Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant J ; 106(3): 766-784, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583065

RESUMEN

Copper (Cu) and iron (Fe) are essential for plant growth and are often in short supply under natural conditions. Molecular responses to simultaneous lack of both metals (-Cu-Fe) differ from those seen in the absence of either alone. Metabolome profiling of plant leaves previously revealed that fumarate levels fall under -Cu-Fe conditions. We employed lines lacking cytosolic FUMARASE2 (FUM2) activity to study the impact of constitutive suppression of cytosolic fumarate synthesis on plant growth under Cu and/or Fe deficiency. In fum2 mutants, photosynthesis and growth were less impaired under -Cu-Fe conditions than in wild-type (WT) seedlings. In particular, levels of photosynthetic proteins, chloroplast ultrastructure, amino acid profiles and redox state were less perturbed by simultaneous Cu-Fe deficiency in lines that cannot produce fumarate in the cytosol. Although cytosolic fumarate has been reported to promote acclimation of photosynthesis to low temperatures when metal supplies are adequate, the photosynthetic efficiency of fum2 lines grown under Cu-Fe deficiency in the cold was higher than in WT. Uptake and contents of Cu and Fe are similar in WT and fum2 plants under control and -Cu-Fe conditions, and lack of FUM2 does not alter the ability to sense metal deficiency, as indicated by marker gene expression. Collectively, we propose that reduced levels of cytosolic fumarate synthesis ultimately increase the availability of Fe for incorporation into metalloproteins.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Cobre/deficiencia , Fumarato Hidratasa/fisiología , Hierro/metabolismo , Fotosíntesis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Tilacoides/metabolismo
2.
Genet Med ; 21(3): 705-717, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30050099

RESUMEN

PURPOSE: Metabolic aberrations have been described in neoplasms with pathogenic variants (PV) in the Krebs cycle genes encoding succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH). In turn, accumulation of oncometabolites succinate, fumarate, and 2-hydroxyglutarate can be employed to identify tumors with those PV . Additionally, such metabolic readouts may aid in genetic variant interpretation and improve diagnostics. METHODS: Using liquid chromatography-mass spectrometry, 395 pheochromocytomas and paragangliomas (PPGLs) from 391 patients were screened for metabolites to indicate Krebs cycle aberrations. Multigene panel sequencing was applied to detect driver PV in cases with indicative metabolite profiles but undetermined genetic drivers. RESULTS: Aberrant Krebs cycle metabolomes identified rare cases of PPGLs with germline PV in FH and somatic PV in IDHx and SDHx, including the first case of a somatic IDH2 PV in PPGL. Metabolomics also reliably identified PPGLs with SDHx loss-of-function (LOF) PV. Therefore we utilized tumor metabolite profiles to further classify variants of unknown significance in SDHx, thereby enabling missense variants associated with SDHx LOF to be distinguished from benign variants. CONCLUSION: We propose incorporation of metabolome data into the diagnostics algorithm in PPGLs to guide genetic testing and variant interpretation and to help identify rare cases with PV in FH and IDHx.


Asunto(s)
Genómica/métodos , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias de las Glándulas Suprarrenales/genética , Cromatografía Liquida , Femenino , Fumarato Hidratasa/genética , Fumarato Hidratasa/fisiología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Masculino , Espectrometría de Masas , Metaboloma/genética , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/fisiología
3.
Cancer Sci ; 109(9): 2757-2766, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29917289

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a hereditary cancer syndrome characterized by inactivation of the Krebs cycle enzyme fumarate hydratase (FH). HLRCC patients are at high risk of developing kidney cancer of type 2 papillary morphology that is refractory to current radiotherapy, immunotherapy and chemotherapy. Hence, an effective therapy for this deadly form of cancer is urgently needed. Here, we show that FH inactivation (FH-/- ) proves synthetic lethal with inducers of ferroptosis, an iron-dependent and nonapoptotic form of cell death. Specifically, we identified gene signatures for compound sensitivities based on drug responses for 9 different drug classes against the NCI-60 cell lines. These signatures predicted that ferroptosis inducers would be selectively toxic to FH-/- cell line UOK262. Preferential cell death against UOK262-FH-/- was confirmed with 4 different ferroptosis inducers. Mechanistically, the FH-/- sensitivity to ferroptosis is attributed to dysfunctional GPX4, the primary cellular defender against ferroptosis. We identified that C93 of GPX4 is readily post-translationally modified by fumarates that accumulate in conditions of FH-/- , and that C93 modification represses GPX4 activity. Induction of ferroptosis in FH-inactivated tumors represents an opportunity for synthetic lethality in cancer.


Asunto(s)
Fumarato Hidratasa/fisiología , Leiomiomatosis/enzimología , Síndromes Neoplásicos Hereditarios/enzimología , Neoplasias Cutáneas/enzimología , Neoplasias Uterinas/enzimología , Línea Celular Tumoral , Activación Enzimática , Glutatión Peroxidasa/fisiología , Humanos , Leiomiomatosis/patología , Síndromes Neoplásicos Hereditarios/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Uterinas/patología
4.
Int J Cardiol ; 258: 217-223, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29544935

RESUMEN

AIMS: Galectin-3 (Gal-3), a ß-galactoside-binding lectin involved in cardiac inflammation and fibrosis, could regulate oxidative stress, although the mechanisms have not been elucidated. We herein investigated the changes in oxidative stress-related mediators induced by Gal-3 in human cardiac fibroblasts and in pathological animal and human models of cardiac diseases. RESULTS: Using quantitative proteomics and immunodetection approaches, we have identified that Gal-3 down-regulated fumarate hydratase (FH) in human cardiac fibroblasts. In parallel, Gal-3 increased fumarate production in a time-dependent manner. Gal-3 treatment enhanced carbonylated proteins detected through OxyBlot technique. Interestingly, treatment of cells with fumarate induced oxidative stress, enhanced fibroblast activation markers and increased collagen and interleukin-6 secretion. In Gal-3-silenced cells and in heart from Gal-3 knock-out mice, FH was increased and fumarate was decreased. In myocardial biopsies from patients with aortic stenosis (AS, n=26), FH levels were decreased as compared to Controls (n=13). Cardiac Gal-3 inversely correlated with FH levels in myocardial biopsies. In an experimental model of AS rats, pharmacological inhibition of Gal-3 restored cardiac FH, decreased fumarate concentration and improved oxidative status. CONCLUSION: In human cardiac fibroblasts, Gal-3 decreased FH expression increasing fumarate concentration and promoting oxidative stress. In human AS, cardiac levels of Gal-3 inversely associated with FH. Gal-3 blockade restored FH and improved fumarate and oxidative stress status in AS rats. FH is therefore a key molecule mediating Gal-3-induced oxidative stress in cardiac cells.


Asunto(s)
Fibroblastos/metabolismo , Fumarato Hidratasa/fisiología , Galectina 3/metabolismo , Miocardio/metabolismo , Estrés Oxidativo/fisiología , Animales , Proteínas Sanguíneas , Células Cultivadas , Fibroblastos/patología , Galectina 3/deficiencia , Galectinas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Ratas , Ratas Wistar
5.
Malar J ; 16(1): 247, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606087

RESUMEN

BACKGROUND: Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. RESULTS: First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. CONCLUSIONS: These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites.


Asunto(s)
Malaria Cerebral/prevención & control , Mitocondrias/enzimología , Oxidorreductasas/antagonistas & inhibidores , Plasmodium berghei/enzimología , Animales , Barrera Hematoencefálica/metabolismo , Eritrocitos/parasitología , Femenino , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/fisiología , Fumaratos/metabolismo , Malatos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Ácido Oxaloacético/metabolismo , Oxidorreductasas/deficiencia , Oxidorreductasas/fisiología , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Organismos Libres de Patógenos Específicos
6.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28202494

RESUMEN

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Asunto(s)
Fumarato Hidratasa/fisiología , Células Madre Hematopoyéticas/fisiología , Animales , Femenino , Fumaratos/metabolismo , Hematopoyesis , Histonas/metabolismo , Leucemia Mieloide Aguda/etiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/fisiología , Consumo de Oxígeno
8.
J Am Soc Nephrol ; 27(2): 466-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26203118

RESUMEN

The NADPH oxidase (NOX) isoform NOX4 has been linked with diabetic kidney disease (DKD). However, a mechanistic understanding of the downstream effects of NOX4 remains to be established. We report that podocyte-specific induction of NOX4 in vivo was sufficient to recapitulate the characteristic glomerular changes noted with DKD, including glomerular hypertrophy, mesangial matrix accumulation, glomerular basement membrane thickening, albuminuria, and podocyte dropout. Intervention with a NOX1/NOX4 inhibitor reduced albuminuria, glomerular hypertrophy, and mesangial matrix accumulation in the F1 Akita model of DKD. Metabolomic analyses from these mouse studies revealed that tricarboxylic acid (TCA) cycle-related urinary metabolites were increased in DKD, but fumarate levels were uniquely reduced by the NOX1/NOX4 inhibitor. Expression of fumarate hydratase (FH), which regulates urine fumarate accumulation, was reduced in the diabetic kidney (in mouse and human tissue), and administration of the NOX1/NOX4 inhibitor increased glomerular FH levels in diabetic mice. Induction of Nox4 in vitro and in the podocyte-specific NOX4 transgenic mouse led to reduced FH levels. In vitro, fumarate stimulated endoplasmic reticulum stress, matrix gene expression, and expression of hypoxia-inducible factor-1α (HIF-1α) and TGF-ß. Similar upregulation of renal HIF-1α and TGF-ß expression was observed in NOX4 transgenic mice and diabetic mice and was attenuated by NOX1/NOX4 inhibition in diabetic mice. In conclusion, NOX4 is a major mediator of diabetes-associated glomerular dysfunction through targeting of renal FH, which increases fumarate levels. Fumarate is therefore a key link connecting metabolic pathways to DKD pathogenesis, and measuring urinary fumarate levels may have application for monitoring renal NOX4 activity.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Fumarato Hidratasa/fisiología , Metabolómica , NADPH Oxidasas/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 4
10.
Cancer Cell ; 20(4): 524-37, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22014577

RESUMEN

The Krebs cycle enzyme fumarate hydratase (FH) is a human tumor suppressor whose inactivation is associated with the development of leiomyomata, renal cysts, and tumors. It has been proposed that activation of hypoxia inducible factor (HIF) by fumarate-mediated inhibition of HIF prolyl hydroxylases drives oncogenesis. Using a mouse model, we provide genetic evidence that Fh1-associated cyst formation is Hif independent, as is striking upregulation of antioxidant signaling pathways revealed by gene expression profiling. Mechanistic analysis revealed that fumarate modifies cysteine residues within the Kelch-like ECH-associated protein 1 (KEAP1), abrogating its ability to repress the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response pathway, suggesting a role for Nrf2 dysregulation in FH-associated cysts and tumors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fumarato Hidratasa/fisiología , Fumaratos/metabolismo , Enfermedades Renales Quísticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/metabolismo , Animales , Antioxidantes/metabolismo , Hipoxia de la Célula , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Enfermedades Renales Quísticas/genética , Ratones , Procolágeno-Prolina Dioxigenasa/metabolismo , Transducción de Señal
11.
FASEB J ; 24(8): 2680-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20354140

RESUMEN

Loss of the fumarate hydratase (FH) tumor suppressor gene results in the development of benign tumors that rarely, but regrettably, progress to very aggressive cancers. Using mouse embryo fibroblasts (MEFs) to model transformation, we found that fh knockdown results in increased expression of the met oncogene-encoded tyrosine kinase receptor through hypoxia-inducible factor (hif) stabilization. MET-increased expression was alone able to stabilize hif, thus establishing a feed forward loop that might enforce tumor progression. The fh-defective MEFs showed increased motility and protection from apoptosis. Motility, but not survival, relied on hif-1alpha and was greatly enhanced by MET ligand hepatocyte growth factor. Met cooperated with a weakly oncogenic ras in making MEFs transformed and tumorigenic, as shown by in vitro and in vivo assays. Loss of fh was not equally effective by itself but enhanced the transformed and tumorigenic phenotype induced by ras and MET. Consistently, the rescue of fumarase expression abrogated the motogenic and transformed phenotype of fh-defective MEFs. In conclusion, the data suggest that the progression of tumors where FH is lost might be boosted by activation of the MET oncogene, which is able to drive cell-autonomous tumor progression and is a strong candidate for targeted therapy.


Asunto(s)
Transformación Celular Neoplásica , Fumarato Hidratasa/fisiología , Neoplasias/etiología , Proteínas Proto-Oncogénicas c-met/fisiología , Animales , Células Cultivadas , Fibroblastos , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Factor de Crecimiento de Hepatocito/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Ratones , Proteínas Supresoras de Tumor/genética
12.
Expert Opin Biol Ther ; 8(6): 779-90, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18476789

RESUMEN

BACKGROUND: Kidney cancer is not a homogenous entity; it is comprised of many different tumor types, with different biologies and molecular mechanisms leading to disease and therefore different treatment approaches. OBJECTIVE: To describe the genetic basis and biochemical pathways underlying inherited forms of renal cancer, specifically in four described syndromes (von Hippel-Lindau [VHL], hereditary papillary renal cancer [HPRC], Birt-Hogg-Dubé [BHD] and hereditary leiomyomatosis renal cell carcinoma [HLRCC]), and to elucidate how the understanding of these diseases enables the possibility of disease-specific approaches to therapy. METHODS: A systematic review of the published literature on inherited and sporadic forms of renal cancer was performed. CONCLUSION: Understanding of the biology and mechanisms of different forms of kidney cancer provides an opportunity for development of new treatment options.


Asunto(s)
Antineoplásicos/uso terapéutico , Genes Supresores de Tumor , Neoplasias Renales/genética , Síndromes Neoplásicos Hereditarios/genética , Proto-Oncogenes , Antineoplásicos/farmacología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/terapia , Diseño de Fármacos , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Fumarato Hidratasa/fisiología , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Renales/terapia , Leiomiomatosis/genética , Leiomiomatosis/terapia , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/terapia , Síndromes Neoplásicos Hereditarios/terapia , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-met , Receptores de Factores de Crecimiento/antagonistas & inhibidores , Receptores de Factores de Crecimiento/deficiencia , Receptores de Factores de Crecimiento/genética , Receptores de Factores de Crecimiento/fisiología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/terapia
13.
Clin Cancer Res ; 13(16): 4667-71, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699843

RESUMEN

Mutations of the von Hippel-Lindau (VHL) or fumarate hydratase (FH) genes lead to morphologically different renal cell carcinomas with distinct clinical courses and outcomes. The VHL protein is a part of an ubiquitin ligase complex that targets proteins for proteosomal degradation. FH is one of the mitochondrial enzymes of the Kreb's cycle. Despite two different functionalities and cellular locations, loss of either VHL or FH products has been shown to alter expression levels of hypoxia-inducible factors (HIF-1alpha and HIF-2alpha) and their downstream targets. HIF proteins are key regulators of oxygen homeostasis. Tight regulation of HIF allows for cell survival and growth at the time of hypoxic stress. HIF acts via transcriptional regulation of vascular endothelial growth factor, platelet derived growth factor, endothelial growth factor receptor, glucose transporter protein 1, erythropoietin, and transforming growth factor-alpha. Loss of VHL or FH is thought to result in a pseudohypoxic state so that cellular response pathways mediated by HIF are activated despite normal oxygen conditions. Understanding of these pseudohypoxic pathways has provided a better appreciation of the molecular mechanisms of carcinogenesis in addition to providing a rationale for targeted therapeutic approaches.


Asunto(s)
Carcinoma de Células Renales/etiología , Hipoxia de la Célula , Neoplasias Renales/etiología , Animales , Carcinoma de Células Renales/genética , Fumarato Hidratasa/genética , Fumarato Hidratasa/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Renales/genética , Proteínas Mitocondriales , Proteínas de Neoplasias/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología
14.
Br J Cancer ; 96(3): 403-7, 2007 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-17211469

RESUMEN

Hereditary leiomyomatosis and renal cell cancer is a recently described hereditary cancer syndrome in which affected individuals are predisposed to the development of leiomyomas of the skin and uterus. In addition, this clinical entity also can result in the development of biologically aggressive kidney cancer. Affected individuals harbour a germline mutation of the fumarate hydratase (FH) gene, which encodes an enzyme that catalyses conversion of fumarate to malate in the Kreb's cycle. Thus far, proposed mechanisms for carcinogeneis associated with this syndrome include aberrant apoptosis, oxidative stress, and pseudohypoxic drive. At this time, the majority of accumulating data support a role for pseudohypoxic drive in tumour development. The link between FH mutation and pseudohypoxic drive may reside in the biochemical alterations resulting from diminished/absent FH activity. These biochemical derangements may interfere with oxygen homeostasis and result in a cellular environment conducive to tumour formation.


Asunto(s)
Fumarato Hidratasa/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias Renales/etiología , Carcinoma de Células Renales/etiología , Carcinoma de Células Renales/genética , Ciclo del Ácido Cítrico , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Leiomiomatosis/etiología , Leiomiomatosis/genética , Síndromes Neoplásicos Hereditarios/etiología , Síndromes Neoplásicos Hereditarios/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología
15.
Genes Chromosomes Cancer ; 41(3): 183-90, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15334541

RESUMEN

Recently, germline mutations of the fumarate hydratase (FH) gene, in 1q42.1, have been found to be involved in syndromes associated with uterine leiomyomas (ULs). Compelling evidence also supports a genetic liability to develop nonsyndromic UL, although susceptibility genes have not been reported to date. Loss of heterozygosity (LOH) studies have found no or rare evidence of LOH of FH in nonsyndromic UL. However, the karyotypes of these tumors were not reported, and cytogenetic aberrations of 1q42-44 have been observed infrequently in UL. To determine whether FH mutations also may predispose women to developing nonsyndromic UL, we performed a genetic linkage study with DNA from 123 families containing at least one affected sister pair. In addition, to assess the frequency of FH loss specifically in UL with 1q rearrangements, we performed a fluorescence in situ hybridization (FISH) analysis of UL with 1q rearrangements. Analysis of the genotyping data revealed evidence suggestive of linkage to the FH region among study participants who were less than 40 years of age at diagnosis (Zlr 1.7 at D1S547, P = 0.04). FISH results showed that one copy of FH was absent in 9 of 11 ULs. These data indicate that loss of FH might be a significant event in the pathogenesis of a subset of nonsyndromic ULs.


Asunto(s)
Fumarato Hidratasa/genética , Fumarato Hidratasa/fisiología , Ligamiento Genético , Leiomioma/enzimología , Neoplasias Uterinas/enzimología , Adulto , Factores de Edad , Bandeo Cromosómico , Cromosomas Humanos Par 1 , ADN/metabolismo , Cartilla de ADN/metabolismo , Salud de la Familia , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Mutación de Línea Germinal , Humanos , Hibridación Fluorescente in Situ , Pérdida de Heterocigocidad , Persona de Mediana Edad , Mutación
16.
Nat Rev Cancer ; 3(3): 193-202, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12612654

RESUMEN

Mitochondrial defects have been associated with neurological disorders, as well as cancers. Two ubiquitously expressed mitochondrial enzymes--succinate dehydrogenase (SDH) and fumarate hydratase (FH, fumarase)--catalyse sequential steps in the Krebs tricarboxylic-acid cycle. Inherited heterozygous mutations in the genes encoding these enzymes cause predispositions to two types of inherited neoplasia syndromes that do not share any component tumours. Homozygous mutations in the same genes result in severe neurological impairment. Understanding this link between inherited cancer syndromes and neurological disease could provide further insights into the mechanisms by which mitochondrial deficiencies lead to tumour development.


Asunto(s)
Ciclo del Ácido Cítrico/genética , Fumarato Hidratasa/fisiología , Mitocondrias/enzimología , Encefalomiopatías Mitocondriales/enzimología , Complejos Multienzimáticos/fisiología , Síndromes Neoplásicos Hereditarios/enzimología , Oxidorreductasas/fisiología , Succinato Deshidrogenasa/fisiología , Apoptosis/genética , Apoptosis/fisiología , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Complejo II de Transporte de Electrones , Metabolismo Energético , Predicción , Radicales Libres , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Heterocigoto , Homocigoto , Humanos , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Leiomiomatosis/genética , Encefalomiopatías Mitocondriales/genética , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Mutación , Síndromes Neoplásicos Hereditarios/genética , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Oxidorreductasas/deficiencia , Oxidorreductasas/genética , Paraganglioma/enzimología , Paraganglioma/genética , Feocromocitoma/enzimología , Feocromocitoma/genética , Subunidades de Proteína , Succinato Deshidrogenasa/deficiencia , Succinato Deshidrogenasa/genética
18.
Eur J Biochem ; 269(3): 868-83, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11846788

RESUMEN

The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha-proteobacterial ancestor of mitochondria should, in phylogenetic trees, branch with homologues that are no longer found in most alpha-proteobacterial genomes, and some should reside on long branches that reveal affinity to eubacterial rather than archaebacterial homologues, but no particular affinity for any specific eubacterial donor.


Asunto(s)
Ciclo del Ácido Cítrico , Enzimas/fisiología , Evolución Molecular , Glioxilatos/metabolismo , Plantas/metabolismo , Aconitato Hidratasa/fisiología , Citrato (si)-Sintasa/fisiología , Fumarato Hidratasa/fisiología , Isocitrato Deshidrogenasa/fisiología , Isocitratoliasa/fisiología , Cetona Oxidorreductasas/fisiología , Malato Deshidrogenasa/fisiología , Malato Sintasa/fisiología , Filogenia , Succinato Deshidrogenasa/fisiología
19.
Biochim Biophys Acta ; 954(1): 14-26, 1988 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-3282546

RESUMEN

Biochemical studies with strains of Escherichia coli that are amplified for the products of the three fumarase genes, fumA (FUMA), fumB (FUMB) and fumC (FUMC), have shown that there are two distinct classes of fumarase. The Class I enzymes include FUMA, FUMB, and the immunologically related fumarase of Euglena gracilis. These are characteristically thermolabile dimeric enzymes containing identical subunits of Mr 60,000. FUMA and FUMB are differentially regulated enzymes that function in the citric acid cycle (FUMA) or to provide fumarate as an anaerobic electron acceptor (FUMB), and their affinities for fumarate and L-malate are consistent with these roles. The Class II enzymes include FUMC, and the fumarases of Bacillus subtilis, Saccharomyces cerevisiae and mammalian sources. They are thermostable tetrameric enzymes containing identical subunits Mr 48,000-50,000. The Class II fumarases share a high degree of sequence identity with each other (approx. 60%) and with aspartase (approx. 38%) and argininosuccinase (approx. 15%), and it would appear that these are all members of a family of structurally related enzymes. It is also suggested that the Class I enzymes may belong to a wider family of iron-dependent carboxylic acid hydro-lyases that includes maleate dehydratase and aconitase. Apart from one region containing a Gly-Ser-X-X-Met-X-X-Lys-X-Asn consensus sequence, no significant homology was detected between the Class I and Class II fumarases.


Asunto(s)
Proteínas Bacterianas/clasificación , Escherichia coli/enzimología , Fumarato Hidratasa/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/fisiología , Escherichia coli/genética , Fumarato Hidratasa/genética , Fumarato Hidratasa/inmunología , Fumarato Hidratasa/fisiología , Genes Bacterianos , Calor , Datos de Secuencia Molecular , Plásmidos , Proteínas Recombinantes , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA