlled in recent years. This has reignited the enthusiasm for seeking natural ß-carotene in large-scale fermentative production by microorganisms. RESULTS: To increase ß-carotene production by improving the isopentenyl pyrophosphate (IPP) and geranyl diphospate (GPP) concentration in the cell, the optimized MEP (methylerythritol 4-phosphate) pathway containing 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and isopentenyl pyrophosphate isomerase (FNI) from Bacillus subtilis, geranyl diphosphate synthase (GPPS2) from Abies grandis have been co-expressed in an engineered E. coli strain. To further enhance the production of ß-carotene, the hybrid MVA (mevalonate) pathway has been introduced into an engineered E. coli strain, co-expressed with the optimized MEP pathway and GPPS2. The final genetically modified strain, YJM49, can accumulate 122.4±6.2 mg/L ß-carotene in flask culture, approximately 113-fold and 1.7 times greater than strain YJM39, which carries the native MEP pathway, and YJM45, which harbors the MVA pathway and the native MEP pathway, respectively. Subsequently, the fermentation process was optimized to enhance ß-carotene production with a maximum titer of 256.8±10.4 mg/L. Finally, the fed-batch fermentation of ß-carotene was evaluated using the optimized culture conditions. After induction for 56 h, the final engineered strain YJM49 accumulated 3.2 g/L ß-carotene with a volumetric productivity of 0.37 mg/(L · h · OD600) in aerobic fed-batch fermentation, and the conversion efficiency of glycerol to ß-carotene (gram to gram) reached 2.76%. CONCLUSIONS: In this paper, by using metabolic engineering techniques, the more efficient biosynthetic pathway of ß-carotene was successfully assembled in E. coli BL21(DE3) with the optimized MEP (methylerythritol 4-phosphate) pathway, the gene for GPPS2 from Abies grandis, the hybrid MVA (mevalonate) pathway and ß-carotene synthesis genes from Erwinia herbicola.


Asunto(s)
Eritritol/análogos & derivados , Escherichia coli , Ingeniería Metabólica , Ácido Mevalónico/metabolismo , Fosfatos de Azúcar , beta Caroteno , Eritritol/biosíntesis , Eritritol/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicerol/metabolismo , Fosfatos de Azúcar/biosíntesis , Fosfatos de Azúcar/genética , beta Caroteno/biosíntesis , beta Caroteno/genética
12.
PLoS One ; 9(7): e103704, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25077957

RESUMEN

The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.


Asunto(s)
Carotenoides/biosíntesis , Eritritol/análogos & derivados , Herbicidas/farmacología , Isoxazoles/farmacología , Oxazolidinonas/farmacología , Fosfatos de Azúcar/biosíntesis , Bioensayo , Vías Biosintéticas , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Eritritol/biosíntesis , Hordeum/efectos de los fármacos , Hordeum/metabolismo
13.
Plant Cell ; 25(12): 4984-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24363312

RESUMEN

Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.


Asunto(s)
Arabidopsis/metabolismo , Clorofila/biosíntesis , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Carotenoides/biosíntesis , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Perfilación de la Expresión Génica , Luz , Redes y Vías Metabólicas/genética , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Fosfatos de Azúcar/biosíntesis , Tetrapirroles/biosíntesis
14.
FEBS J ; 280(22): 5896-905, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24010408

RESUMEN

The binding mode of 1-deoxy-D-xylulose 5-phosphate (DXP) to 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) (EC 1.1.1.267) from Escherichia coli was investigated via (18) O isotope exchange experiments and determination of the kinetic parameters of the reaction. The results support a C3-C4 substrate binding mode in which DXP chelates a DXR-bound divalent cation via its hydroxyl groups at C3 and C4. Based on this binding mode and the early results, a catalytic cycle for the conversion of DXP to 2-methyl-D-erythritol 4-phosphate mediated by DXR including a pseudo-single molecule transition state of the retro-aldol intermediates is proposed. Taking into account the binding mode of DXP and the catalytic cycle of DXR, the mechanistic insights of DXR are disclosed and the current discrepancies concerning the catalysis of this enzyme are interpreted within the accepted retro-aldol/aldol sequence.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Terpenos/metabolismo , Isomerasas Aldosa-Cetosa/química , Vías Biosintéticas , Eritritol/análogos & derivados , Eritritol/biosíntesis , Eritritol/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Cinética , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Estructura Molecular , Pentosafosfatos/química , Pentosafosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Fosfatos de Azúcar/biosíntesis , Fosfatos de Azúcar/química , Terpenos/química
15.
Appl Microbiol Biotechnol ; 97(13): 5753-69, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23636690

RESUMEN

Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C6 glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.


Asunto(s)
Vías Biosintéticas/genética , Eritritol/análogos & derivados , Escherichia coli/enzimología , Saccharomyces cerevisiae/metabolismo , Fosfatos de Azúcar/biosíntesis , Cromatografía Liquida , ADN Bacteriano/química , ADN Bacteriano/genética , Eritritol/biosíntesis , Escherichia coli/genética , Expresión Génica , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Espectrometría de Masas , Ingeniería Metabólica , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
16.
PLoS One ; 8(3): e60631, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544156

RESUMEN

Medicinal tea tree (Melaleuca alternifolia) leaves contain large amounts of an essential oil, dominated by monoterpenes. Several enzymes of the chloroplastic methylerythritol phosphate (MEP) pathway are hypothesised to act as bottlenecks to the production of monoterpenes. We investigated, whether transcript abundance of genes encoding for enzymes of the MEP pathway were correlated with foliar terpenes in M. alternifolia using a population of 48 individuals that ranged in their oil concentration from 39 -122 mg x g DM(-1). Our study shows that most genes in the MEP pathway are co-regulated and that the expression of multiple genes within the MEP pathway is correlated with oil yield. Using multiple regression analysis, variation in expression of MEP pathway genes explained 87% of variation in foliar monoterpene concentrations. The data also suggest that sesquiterpenes in M. alternifolia are synthesised, at least in part, from isopentenyl pyrophosphate originating from the plastid via the MEP pathway.


Asunto(s)
Vías Biosintéticas/genética , Eritritol/análogos & derivados , Genes de Plantas/genética , Melaleuca/genética , Melaleuca/metabolismo , Aceites Volátiles/metabolismo , Fosfatos de Azúcar/biosíntesis , Transcripción Genética/genética , Análisis por Conglomerados , Eritritol/biosíntesis , Regulación de la Expresión Génica de las Plantas/genética , Funciones de Verosimilitud , Modelos Biológicos , Carácter Cuantitativo Heredable , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sesquiterpenos de Germacrano/metabolismo
17.
Mol Plant ; 5(5): 1100-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22498772

RESUMEN

IspH is a key enzyme in the last step of the methyl-D-erythritol-4-phosphate (MEP) pathway. Loss of function of IspH can often result in complete yellow or albino phenotype in many plants. Here, we report the characterization of a recessive mutant of maize, zebra7 (zb7), showing transverse green/yellow striped leaves in young plants. The yellow bands of the mutant have decreased levels of chlorophylls and carotenoids with delayed chloroplast development. Low temperature suppressed mutant phenotype, while alternate light/dark cycle or high temperature enlarged the yellow section. Map-based cloning demonstrated that zb7 encodes the IspH protein with a mis-sense mutation in a conserved region. Transgenic silencing of Zb7 in maize resulted in complete albino plantlets that are aborted in a few weeks, confirming that Zb7 is important in the early stages of maize chloroplast development. Zb7 is constitutively expressed and its expression subject to a 16-h light/8-h dark cycle regulation. Our results suggest that the less effective or unstable IspH in zb7 mutant, together with its diurnal expression, are mechanistically accounted for the zebra phenotype. The increased IspH mRNA in the leaves of zb7 at the late development stage may explain the restoration of mutant phenotype in mature stages.


Asunto(s)
Clonación Molecular , Eritritol/análogos & derivados , Proteínas de Plantas/genética , Fosfatos de Azúcar/biosíntesis , Zea mays/enzimología , Secuencia de Aminoácidos , Vías Biosintéticas , Cloroplastos/enzimología , Cloroplastos/genética , Mapeo Cromosómico , Eritritol/biosíntesis , Hemiterpenos/metabolismo , Indoles/metabolismo , Datos de Secuencia Molecular , Compuestos Organofosforados/metabolismo , Proteínas de Plantas/metabolismo , Alineación de Secuencia , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
18.
Plant J ; 64(1): 1-13, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20659274

RESUMEN

Trehalose and associated metabolites are part of the sugar signalling system in plants and have profound effects on development. Disruption of the TREHALOSE 6-PHOSPHATE SYNTHASE (TPS1) gene in Arabidopsis results in delayed embryo growth, altered cell wall morphology and carbon metabolism and abortion at the torpedo stage. Here we investigate the role of the TPS1 gene in post-embryonic development using two approaches. In the first we use the seed-specific ABI3 promoter to drive the TPS1 cDNA during embryo development, resulting in rescue of the embryo-lethal tps1 phenotype. Lack of expression from the ABI3::TPS1 transgene in post-germinative tps1 seedlings results in severe growth arrest, accumulation of soluble sugars and starch and leads to an increase in expression of genes related to ABA signalling. In the second approach we use TILLING (targeted induced local lesions in genomes) to generate three weaker, non-embryo-lethal, alleles (tps1-11, tps1-12 and tps1-13) and use these to demonstrate that the TPS1 protein plays a key role in modulating trehalose 6-phosphate (T6P) levels in vegetative tissues of Arabidopsis. All three weaker alleles give a consistent phenotype of slow growth and delayed flowering. Germination of tps1-11, tps1-12 and tps1-13 is hypersensitive to ABA with the degree of hypersensitivity correlating with the decrease in T6P levels in the different alleles. Stomatal pore aperture is regulated by ABA, and this was found to be affected in tps1-12. Our results show that the TPS1 gene product plays an essential role in regulating the growth of vegetative as well as embryogenic tissue in a mechanism involving ABA and sugar metabolism.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucosiltransferasas/metabolismo , Estomas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Fosfatos de Azúcar/biosíntesis , Trehalosa/análogos & derivados , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Germinación , Glucosiltransferasas/genética , Fenotipo , Estomas de Plantas/citología , Regiones Promotoras Genéticas , Plantones/crecimiento & desarrollo , Trehalosa/biosíntesis
19.
Cell Res ; 20(6): 688-700, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20404857

RESUMEN

1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression lines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in trichome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA(3) could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/genética , Silenciador del Gen , Complejos Multienzimáticos/genética , Oxidorreductasas/genética , Estomas de Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Ácido Abscísico/biosíntesis , Ácido Abscísico/genética , Isomerasas Aldosa-Cetosa/deficiencia , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Eritritol/análogos & derivados , Eritritol/antagonistas & inhibidores , Eritritol/biosíntesis , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/biosíntesis , Giberelinas/genética , Complejos Multienzimáticos/deficiencia , Mutación/genética , Oxidorreductasas/deficiencia , Pigmentación/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Estomas de Plantas/enzimología , Estomas de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Semillas/enzimología , Fosfatos de Azúcar/antagonistas & inhibidores , Fosfatos de Azúcar/biosíntesis , Terpenos/metabolismo
20.
J Mol Model ; 16(6): 1061-73, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19916033

RESUMEN

Tuberculosis is one of the leading infectious diseases in humans. Discovering new treatments for this disease is urgently required, especially in view of the emergence of multiple drug resistant organisms and to reduce the total duration of current treatments. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target, and particular attention has been focused on the methylerythritol phosphate (MEP) pathway comprising the early steps of isoprenoid biosynthesis. In this context we have studied the enzyme 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase (CMS), the third enzyme in the MEP pathway, since the lack of a resolved structure of this protein in M. tuberculosis has seriously limited its use as a drug target. We performed homology modeling of M. tuberculosis CMS in order to provide a reliable model for use in structure-based drug design. After evaluating the quality of the model, we performed a thorough study of the catalytic site and the dimerization interface of the model, which suggested the most important sites (conserved and non-conserved) that could be useful for drug discovery and mutagenesis studies. We found that the metal coordination of CDP-methylerythritol in M. tuberculosis CMS differs substantially with respect to the Escherichia coli variant, consistent with the fact that the former is able to utilize several metal ions for catalysis. Moreover, we propose that electrostatic interactions could explain the higher affinity of the MEP substrate compared with the cytosine 5'-triphosphate substrate in the M. tuberculosis enzyme as reported previously.


Asunto(s)
Proteínas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Nucleotidiltransferasas/química , Terpenos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Vías Biosintéticas , Cristalografía por Rayos X , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Eritritol/análogos & derivados , Eritritol/biosíntesis , Eritritol/química , Enlace de Hidrógeno , Metales/química , Metales/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Mycobacterium tuberculosis/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Fosfatos de Azúcar/biosíntesis , Fosfatos de Azúcar/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA