Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.697
Filtrar
1.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731502

RESUMEN

Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.


Asunto(s)
Metabolómica , Metabolómica/métodos , Gusto , Espectrometría de Masas en Tándem/métodos , Metaboloma , Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Frutas/metabolismo
2.
Physiol Plant ; 176(3): e14333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710501

RESUMEN

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biosíntesis , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frutas/genética , Frutas/metabolismo
3.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709311

RESUMEN

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Vitis , Vitis/genética , Vitis/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentación/genética , Frutas/genética , Frutas/metabolismo , Alelos
4.
BMC Plant Biol ; 24(1): 374, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714922

RESUMEN

BACKGROUND: PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS: A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION: Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.


Asunto(s)
Evolución Molecular , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Pigmentación/genética , Frutas/genética , Frutas/metabolismo , Genes de Plantas , Familia de Multigenes
5.
Nat Commun ; 15(1): 4295, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769327

RESUMEN

Chili pepper (Capsicum) is known for its unique fruit pungency due to the presence of capsaicinoids. The evolutionary history of capsaicinoid biosynthesis and the mechanism of their tissue specificity remain obscure due to the lack of high-quality Capsicum genomes. Here, we report two telomere-to-telomere (T2T) gap-free genomes of C. annuum and its wild nonpungent relative C. rhomboideum to investigate the evolution of fruit pungency in chili peppers. We precisely delineate Capsicum centromeres, which lack high-copy tandem repeats but are extensively invaded by CRM retrotransposons. Through phylogenomic analyses, we estimate the evolutionary timing of capsaicinoid biosynthesis. We reveal disrupted coding and regulatory regions of key biosynthesis genes in nonpungent species. We also find conserved placenta-specific accessible chromatin regions, which likely allow for tissue-specific biosynthetic gene coregulation and capsaicinoid accumulation. These T2T genomic resources will accelerate chili pepper genetic improvement and help to understand Capsicum genome evolution.


Asunto(s)
Capsaicina , Capsicum , Evolución Molecular , Genoma de Planta , Filogenia , Telómero , Capsicum/genética , Capsicum/metabolismo , Capsaicina/metabolismo , Telómero/genética , Telómero/metabolismo , Frutas/genética , Frutas/metabolismo , Retroelementos/genética , Regulación de la Expresión Génica de las Plantas
6.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730367

RESUMEN

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Asunto(s)
Citrus , Lignina , Lignina/metabolismo , Citrus/metabolismo , Citrus/genética , Jugos de Frutas y Vegetales/análisis , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Peróxido de Hidrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Frutas/metabolismo , Frutas/genética , Antioxidantes/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731974

RESUMEN

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Ácidos Indolacéticos , Proteínas de Plantas , Semillas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Ácidos Indolacéticos/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
8.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732032

RESUMEN

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Asunto(s)
Diospyros , Frutas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Diospyros/genética , Diospyros/metabolismo , Diospyros/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732059

RESUMEN

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Asunto(s)
Antocianinas , Etilenos , Frutas , Regulación de la Expresión Génica de las Plantas , Mangifera , Proteínas de Plantas , Factores de Transcripción , Mangifera/metabolismo , Mangifera/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Fenilanina Amoníaco-Liasa/genética , Pigmentación/genética , Clorofila/metabolismo
10.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732182

RESUMEN

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Antocianinas/biosíntesis , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Interferencia de ARN
11.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732247

RESUMEN

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas , Azúcares , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efectos de la radiación , Frutas/genética , Frutas/metabolismo , Frutas/efectos de la radiación , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Azúcares/metabolismo , Luz
12.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717061

RESUMEN

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Asunto(s)
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulación de la Expresión Génica de las Plantas , Hibridación Genética
13.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717972

RESUMEN

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Asunto(s)
Botrytis , Fragaria , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Salicilatos , Fragaria/genética , Fragaria/inmunología , Fragaria/microbiología , Fragaria/enzimología , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Salicilatos/metabolismo , Salicilatos/farmacología , Resistencia a la Enfermedad/genética , Familia de Multigenes , Simulación del Acoplamiento Molecular , Frutas/genética , Frutas/inmunología , Frutas/microbiología , Frutas/química , Frutas/enzimología , Frutas/metabolismo
14.
J Agric Food Chem ; 72(20): 11549-11560, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718199

RESUMEN

Corinthian currants are dried fruits produced from Vitis vinifera L. var. Apyrena grape. This study investigated the distribution of phenolic compounds in male Wistar rat livers following two distinct Corinthian currant long-term dietary intake protocols (3 and 10% w/w). Method optimization, comparing fresh and lyophilized tissues, achieved satisfactory recoveries (>70%) for most analytes. Enzymatic hydrolysis conditions (37 °C, pH 5.0) minimally affected phenolics, but enzyme addition showed diverse effects. Hydrolyzed lyophilized liver tissue from rats consuming Corinthian currants (3 and 10% w/w) exhibited elevated levels of isorhamnetin (20.62 ± 2.27 ng/g tissue and 33.80 ± 1.38 ng/g tissue, respectively), along with similar effects for kaempferol, quercetin, and chrysin after prolonged Corinthian currant intake. This suggests their presence as phase II metabolites in the fasting-state liver. This study is the first to explore phenolic accumulation in rat liver, simulating real conditions of dried fruit consumption, as seen herein with Corinthian currant.


Asunto(s)
Flavonoides , Frutas , Hígado , Ratas Wistar , Espectrometría de Masas en Tándem , Vitis , Animales , Flavonoides/metabolismo , Flavonoides/química , Masculino , Ratas , Vitis/química , Vitis/metabolismo , Hígado/metabolismo , Hígado/química , Frutas/química , Frutas/metabolismo , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Extractos Vegetales/administración & dosificación , Cromatografía Líquida de Alta Presión
15.
Sci Rep ; 14(1): 11248, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755228

RESUMEN

An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.


Asunto(s)
Capsicum , Frutas , Silicatos , Capsicum/crecimiento & desarrollo , Capsicum/efectos de los fármacos , Capsicum/metabolismo , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/metabolismo , Biomasa , Potasio/metabolismo , Potasio/análisis , Estaciones del Año , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Biometría , Compuestos de Potasio/farmacología
16.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691187

RESUMEN

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Granada (Fruta) , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Granada (Fruta)/genética , Granada (Fruta)/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Color , Metabolómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673847

RESUMEN

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , Solanum melongena , Antocianinas/metabolismo , Antocianinas/biosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum melongena/enzimología , Solanum melongena/genética , Solanum melongena/metabolismo
18.
Plant Physiol Biochem ; 210: 108589, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593485

RESUMEN

Carotenoids are important pigmented nutrients synthesized by tomato fruits during ripening. To reveal the molecular mechanism underlying carotenoid synthesis during tomato fruit ripening, we analyzed carotenoid metabolites and transcriptomes in six development stages of tomato fruits. A total of thirty different carotenoids were detected and quantified in tomato fruits from 10 to 60 DPA. Based on differential gene expression profiles and WGCNA, we explored several genes that were highly significant and negatively correlated with lycopene, all of which encode fasciclin-like arabinogalactan proteins (FLAs). The FLAs are involved in plant signal transduction, however the functional role of these proteins has not been studied in tomato. Genome-wide analysis revealed that cultivated and wild tomato species contained 18 to 22 FLA family members, clustered into four groups, and mainly evolved by means of segmental duplication. The functional characterization of FLAs showed that silencing of SlFLA1, 5, and 13 were found to contribute to the early coloration of tomato fruits, and the expression of carotenoid synthesis-related genes was up-regulated in fruits that changed phenotypically, especially in SlFLA13-silenced plants. Furthermore, the content of multiple carotenoids (including (E/Z)-phytoene, lycopene, γ-carotene, and α-carotene) was significantly increased in SlFLA13-silenced fruits, suggesting that SlFLA13 has a potential inhibitory function in regulating carotenoid synthesis in tomato fruits. The results of the present study broaden the idea of analyzing the biological functions of tomato FLAs and preliminary evidence for the inhibitory role of SlFLA13 in carotenoid synthesis in fruit, providing the theoretical basis and a candidate for improving tomato fruit quality.


Asunto(s)
Carotenoides , Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Carotenoides/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Galactanos/metabolismo , Galactanos/biosíntesis , Mucoproteínas/metabolismo , Mucoproteínas/genética
19.
Plant Physiol Biochem ; 210: 108568, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581806

RESUMEN

Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.


Asunto(s)
Pared Celular , Pared Celular/metabolismo , Frutas/metabolismo , Frutas/fisiología
20.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604012

RESUMEN

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Asunto(s)
Pared Celular , Frutas , Persea , Especies Reactivas de Oxígeno , Persea/metabolismo , Pared Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Frutas/metabolismo , Almacenamiento de Alimentos/métodos , Frío , Congelación , Etilenos/metabolismo , Pectinas/metabolismo , Celulosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA