Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.224
Filtrar
1.
Food Chem ; 461: 140799, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154464

RESUMEN

Plant secondary metabolites have attracted considerable attention due to the increasing demand for finite fossil resources and environmental concerns. However, the biosynthesis of aromatic aldehydes or alcohols from renewable resources remains challenging and costly. This study explores a novel approach performed by the aromatic catabolizing organism Rhizopus oryzae, which enables a ferulic acid-activated co-production of 4-vinyl guaiacol (4-VG) and fumaric acid. The strain produced 4.60 g/L 4-VG and 11.25 g/L fumaric acid from a mixed carbon source of glucose and xylose, suggesting that this new pathway allows the potential production of natural 4-VG from low-cost substrates. This green route, which utilizes Rhizopus oryzae's ability to efficiently convert various renewable resources into valuable chemicals, paves the way for improved catalytic efficiency in 4-VG production.


Asunto(s)
Ácidos Cumáricos , Fumaratos , Guayacol , Lignina , Rhizopus oryzae , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/química , Lignina/metabolismo , Lignina/química , Fumaratos/metabolismo , Guayacol/metabolismo , Guayacol/análogos & derivados , Guayacol/química , Rhizopus oryzae/metabolismo , Rhizopus oryzae/genética , Carbono/metabolismo , Carbono/química , Rhizopus/metabolismo
2.
Mol Cell ; 84(17): 3354-3370.e7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151423

RESUMEN

The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.


Asunto(s)
Linfocitos T CD8-positivos , Proteínas Quinasas Asociadas a Muerte Celular , Fumaratos , Activación de Linfocitos , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Metabolismo Energético , Fumaratos/metabolismo , Fumaratos/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
3.
Se Pu ; 42(7): 702-710, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966978

RESUMEN

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Asunto(s)
Ciclo del Ácido Cítrico , Humanos , Células HeLa , Ácido Succínico/metabolismo , Ácido Succínico/química , Fumaratos/metabolismo , Fumaratos/química
4.
ACS Appl Mater Interfaces ; 16(29): 37435-37444, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984763

RESUMEN

Hyperpolarized 13C-labeled fumarate probes tissue necrosis via the production of 13C-malate. Despite its promises in detecting tumor necrosis and kidney injuries, its clinical translation has been limited, primarily due to the low solubility in conventional glassing solvents. In this study, we introduce a new formulation of fumarate for dissolution dynamic nuclear polarization (DNP) by using meglumine as a counterion, a nonmetabolizable derivative of sorbitol. We have found that meglumine fumarate vitrifies by itself with enhanced water solubility (4.8 M), which is expected to overcome the solubility-restricted maximum concentration of hyperpolarized fumarate after dissolution. The achievable liquid-state polarization level of meglumine-fumarate is more than doubled (29.4 ± 1.3%) as compared to conventional dimethyl sulfoxide (DMSO)-mixed fumarate (13.5 ± 2.4%). In vivo comparison of DMSO- and meglumine-prepared 50-mM hyperpolarized [1,4-13C2]fumarate shows that the signal sensitivity in rat kidneys increases by 10-fold. As a result, [1,4-13C2]aspartate and [13C]bicarbonate in addition to [1,4-13C2]malate can be detected in healthy rat kidneys in vivo using hyperpolarized meglumine [1,4-13C2]fumarate. In particular, the appearance of [13C]bicarbonate indicates that hyperpolarized meglumine [1,4-13C2]fumarate can be used to investigate phosphoenolpyruvate carboxykinase, a key regulatory enzyme in gluconeogenesis.


Asunto(s)
Isótopos de Carbono , Fumaratos , Riñón , Solubilidad , Animales , Fumaratos/química , Fumaratos/metabolismo , Ratas , Riñón/metabolismo , Isótopos de Carbono/química , Gluconeogénesis , Masculino , Ratas Sprague-Dawley
5.
Nat Commun ; 15(1): 5386, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918386

RESUMEN

Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.


Asunto(s)
Fumarato Hidratasa , Fumaratos , Espectrometría Raman , Espectrometría Raman/métodos , Animales , Fumaratos/metabolismo , Ratones , Fumarato Hidratasa/metabolismo , Fumarato Hidratasa/genética , Riñón/metabolismo , Mitocondrias/metabolismo , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo
6.
Trends Biochem Sci ; 49(9): 775-790, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876954

RESUMEN

Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.


Asunto(s)
Cisteína , Fumarato Hidratasa , Fumaratos , Cisteína/metabolismo , Fumaratos/metabolismo , Humanos , Fumarato Hidratasa/metabolismo , Fumarato Hidratasa/genética , Procesamiento Proteico-Postraduccional , Animales
7.
FEBS Open Bio ; 14(8): 1230-1246, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38794848

RESUMEN

The cellular response to oxidants or xenobiotics comprises two key pathways, resulting in modulation of NRF2 and FOXO transcription factors, respectively. Both mount a cytoprotective response, and their activation relies on crucial protein thiol moieties. Using fumaric acid esters (FAEs), known thiol-reactive compounds, we tested for activation of NRF2 and FOXO pathways in cultured human hepatoma cells by dimethyl/diethyl as well as monomethyl/monoethyl fumarate. Whereas only the diesters caused acute glutathione depletion and activation of the stress kinase p38MAPK, all four FAEs stimulated NRF2 stabilization and upregulation of NRF2 target genes. However, no significant FAE-induced activation of FOXO-dependent target gene expression was observed. Therefore, while both NRF2 and FOXO pathways are responsive to oxidants and xenobiotics, FAEs selectively activate NRF2 signaling.


Asunto(s)
Ésteres , Fumaratos , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Humanos , Fumaratos/farmacología , Fumaratos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ésteres/metabolismo , Ésteres/farmacología , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Línea Celular Tumoral , Células Hep G2
8.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749675

RESUMEN

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Asunto(s)
Clostridium , Fermentación , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crecimiento & desarrollo , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Transporte de Electrón , Glicerol/metabolismo , Técnicas de Cocultivo , Glicoles de Propileno/metabolismo
9.
Braz J Microbiol ; 55(2): 1179-1187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38671219

RESUMEN

The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.


Asunto(s)
Fermentación , Fumaratos , Rhizopus , Rhizopus/metabolismo , Fumaratos/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Biomasa , Frutas/microbiología , Frutas/química , Frutas/metabolismo , Hidrólisis , Aceite de Palma/metabolismo , Aceite de Palma/química , Arecaceae/metabolismo , Arecaceae/química , Arecaceae/microbiología
10.
PeerJ ; 12: e17282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666083

RESUMEN

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Asunto(s)
Células Inmovilizadas , Fermentación , Fumaratos , Fumaratos/metabolismo , Células Inmovilizadas/metabolismo , Aceite de Palma , Frutas/microbiología , Frutas/química , Arecaceae/microbiología , Arecaceae/química , Aceites de Plantas/metabolismo , Hidrólisis , Glucosa/metabolismo
11.
Cell Death Dis ; 15(2): 151, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374146

RESUMEN

Fumarate hydratase (FH) deficient renal cell carcinoma (RCC) is a type of tumor with definite metabolic disorder, but the mechanism of metabolic remodeling is still unclear. LncRNA was reported to closely correlate with cancer metabolism, however the biological role of LncRNA in the development of progression of FH-deficent RCC was not well studied either. FH-deficient RCC samples were collected in my hospital and used for RNA-sequencing and Mass spectrometry analysis. FH-deficient RCC cell line UOK262 and control pFH cells were used for in vitro experiments, including proliferation assay, transwell assay, western-blot, mass spectrometry and so on. PDX mouse model was used for further drug inhibition experiments in vivo. In this study, we analyzed the profiles of LncRNA and mRNA in FH-deficienct RCC samples, and we found that the LncRNA-MIR4435-2GH was specifically highly expressed in FH-deficient RCC compared with ccRCC. In vitro experiments demonstrated that MIR4435-2HG was regulated by Fumarate through histone demethylation, and the deletion of this gene could inhibit glutamine metabolism. RNA-pulldown experiments showed that MIR4435-2HG specifically binds to STAT1, which can transcriptionally activate GLS1. GLS1 inhibitor CB-839 could significantly suppress tumor growth in PDX tumor models. This study analyzed the molecular mechanism of MIR4435-2HG in regulating metabolic remodeling of FH-deficient RCC in clinical samples, cells and animal models by combining transcriptional and metabolic methods. We found that that GLS1 was a therapeutic target for this tumor, and MIR4435-2HG can be used as a drug sensitivity marker.


Asunto(s)
Carcinoma de Células Renales , Fumaratos , Neoplasias Renales , ARN Largo no Codificante , Animales , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Fumaratos/metabolismo , Glutamina , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , ARN Largo no Codificante/genética , Humanos
12.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365228

RESUMEN

The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.


Asunto(s)
Etano , Nitratos , Etano/metabolismo , Nitratos/metabolismo , Propano/metabolismo , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Butanos/metabolismo , Gases/metabolismo , Fumaratos/metabolismo
13.
Am J Physiol Endocrinol Metab ; 326(4): E407-E416, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324261

RESUMEN

The tricarboxylic acid (TCA) cycle metabolite fumarate nonenzymatically reacts with the amino acid cysteine to form S-(2-succino)cysteine (2SC), referred to as protein succination. The immunometabolite itaconate accumulates during lipopolysaccharide (LPS) stimulation of macrophages and microglia. Itaconate nonenzymatically reacts with cysteine residues to generate 2,3-dicarboxypropylcysteine (2,3-DCP), referred to as protein dicarboxypropylation. Since fumarate and itaconate levels dynamically change in activated immune cells, the levels of both 2SC and 2,3-DCP reflect the abundance of these metabolites and their capacity to modify protein thiols. We generated ethyl esters of 2SC and 2,3-DCP from protein hydrolysates and used stable isotope dilution mass spectrometry to determine the abundance of these in LPS-stimulated Highly Aggressively Proliferating Immortalized (HAPI) microglia. To quantify the stoichiometry of the succination and dicarboxypropylation, reduced cysteines were alkylated with iodoacetic acid to form S-carboxymethylcysteine (CMC), which was then esterified. Itaconate-derived 2,3-DCP, but not fumarate-derived 2SC, increased in LPS-treated HAPI microglia. Stoichiometric measurements demonstrated that 2,3-DCP increased from 1.57% to 9.07% of total cysteines upon LPS stimulation. This methodology to simultaneously distinguish and quantify both 2SC and 2,3-DCP will have broad applications in the physiology of metabolic diseases. In addition, we find that available anti-2SC antibodies also detect the structurally similar 2,3-DCP, therefore "succinate moiety" may better describe the antigen recognized.NEW & NOTEWORTHY Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.


Asunto(s)
Compuestos Alílicos , Cisteína , Cisteína/análogos & derivados , Hidrocarburos Clorados , Enfermedades Metabólicas , Succinatos , Humanos , Cisteína/metabolismo , Lipopolisacáridos/farmacología , Proteínas , Fumaratos/metabolismo
14.
J Gen Appl Microbiol ; 70(2)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417903

RESUMEN

Fumarase is an enzyme catalyzing reversible reaction between fumarate and L-malate in the citric acid cycle. Fumarase is used in the industrial production of L-malate, and its immobilization is required for reuse of the fumarases to reduce the cost. Accordingly, understanding the properties of immobilized fumarase is crucial, and several groups report on the storage stability and kinetic parameters of immobilized fumarase. Here we have immobilized fumarase from the thermophilic red alga Cyanidioschyzon merolae (CmFUM) on ceramic beads and investigated its biochemical and physical properties. CmFUM demonstrated sufficient stability and reusability for industry use after immobilization. Notably, the thermostability was dramatically enhanced through immobilization. The Km value and kcat of immobilized CmFUM for fumarate were 1.7 mM and 22.7 s-1 respectively. The Km value for fumarate was lower than that of other reported immobilized fumarases, indicating a high substrate affinity of immobilized CmFUM. Furthermore, the enhanced stability resulting from immobilization partially compensated for the decrease in activity. The high affinity towards fumarate and good thermostability of immobilized CmFUM revealed in this study are advantageous traits for improving enzyme-mediated isomer-specific L-malate production.


Asunto(s)
Cerámica , Estabilidad de Enzimas , Enzimas Inmovilizadas , Fumarato Hidratasa , Fumaratos , Malatos , Rhodophyta , Rhodophyta/enzimología , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Cerámica/química , Malatos/metabolismo , Fumarato Hidratasa/metabolismo , Fumarato Hidratasa/química , Fumarato Hidratasa/genética , Cinética , Fumaratos/metabolismo , Fumaratos/química , Concentración de Iones de Hidrógeno , Temperatura
15.
J Dairy Sci ; 107(6): 3443-3450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38216036

RESUMEN

Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus are symbiotic starters widely used in yogurt fermentation. They exchange metabolites to meet their nutritional demands during fermentation, promoting mutual growth. Although S. thermophilus produces fumaric acid, and the addition of fumaric acid has been shown to promote the growth of L. bulgaricus monoculture, whether fumaric acid produced by S. thermophilus is used by L. bulgaricus during coculture remains unclear. Furthermore, the importance of fumaric acid metabolism in the growth of L. bulgaricus is yet to be elucidated. Therefore, in this study, we investigated the importance of fumaric acid metabolism in L. bulgaricus monocultures and coculture with S. thermophilus. We deleted the fumarate reductase gene (frd), which is responsible for the metabolism of fumaric acid to succinic acid, in L. bulgaricus strains 2038 and NCIMB 701373. Both Δfrd strains exhibited longer fermentation times than their parent strains, and fumaric acid was metabolized to malic acid rather than succinic acid. Coculture of Δfrd strains with S. thermophilus 1131 also resulted in a longer fermentation time, and the accumulation of malic acid was observed. These results indicated that fumaric acid produced by S. thermophilus is used by L. bulgaricus as a symbiotic substance during yogurt fermentation and that the metabolism of fumaric acid to succinic acid by fumarate reductase is a key factor determining the fermentation ability of L. bulgaricus.


Asunto(s)
Fermentación , Fumaratos , Lactobacillus delbrueckii , Yogur , Lactobacillus delbrueckii/metabolismo , Fumaratos/metabolismo , Yogur/microbiología , Succinato Deshidrogenasa/metabolismo , Streptococcus thermophilus/metabolismo
16.
Biomater Adv ; 157: 213714, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096647

RESUMEN

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Asunto(s)
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
17.
Nat Commun ; 14(1): 7227, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945607

RESUMEN

The mammalian gastrointestinal tract is a complex environment that hosts a diverse microbial community. To establish infection, bacterial pathogens must be able to compete with the indigenous microbiota for nutrients, as well as sense the host environment and modulate the expression of genes essential for colonization and virulence. Here, we found that enterohemorrhagic Escherichia coli (EHEC) O157:H7 imports host- and microbiota-derived L-malate using the DcuABC transporters and converts these substrates into fumarate to fuel anaerobic fumarate respiration during infection, thereby promoting its colonization of the host intestine. Moreover, L-malate is important not only for nutrient metabolism but also as a signaling molecule that activates virulence gene expression in EHEC O157:H7. The complete virulence-regulating pathway was elucidated; the DcuS/DcuR two-component system senses high L-malate levels and transduces the signal to the master virulence regulator Ler, which in turn activates locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence to epithelial cells of the large intestine. Disruption of this virulence-regulating pathway by deleting either dcuS or dcuR significantly reduced colonization by EHEC O157:H7 in the infant rabbit intestinal tract; therefore, targeting these genes and altering physiological aspects of the intestinal environment may offer alternatives for EHEC infection treatment.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Microbiota , Animales , Humanos , Conejos , Malatos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Intestinos/microbiología , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli O157/genética , Fumaratos/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Bacteriana de la Expresión Génica , Mamíferos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al ADN/metabolismo
18.
Front Endocrinol (Lausanne) ; 14: 1274239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867526

RESUMEN

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells, holding significant clinical importance due to their capacity for excessive catecholamine secretion and associated cardiovascular complications. Roughly 80% of cases are associated with genetic mutations. Based on the functionality of these mutated genes, PPGLs can be categorized into distinct molecular clusters: the pseudohypoxia signaling cluster (Cluster-1), the kinase signaling cluster (Cluster-2), and the WNT signaling cluster (Cluster-3). A pivotal factor in the pathogenesis of PPGLs is hypoxia-inducible factor-2α (HIF2α), which becomes upregulated even under normoxic conditions, activating downstream transcriptional processes associated with pseudohypoxia. This adaptation provides tumor cells with a growth advantage and enhances their ability to thrive in adverse microenvironments. Moreover, pseudohypoxia disrupts immune cell communication, leading to the development of an immunosuppressive tumor microenvironment. Within Cluster-1a, metabolic perturbations are particularly pronounced. Mutations in enzymes associated with the tricarboxylic acid (TCA) cycle, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and malate dehydrogenase type 2 (MDH2), result in the accumulation of critical oncogenic metabolic intermediates. Notable among these intermediates are succinate, fumarate, and 2-hydroxyglutarate (2-HG), which promote activation of the HIFs signaling pathway through various mechanisms, thus inducing pseudohypoxia and facilitating tumorigenesis. SDHx mutations are prevalent in PPGLs, disrupting mitochondrial function and causing succinate accumulation, which competitively inhibits α-ketoglutarate-dependent dioxygenases. Consequently, this leads to global hypermethylation, epigenetic changes, and activation of HIFs. In FH-deficient cells, fumarate accumulation leads to protein succination, impacting cell function. FH mutations also trigger metabolic reprogramming towards glycolysis and lactate synthesis. IDH1/2 mutations generate D-2HG, inhibiting α-ketoglutarate-dependent dioxygenases and stabilizing HIFs. Similarly, MDH2 mutations are associated with HIF stability and pseudohypoxic response. Understanding the intricate relationship between metabolic enzyme mutations in the TCA cycle and pseudohypoxic signaling is crucial for unraveling the pathogenesis of PPGLs and developing targeted therapies. This knowledge enhances our comprehension of the pivotal role of cellular metabolism in PPGLs and holds implications for potential therapeutic advancements.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Dioxigenasas , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/patología , Ciclo del Ácido Cítrico/genética , Ácidos Cetoglutáricos , Paraganglioma/patología , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Mutación , Succinatos , Ácido Succínico , Transducción de Señal/genética , Fumaratos/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Microambiente Tumoral
19.
Microbiology (Reading) ; 169(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37906508

RESUMEN

Anaerobic bacteria often use antiporters DcuB (malate/succinate antiport) or DcuA (l-aspartate/succinate antiport) for the excretion of succinate during fumarate respiration. The rumen bacterium Actinobacillus succinogenes is able to produce large amounts of succinate by fumarate respiration, using the DcuB-type transporter DcuE for l-malate/succinate antiport. Asuc_0142 was annotated as a second DcuB-type transporter. Deletion of Asuc_0142 decreased the uptake rate for l-[14C]aspartate into A. succinogenes cells. Properties of transport by heterologously expressed Asuc_0142 were investigated in an Escherichia coli mutant deficient of anaerobic C4DC transporters. Expression of Asuc_0142 resulted in high uptake activity for l-[14C]fumarate or l-[14C]aspartate, but the former showed a strong competitive inhibition by l-aspartate. In E. coli loaded with l-[14C]aspartate, [14C]succinate or [14C]fumarate, extracellular C4DCs initiated excretion of the intracellular substrates, with a preference for l-aspartateex/succinatein or l-aspartateex/fumaratein antiport. These findings indicate that Asuc_0142 represents a DcuA-type transporter for l-aspartate uptake and l-aspartateex/C4DCin antiport, differentiating it from the DcuB-type transporter DcuE for l-malateex/succinatein antiport. Sequence analysis and predicted structural characteristics confirm structural similarity of Asuc_0142 to DcuA, and Asuc_0142 was thus re-named as DcuAAs. The bovine rumen fluid contains l-aspartate (99.6 µM), whereas fumarate and l-malate are absent. Therefore, bovine rumen colonisers depend on l-aspartate as an exogenous substrate for fumarate respiration. A. succinogenes encodes HemG (protoporphyrinogen oxidase) and PyrD (dihydroorotate dehydrogenase) for haem and pyrimidine biosynthesis. The enzymes require fumarate as an electron acceptor, suggesting an essential role for l-aspartate, DcuAAs, and fumarate respiration for A. succinogenes growing in the bovine rumen.


Asunto(s)
Proteínas de Escherichia coli , Malatos , Animales , Bovinos , Malatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Anaerobiosis , Fumaratos/metabolismo , Succinatos/metabolismo , Ácido Succínico/metabolismo
20.
Biol Reprod ; 109(3): 356-366, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37427962

RESUMEN

Sperm storage by females after mating for species-dependent periods is used widely among animals with internal fertilization to allow asynchrony between mating and ovulation. Many mammals store sperm in the lower oviduct where specific glycans on oviduct epithelial cells retain sperm to form a reservoir. Binding to oviduct cells suppresses sperm intracellular Ca2+ and increases sperm longevity. We investigated the mechanisms by which a specific oviduct glycan, 3-O-sulfated Lewis X trisaccharide (suLeX), prolongs the lifespan of porcine sperm. Using targeted metabolomics, we found that binding to suLeX diminishes the abundance of 4-hydroxybenzoic acid, the precursor to ubiquinone (also known as Coenzyme Q), 30 min after addition. Ubiquinone functions as an electron acceptor in the electron transport chain (ETC). 3-O-sulfated Lewis X trisaccharide also suppressed the formation of fumarate. A component of the citric acid cycle, fumarate is synthesized by succinate-coenzyme Q reductase, which employs ubiquinone and is also known as Complex II in the ETC. Consistent with the reduced activity of the ETC, the production of harmful reactive oxygen species (ROS) was diminished. The enhanced sperm lifespan in the oviduct may be because of suppressed ROS production because high ROS concentrations have toxic effects on sperm.


Asunto(s)
Longevidad , Ubiquinona , Humanos , Femenino , Masculino , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Semen/metabolismo , Oviductos , Espermatozoides/metabolismo , Polisacáridos/metabolismo , Trisacáridos/metabolismo , Fumaratos/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA