Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
BMC Cancer ; 24(1): 682, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835015

RESUMEN

BACKGROUND: Astragaloside IV (AS-IV) is one of the basic components of Astragali radix, that has been shown to have preventive effects against various diseases, including cancers. This study aimed to explore the role of AS-IV in hepatocellular carcinoma (HCC) and its underlying mechanism. METHODS: The cell viability, glucose consumption, lactate production, and extracellular acidification rate (ECAR) in SNU-182 and Huh7 cell lines were detected by specific commercial kits. Western blot was performed to analyze the succinylation level in SNU-182 and Huh7 cell lines. The interaction between lysine acetyltransferase (KAT) 2 A and phosphoglycerate mutase 1 (PGAM1) was evaluated by co-immunoprecipitation and immunofluorescence assays. The role of KAT2A in vivo was explored using a xenografted tumor model. RESULTS: The results indicated that AS-IV treatment downregulated the protein levels of succinylation and KAT2A in SNU-182 and Huh7 cell lines. The cell viability, glucose consumption, lactate production, ECAR, and succinylation levels were decreased in AS-IV-treated SNU-182 and Huh7 cell lines, and the results were reversed after KAT2A overexpression. KAT2A interacted with PGAM1 to promote the succinylation of PGAM1 at K161 site. KAT2A overexpression promoted the viability and glycolysis of SNU-182 and Huh7 cell lines, which were partly blocked following PGAM1 inhibition. In tumor-bearing mice, AS-IV suppressed tumor growth though inhibiting KAT2A-mediated succinylation of PGAM1. CONCLUSION: AS-IV inhibited cell viability and glycolysis in HCC by regulating KAT2A-mediated succinylation of PGAM1, suggesting that AS-IV might be a potential and suitable therapeutic agent for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Supervivencia Celular , Glucólisis , Neoplasias Hepáticas , Fosfoglicerato Mutasa , Saponinas , Triterpenos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Fosfoglicerato Mutasa/metabolismo , Ratones , Glucólisis/efectos de los fármacos , Triterpenos/farmacología , Supervivencia Celular/efectos de los fármacos , Saponinas/farmacología , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Ratones Desnudos , Proliferación Celular/efectos de los fármacos
2.
Cancer Gene Ther ; 31(7): 1018-1033, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750301

RESUMEN

Immunosuppressive tumor microenvironment (TME) contributes to tumor progression and causes major obstacles for cancer therapy. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme involved in cancer metabolism while its role in remodeling TME remains unclear. In this study, we reported that PGAM1 suppression in breast cancer (BC) cells led to a decrease in M2 polarization, migration, and interleukin-10 (IL-10) production of macrophages. PGAM1 regulation on CCL2 expression was essential to macrophage recruitment, which further mediated by activating JAK-STAT pathway. Additionally, the CCL2/CCR2 axis was observed to participate in PGAM1-mediated immunosuppression via regulating PD-1 expression in macrophages. Combined targeting of PGAM1 and the CCL2/CCR2 axis led to a reduction in tumor growth in vivo. Furthermore, clinical validation in BC tissues indicated a positive correlation between PGAM1, CCL2 and macrophage infiltration. Our study provides novel insights into the induction of immunosuppressive TME by PGAM1 and propose a new strategy for combination therapies targeting PGAM1 and macrophages in BC.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Fosfoglicerato Mutasa , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Femenino , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Progresión de la Enfermedad , Microambiente Tumoral/inmunología , Línea Celular Tumoral
3.
EMBO J ; 43(12): 2368-2396, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750259

RESUMEN

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.


Asunto(s)
Glucólisis , Fosfoglicerato Mutasa , Hormonas Tiroideas , Humanos , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosforilación , Animales , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética , Ratones , Proteínas de Unión a Hormona Tiroide , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
4.
Int J Biol Macromol ; 268(Pt 2): 131547, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641281

RESUMEN

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.


Asunto(s)
Ácido Eicosapentaenoico , Músculo Esquelético , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Masculino , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Porcinos
5.
Sci Rep ; 14(1): 8535, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609411

RESUMEN

Although the death of hepatocytes is a crucial trigger of liver ischemia-reperfusion (I/R) injury, the regulation of liver I/R-induced hepatocyte death is still poorly understood. Phosphoglycerate mutase 5 (PGAM5), a mitochondrial Serine/Threonine protein phosphatase, regulates mitochondrial dynamics and is involved in the process of both apoptosis and necrotic. However, it is still unclear what role PGAM5 plays in the death of hepatocytes induced by I/R. Using a PGAM5-silence mice model, we investigated the role of PGAM5 in liver I/R injury and its relevant molecular mechanisms. Our data showed that PGAM5 was highly expressed in mice with liver I/R injury. Silence of PGAM5 could decrease I/R-induced hepatocyte death in mice. In subcellular levels, the silence of PGAM5 could restore mitochondrial membrane potential, increase mitochondrial DNA copy number and transcription levels, inhibit ROS generation, and prevent I/R-induced opening of abnormal mPTP. As for the molecular mechanisms, we indicated that the silence of PGAM5 could inhibit Drp1(S616) phosphorylation, leading to a partial reduction of mitochondrial fission. In addition, Mdivi-1 could inhibit mitochondrial fission, decrease hepatocyte death, and attenuate liver I/R injury in mice. In conclusion, our data reveal the molecular mechanism of PGAM5 in driving hepatocyte death through activating mitochondrial fission in liver I/R injury.


Asunto(s)
Fosfoglicerato Mutasa , Daño por Reperfusión , Animales , Ratones , Hepatocitos , Hígado , Dinámicas Mitocondriales , Fosfoglicerato Mutasa/genética , Daño por Reperfusión/genética
6.
J Proteome Res ; 23(5): 1634-1648, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38572994

RESUMEN

The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.


Asunto(s)
Candida , Candidiasis , Inmunoglobulina G , Animales , Ratones , Candida/inmunología , Candida/patogenicidad , Humanos , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/sangre , Inmunoglobulina G/sangre , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/sangre , Proteómica/métodos , Candida albicans/inmunología , Candida albicans/patogenicidad , Proteínas Fúngicas/inmunología , Fosfoglicerato Mutasa/inmunología , Fosfoglicerato Quinasa/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasas/inmunología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Anticuerpos Antifúngicos/sangre , Anticuerpos Antifúngicos/inmunología , Femenino , Virulencia
7.
Int J Med Sci ; 21(4): 755-764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464835

RESUMEN

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Asunto(s)
Hepatopatías Alcohólicas , Enfermedades Mitocondriales , Animales , Humanos , Ratones , Etanol/toxicidad , Etanol/metabolismo , Hepatopatías Alcohólicas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
8.
Bone Res ; 12(1): 15, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433252

RESUMEN

Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of ß-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and ß-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.


Asunto(s)
Osteoartritis , Fosfoglicerato Mutasa , Humanos , Animales , Ratones , beta Catenina , Osteoartritis/genética , Inflamación , Macrófagos , Fosfoproteínas Fosfatasas , Proteínas Mitocondriales
9.
J Parasitol ; 110(2): 96-105, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466806

RESUMEN

Schistosomiasis is a globally burdensome parasitic disease caused by flatworms (blood flukes) in the genus Schistosoma. The current standard treatment for schistosomiasis is the drug praziquantel, but there is an urgent need to advance novel interventions such as vaccines. Several glycolytic enzymes have been evaluated as vaccine targets for schistosomiasis, and data from these studies are reviewed here. Although these parasites are canonically considered to be intracellular, proteomic analysis has revealed that many schistosome glycolytic enzymes are additionally found at the host-interactive surface. We have recently found that the intravascular stage of Schistosoma mansoni (Sm) expresses the glycolytic enzyme phosphoglycerate mutase (PGM) on the tegumental surface. Live parasites display PGM activity, and suppression of PGM gene expression by RNA interference diminishes surface enzyme activity. Recombinant SmPGM (rSmPGM) can cleave its glycolytic substrate, 3-phosphoglycerate and can both bind to plasminogen and promote its conversion to an active form (plasmin) in vitro, suggesting a moonlighting role for this enzyme in regulating thrombosis in vivo. We found that antibodies in sera from chronically infected mice recognize rSmPGM. We also tested the protective efficacy of rSmPGM as a vaccine in the murine model. Although immunization generates high titers of anti-SmPGM antibodies (against both recombinant and native SmPGM), no significant differences in worm numbers were found between vaccinated and control animals.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Vacunas , Animales , Ratones , Schistosoma mansoni , Fosfoglicerato Mutasa , Esquistosomiasis mansoni/prevención & control , Esquistosomiasis mansoni/parasitología , Proteómica , Esquistosomiasis/prevención & control , Antígenos Helmínticos , Anticuerpos Antihelmínticos
10.
Environ Pollut ; 346: 123585, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367692

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has been shown to impair male reproduction, but the potential mechanism underlying testicular injury caused by DEHP remains unclear. In vivo, rats were gavaged consecutively from postnatal day (PND) 21 to PND 31 with 0, 250, or 500 mg/kg DEHP for 10 days, and impaired mitochondria and increased necroptosis were observed in immature testes. In vitro, the GC-1 and GC-2 cell lines were exposed to monoethylhexyl phthalate (MEHP) at 100, 200 and 400 µM for 24 h, and this exposure induced oxidative stress damage, necroptosis and mitochondrial injury. Necroptosis and mitochondrial fission were inhibited by the reactive oxygen species (ROS) inhibitor acetylcysteine, and the imbalanced mitochondrial dynamics were rescued by the RIPK1 inhibitor necrostatin-1. Colocalization and co-IP analyses confirmed an interaction between dynamin-related protein 1 (DRP1) and phosphoglycerate mutase 5 (PGAM5), indicating that PGAM5 dephosphorylates DRP1 at serine 637 to induce mitochondrial fragmentation and thereby induces germ cell damage. Drug prediction with Connectivity Map (cMap) identified sulforaphane as a therapeutic drug. In summary, our findings indicate that DEHP triggers necroptosis and mitochondrial injury via a ROS storm in immature testes and that the PGAM5-DRP1 interaction is involved in this process.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Masculino , Ratas , Animales , Dietilhexil Ftalato/toxicidad , Testículo/metabolismo , Fosfoglicerato Mutasa , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo , Necroptosis , Dinaminas/metabolismo
11.
Acta Pharmacol Sin ; 45(1): 125-136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37684381

RESUMEN

Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.


Asunto(s)
Lesión Renal Aguda , Citocromos c , Ratones , Animales , Citocromos c/metabolismo , Fosfoglicerato Mutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/fisiología , Mitocondrias/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Proteínas Portadoras/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
12.
Clin Transl Med ; 13(12): e1511, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38093528

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) cells undergo reprogramming of glucose metabolism to support uncontrolled proliferation, of which the intrinsic mechanism still merits further investigation. Although regulatory factor X6 (RFX6) is aberrantly expressed in different cancers, its precise role in cancer development remains ambiguous. METHODS: Microarrays of HCC tissues were employed to investigate the expression of RFX6 in tumour and adjacent non-neoplastic tissues. Functional assays were employed to explore the role of RFX6 in HCC development. Chromatin immunoprecipitation, untargeted metabolome profiling and sequencing were performed to identify potential downstream genes and pathways regulated by RFX6. Metabolic assays were employed to investigate the effect of RFX6 on glycolysis in HCC cells. Bioinformatics databases were used to validate the above findings. RESULTS: HCC tissues exhibited elevated expression of RFX6. High RFX6 expression represented as an independent hazard factor correlated to poor prognosis in patients with HCC. RFX6 deficiency inhibited HCC development in vitro and in vivo, while its overexpression exerted opposite functions. Mechanistically, RFX6 bound to the promoter area of phosphoglycerate mutase 1 (PGAM1) and upregulated its expression. The increased PGAM1 protein levels enhanced glycolysis and further promoted the development of HCC. CONCLUSIONS: RFX6 acted as a novel driver for HCC development by promoting aerobic glycolysis, disclosing the potential of the RFX6-PGAM1 axis for therapeutic targeting.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/genética , Glucólisis/genética , Neoplasias Hepáticas/metabolismo , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo
13.
BMC Cancer ; 23(1): 818, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667226

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and has a poor prognosis. Identifying biomarkers based on molecular mechanisms is critical for early diagnosis, timely treatment, and improved prognosis of lung cancer. MALAT1 has been reported to have overexpressed and tumor-promoting functions in NSCLC. It has been proposed as a potential biomarker for the diagnosis and prognosis of cancer. Therefore, this study was conducted to profile the changes in gene expression according to the regulation of expression of MALAT1 in NSCLC cell lines and to investigate the correlation through bioinformatic analysis of differentially expressed genes (DEGs). METHODS: MALAT1 expression levels were measured using RT-qPCR. The biological functions of MALAT1 in NSCLC were analyzed by cell counting, colony forming, wound-healing, and Transwell invasion assays. In addition, gene expression profiling in response to the knockdown of MALAT1 was analyzed by transcriptome sequencing, and differentially expressed genes regulated by MALAT1 were performed by GO and KEGG pathway enrichment analyses. Bioinformatic databases were used for gene expression analysis and overall survival analysis. RESULTS: Comparative analysis versus MALAT1 expression in MRC5 cells (a normal lung cell line) and the three NSCLC cell lines showed that MALAT1 expression was significantly higher in the NSCLC cells. MALAT1 knockdown decreased cell survival, proliferation, migration, and invasion in all three NSCLC cell lines. RNA-seq analysis of DEGs in NSCLC cells showed 198 DEGs were upregulated and 266 DEGs downregulated by MALAT1 knockdown in all three NSCLC cell lines. Survival analysis on these common DEGs performed using the OncoLnc database resulted in the selection of five DEGs, phosphoglycerate mutase 1 (PGAM1), phosphoglycerate mutase 4 (PGAM4), nucleolar protein 6 (NOL6), nucleosome assembly protein 1 like 5 (NAP1L5), and sestrin1 (SESN1). The gene expression levels of these selected DEGs were proved to gene expression analysis using the TNMplot database. CONCLUSION: MALAT1 might function as an oncogene that enhances NSCLC cell survival, proliferation, colony formation, and invasion. RNA-seq and bioinformatic analyses resulted in the selection of five DEGs, PGAM1, PGAM4, NOL6, NAP1L5, and SESN1, which were found to be closely related to patient survival and tumorigenesis. We believe that further investigation of these five DEGs will provide valuable information on the oncogenic role of MALAT1 in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , Fosfoglicerato Mutasa , ARN Largo no Codificante/genética
14.
Adv Sci (Weinh) ; 10(29): e2301928, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37705495

RESUMEN

The combination of immunotherapy and molecular targeted therapy exhibits promising therapeutic efficacy in hepatocellular carcinoma (HCC), but the underlying mechanism is still unclear. Here, phosphoglycerate mutase 1 (PGAM1) is identified as a novel immunometabolic target by using a bioinformatic algorithm based on multiple HCC datasets. PGAM1 is highly expressed in HCC and associated with a poor prognosis and a poor response to immunotherapy. In vitro and in vivo experiments indicate that targeting PGAM1 inhibited HCC cell growth and promoted the infiltration of CD8+ T-cells due to decreased enzymatic activity. Mechanistically, inhibition of PGAM1 promotes HCC cell ferroptosis by downregulating Lipocalin (LCN2) by inducing energy stress and ROS-dependent AKT inhibition, which can also downregulate Programmed death 1-ligand 1 (PD-L1). Moreover, an allosteric PGAM1 inhibitor (KH3) exhibits good antitumor effects in patient-derived xenograft (PDX) models and enhanced the efficacy of anti-PD-1 immunotherapy in subcutaneous and orthotopic HCC models. Taken together, the findings demonstrate that PGAM1 inhibition exerts an antitumor effect by promoting ferroptosis and CD8+ T-cell infiltration and can synergize with anti-PD-1 immunotherapy in HCC. Targeting PGAM1 can be a promising new strategy of "killing two birds with one stone" for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Fosfoglicerato Mutasa/metabolismo , Fosfoglicerato Mutasa/farmacología , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580952

RESUMEN

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Asunto(s)
Neoplasias Hepáticas , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Metabolismo de los Lípidos , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Proliferación Celular , Lípidos , Acetilación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo
16.
Cell Death Dis ; 14(8): 502, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542027

RESUMEN

Tumor-derived exosomes and their contents promote cancer metastasis. Phosphoglycerate mutase 1 (PGAM1) is involved in various cancer-related processes. Nevertheless, the underlying mechanism of exosomal PGAM1 in prostate cancer (PCa) metastasis remains unclear. In this study, we performed in vitro and in vivo to determine the functions of exosomal PGAM1 in the angiogenesis of patients with metastatic PCa. We performed Glutathione-S-transferase pulldown, co-immunoprecipitation, western blotting and gelatin degradation assays to determine the pathway mediating the effect of exosomal PGAM1 in PCa. Our results revealed a significant increase in exosomal PGAM1 levels in the plasma of patients with metastatic PCa compared to patients with non-metastatic PCa. Furthermore, PGAM1 was a key factor initiating PCa cell metastasis by promoting invadopodia formation and could be conveyed by exosomes from PCa cells to human umbilical vein endothelial cells (HUVECs). In addition, exosomal PGAM1 could bind to γ-actin (ACTG1), which promotes podosome formation and neovascular sprouting in HUVECs. In vivo results revealed exosomal PGAM1 enhanced lung metastasis in nude mice injected with PCa cells via the tail vein. In summary, exosomal PGAM1 promotes angiogenesis and could be used as a liquid biopsy marker for PCa metastasis.


Asunto(s)
Exosomas , MicroARNs , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Actinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Endoteliales/metabolismo , Exosomas/metabolismo , Ratones Desnudos , MicroARNs/metabolismo , Metástasis de la Neoplasia/patología , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Neoplasias de la Próstata/patología
17.
J Biochem Mol Toxicol ; 37(9): e23406, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392398

RESUMEN

Lung adenocarcinoma (LUAD) is usually found at the metastatic stage. Circular RNA dihydrouridine synthase 2-like (DUS2L) (circDUS2L) has been discovered to be upregulated in LUAD. Nevertheless, the function of circDUS2L in LUAD has not been verified. Levels of circDUS2L, microRNA-590-5p (miR-590-5p), and phosphoglycerate mutase 1 (PGAM1) mRNA were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis, metastasis, and invasion were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), colony formation, 5-ethynyl-2'-deoxyuridine (Edu), flow cytometry, and transwell assays. Protein levels were detected by western blotting. Cell glycolysis was analyzed by measuring cell glucose consumption, lactate production, and extracellular acidification rate (ECAR). The regulatory mechanism of circDUS2L in LUAD cells was analyzed by bioinformatics analysis, dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft assay was conducted to confirm the function of circDUS2L in vivo. CircDUS2L was highly expressed in LUAD tissues and cells. CircDUS2L silencing constrained xenograft tumor growth in vivo. CircDUS2L knockdown induced apoptosis, repressed viability, colony formation, proliferation, metastasis, invasion, and glycolysis of LUAD cells in vitro by releasing miR-590-5p via functioning as a miR-590-5p sponge. MiR-590-5p was lowly expressed in LUAD tissues and cells, and miR-590-5p mimic curbed malignant behaviors and glycolysis of LUAD cells by targeting PGAM1. PGAM1 was overexpressed in LUAD tissues and cells, and circDUS2L sponged miR-590-5p to regulate PGAM1 expression. CircDUS2L elevated PGAM1 expression through functioning as a miR-590-5p sponge, thus driving malignant behaviors and glycolysis of LUAD cells.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , Humanos , Fosfoglicerato Mutasa/genética , Adenocarcinoma del Pulmón/genética , ARN Circular/genética , Proliferación Celular , Neoplasias Pulmonares/genética , MicroARNs/genética , Línea Celular Tumoral
18.
Cell Rep ; 42(8): 112895, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37498743

RESUMEN

Mitochondrial morphology is regulated by the post-translational modifications of the dynamin family GTPase proteins including mitofusin 1 (MFN1), MFN2, and dynamin-related protein 1 (DRP1). Mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5) is emerging as a regulator of these post-translational modifications; however, its precise role in the regulation of mitochondrial morphology is unknown. We show that PGAM5 interacts with MFN2 and DRP1 in a stress-sensitive manner. PGAM5 regulates MFN2 phosphorylation and consequently protects it from ubiquitination and degradation. Further, phosphorylation and dephosphorylation modification of MFN2 regulates its fusion ability. Phosphorylation enhances fission and degradation, whereas dephosphorylation enhances fusion. PGAM5 dephosphorylates MFN2 to promote mitochondrial network formation. Further, using a Drosophila genetic model, we demonstrate that the MFN2 homolog Marf and dPGAM5 are in the same biological pathway. Our results identify MFN2 dephosphorylation as a regulator of mitochondrial fusion and PGAM5 as an MFN2 phosphatase.


Asunto(s)
GTP Fosfohidrolasas , Monoéster Fosfórico Hidrolasas , GTP Fosfohidrolasas/metabolismo , Fosfoglicerato Mutasa , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinaminas/metabolismo
19.
Front Immunol ; 14: 1172710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287985

RESUMEN

Introduction: Gut-microbiota-brain axis is a potential treatment to decrease the risk of chronic traumatic encephalopathy following traumatic brain injury (TBI). Phosphoglycerate mutase 5 (PGAM5), a mitochondrial serine/threonine protein phosphatase, resides in mitochondrial membrane and regulates mitochondrial homeostasis and metabolism. Mitochondria mediates intestinal barrier and gut microbiome. Objectives: This study investigated the association between PGAM5 and gut microbiota in mice with TBI. Methods: The controlled cortical impact injury was established in mice with genetically-ablated Pgam5 (Pgam5-/-) or wild type, and WT male mice were treated with fecal microbiota transplantation (FMT) from male Pgam5-/- mice or Akkermansia muciniphila (A. muciniphila). Then the gut microbiota abundance, blood metabolites, neurological function, and nerve injury were detected. Results: Treated with antibiotics for suppressing gut microbiota in Pgam5-/- mice partially relieved the role of Pgam5 deficiency in the improvement of initial inflammatory factors and motor dysfunction post-TBI. Pgam5 knockout exhibited an increased abundance of A. muciniphila in mice. FMT from male Pgam5-/- mice enabled better maintenance of amino acid metabolism and peripherial environment than that in TBI-vehicle mice, which suppressed neuroinflammation and improved neurological deficits, and A. muciniphila was negatively associated with intestinal mucosal injury and neuroinflammation post-TBI. Moreover, A. muciniphila treatment ameliorated neuroinflammation and nerve injury by regulating Nlrp3 inflammasome activation in cerebral cortex with TBI. Conclusion: Thus, the present study provides evidence that Pgam5 is involved in gut microbiota-mediated neuroinflammation and nerve injury, with A. muciniphila-Nlrp3 contributing to peripheral effects.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neuroprotección , Masculino , Animales , Ratones , Enfermedades Neuroinflamatorias , Fosfoglicerato Mutasa , Verrucomicrobia/química , Verrucomicrobia/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
20.
Arch Microbiol ; 205(7): 263, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316743

RESUMEN

Candida albicans colonizes oral tissues and causes infectious diseases. Colonization of C. albicans on the oral mucosa and tooth enamel surfaces is established via the interaction between C. albicans adhesins and salivary proteins, forming a film on the oral tissues. Deleted in malignant brain tumors 1 (DMBT1), also known as salivary agglutinin or gp-340, belongs to the scavenger receptor cysteine-rich (SRCR) superfamily. In the oral cavity, immobilized DMBT1 on oral tissues causes microbial adherence. Recently, we demonstrated that C. albicans binds to DMBT1 and isolated a 25-kDa C. albicans adhesin involved in the interaction with the binding domain of DMBT1, namely, SRCRP2. In the present study, we searched for additional DMBT1-binding adhesins in C. albicans. The component isolated here had a molecular mass of 29 kDa and was found to be phosphoglycerate mutase (Gpm1). Isolated Gpm1 inhibited C. albicans binding to SRCRP2 and directly bound to SRCRP2 in a dose-dependent manner. Gpm1 localization on the C. albicans cell wall surface was confirmed by immunostaining. These results suggest that surface-expressed Gpm1 functions as an adhesin for the establishment of C. albicans cells on the oral mucosa and tooth enamel by binding to DMBT1.


Asunto(s)
Candida albicans , Fosfoglicerato Mutasa , Fosfoglicerato Mutasa/genética , Adhesinas Bacterianas , Membrana Celular , Pared Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA