Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337389

RESUMEN

The life cycle of Ebola and Marburg viruses includes a step of the virion envelope fusion with the cell membrane. Here, we analyzed whether the fusion of liposome membranes under the action of fragments of fusion peptides of Ebola and Marburg viruses depends on the composition of lipid vesicles. A fluorescence assay and electron microscopy were used to quantify the fusogenic activity of the virus fusion peptides and to identify the lipid determinants affecting membrane merging. Differential scanning calorimetry of lipid phase transitions revealed alterations in the physical properties of the lipid matrix produced by virus fusion peptides. Additionally, we found that plant polyphenols, quercetin, and myricetin inhibited vesicle fusion induced by the Marburg virus fusion peptide.


Asunto(s)
Ebolavirus , Flavonoides , Marburgvirus , Ebolavirus/efectos de los fármacos , Marburgvirus/efectos de los fármacos , Marburgvirus/química , Flavonoides/química , Flavonoides/farmacología , Fusión de Membrana/efectos de los fármacos , Liposomas/química , Quercetina/química , Quercetina/farmacología , Internalización del Virus/efectos de los fármacos , Fiebre Hemorrágica Ebola/virología , Polifenoles/química , Polifenoles/farmacología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Humanos , Membrana Celular/metabolismo , Péptidos/química , Péptidos/farmacología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología
2.
J Phys Chem B ; 128(38): 9163-9171, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39268813

RESUMEN

Enveloped viruses enter the host cell by fusing at the cell membrane or entering the cell via endocytosis and fusing at the endosome. Conventional inhibitors target the viral fusion protein to inactivate it for inducing fusion. These target-specific vis-à-vis virus-specific inhibitors fail to display their inhibitory efficacy against emerging and remerging viral infections. This necessitates the need to develop broad-spectrum entry inhibitors that are effective irrespective of the virus. Using a broad range of targeting techniques, the fusion inhibitors can modify the physical characteristics of the viral membrane, making it less prone to fusion. We have previously shown that two tryptophan-aspartic acid (WD)-containing hydrophobic peptides, TG-23 and GG-21, from coronin 1, a phagosomal protein, inhibit membrane fusion by modulating membrane organization and dynamics. In the present work, we designed two WD-containing hydrophilic peptides, QG-22 and AG-22, using coronin 1 as a template and evaluated their fusion inhibitory efficacies in the absence and presence of membrane cholesterol. Our results demonstrate that QG-22 and AG-22 inhibit membrane fusion irrespective of the concentration of membrane cholesterol. Our measurements of depth-dependent membrane organization and dynamics reveal that they impede fusion by enhancing the acyl chain order. Overall, our results validate the hypothesis of designing fusion inhibitors by modulating the membrane's physical properties. In addition, it demonstrates that chain hydrophobicity might not be a critical determinant for the development of peptide-based fusion inhibitors.


Asunto(s)
Ácido Aspártico , Péptidos , Triptófano , Triptófano/química , Triptófano/farmacología , Ácido Aspártico/química , Ácido Aspártico/farmacología , Péptidos/química , Péptidos/farmacología , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/antagonistas & inhibidores , Fusión de Membrana/efectos de los fármacos , Diseño de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Colesterol/química
3.
ACS Nano ; 18(20): 12737-12748, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38717305

RESUMEN

Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.


Asunto(s)
Fusión de Membrana , Fosfatidilinositol 4,5-Difosfato , Electricidad Estática , Agua , Catálisis , Liposomas/química , Fusión de Membrana/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacología , Proteínas SNARE/metabolismo , Proteínas SNARE/química , Agua/química
4.
J Phys Chem B ; 128(20): 4986-4995, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38739415

RESUMEN

Membrane fusion is considered the first step in the entry of enveloped viruses into the host cell. Several targeted strategies have been implemented to block viral entry by limiting the fusion protein to form a six-helix bundle, which is a prerequisite for fusion. Nonetheless, the development of broad-spectrum fusion inhibitors is essential to combat emerging and re-emerging viral infections. TG-23, a coronin 1, a tryptophan-aspartate-rich phagosomal protein-derived peptide, demonstrated inhibition of fusion between small unilamellar vesicles (SUVs) by modulating the membrane's physical properties. However, its inhibitory efficacy reduces with an increasing concentration of membrane cholesterol. The present work aims to develop a fusion inhibitor whose efficacy would be unaltered in the presence of membrane cholesterol. A stretch of the tryptophan-aspartic acid-containing peptide with a similar secondary structure and hydrophobicity profile of TG-23 from coronin 1 was synthesized, and its ability to inhibit SUV-SUV fusion with varying concentrations of membrane cholesterol was evaluated. Our results demonstrate that the GG-21 peptide inhibits fusion irrespective of the cholesterol content of the membrane. We have further evaluated the peptide-induced change in the membrane organization and dynamics utilizing arrays of steady-state and time-resolved fluorescence measurements and correlated these results with their effect on fusion. Interestingly, GG-21 displays inhibitory efficacy in a wide variety of lipid compositions despite having a secondary structure and physical properties similar to those of TG-23. Overall, our results advocate that the secondary structure and physical properties of the peptide may not be sufficient to predict its inhibitory efficacy.


Asunto(s)
Fusión de Membrana , Proteínas de Microfilamentos , Péptidos , Colesterol/química , Fusión de Membrana/efectos de los fármacos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Péptidos/química , Péptidos/farmacología , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
5.
Autophagy ; 20(7): 1639-1650, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411137

RESUMEN

The autophagosomal SNARE STX17 (syntaxin 17) promotes lysosomal fusion and degradation, but its autophagosomal recruitment is incompletely understood. Notably, PtdIns4P is generated on autophagosomes and promotes fusion through an unknown mechanism. Here we show that soluble recombinant STX17 is spontaneously recruited to negatively charged liposomes and adding PtdIns4P to liposomes containing neutral lipids is sufficient for its recruitment. Consistently, STX17 colocalizes with PtdIns4P-positive autophagosomes in cells, and specific inhibition of PtdIns4P synthesis on autophagosomes prevents its loading. Molecular dynamics simulations indicate that C-terminal positively charged amino acids establish contact with membrane bilayers containing negatively charged PtdIns4P. Accordingly, Ala substitution of Lys and Arg residues in the C terminus of STX17 abolishes membrane binding and impairs its autophagosomal recruitment. Finally, only wild type but not Ala substituted STX17 expression rescues the autophagosome-lysosome fusion defect of STX17 loss-of-function cells. We thus identify a key step of autophagosome maturation that promotes lysosomal fusion.Abbreviations: Cardiolipin: 1',3'-bis[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho]-glycerol; DMSO: dimethyl sulfoxide; GST: glutathione S-transferase; GUV: giant unilamellar vesicles; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; PC/POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; PG: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); PI: L-α-phosphatidylinositol; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; POPE/PE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; PS: 1-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine; PtdIns(3,5)P2: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-3',5'-bisphosphate); PtdIns3P: 1,2- dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3'-phosphate); PtdIns4P: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-4'-phosphate); SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; STX17: syntaxin 17.


Asunto(s)
Autofagosomas , Lisosomas , Fusión de Membrana , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Lisosomas/metabolismo , Humanos , Autofagosomas/metabolismo , Fusión de Membrana/efectos de los fármacos , Proteínas Qa-SNARE/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Autofagia/fisiología , Autofagia/efectos de los fármacos , Liposomas/metabolismo , Simulación de Dinámica Molecular , Células HeLa
6.
Mol Biol Rep ; 50(3): 2033-2039, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36538173

RESUMEN

BACKGROUND: Based on our previous research conducted on cinnamaldehyde (CA) exhibiting its ability to improve the growth performance of fattening pigs and the adipogenesis induction model of C2C12 cells constructed in our laboratory, we explored the effects of CA on the generation and development of lipid droplets (LDs) in adipogenic differentiated C2C12 cells. METHODS AND RESULTS: C2C12 cells were treated with either 0.4 mM or 0.8 mM CA. BODIPY staining and triglyceride measurements were conducted to observe the morphology of LDs, and Western blotting was used to measure the expression of their metabolism-related proteins. The results showed that the average number of LDs in the CA treatment groups was more than the control group (P < 0.05), whereas the average LD size and triglyceride content decreased (P < 0.05). Compared with the control group, the expression levels of fusion-related genes in the LDs of the CA treatment group significantly decreased, while decomposition-related genes and autophagy-related genes in the LDs in C2C12 cells significantly increased (P < 0.01). CONCLUSION: Cinnamaldehyde promoted the decomposition and autophagy of lipid droplets in C2C12 cells and inhibited the fusion of lipid droplets.


Asunto(s)
Acroleína , Adipocitos , Diferenciación Celular , Gotas Lipídicas , Metabolismo de los Lípidos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Fusión de Membrana/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Carne/normas , Calidad de los Alimentos , Animales , Ratones , Línea Celular , Acroleína/análogos & derivados , Triglicéridos
7.
Nutrients ; 13(10)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34684361

RESUMEN

Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker ßIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.


Asunto(s)
Autofagia , Lactoferrina/farmacología , Metanfetamina/toxicidad , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Autofagia/efectos de los fármacos , Catepsina D/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Lactoferrina/administración & dosificación , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Fusión de Membrana/efectos de los fármacos , Metanfetamina/administración & dosificación , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Células PC12 , Fenotipo , Ratas , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
8.
Cell Death Dis ; 12(10): 917, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620841

RESUMEN

We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome-lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome-lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Ácido Graso Sintasas/metabolismo , Isotiocianatos/farmacología , Microtúbulos/metabolismo , Mitofagia , Sulfóxidos/farmacología , Anciano , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos/biosíntesis , Femenino , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Fusión de Membrana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Persona de Mediana Edad , Mitofagia/efectos de los fármacos , Modelos Biológicos , Polimerizacion , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína/efectos de los fármacos , Tubulina (Proteína)/metabolismo
9.
J Mater Chem B ; 9(47): 9658-9669, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34647566

RESUMEN

Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Nanopartículas/química , Péptidos/química , Polietilenglicoles/química , Proteínas Virales de Fusión/metabolismo , Animales , Carbocianinas/química , Pollos , Huevos/virología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Virus de la Influenza A/metabolismo , Límite de Detección , Fusión de Membrana/efectos de los fármacos , Membranas Artificiales , Péptidos/síntesis química , Péptidos/metabolismo , Polietilenglicoles/síntesis química , Polietilenglicoles/metabolismo
10.
Cell Death Dis ; 12(10): 939, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645799

RESUMEN

Lysosome-autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes-vesicle-associated membrane protein 8 (VAMP8)-plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.


Asunto(s)
Autofagosomas/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Proteínas R-SNARE/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/ultraestructura , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Células HeLa , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Fusión de Membrana/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas R-SNARE/química , Proteínas SNARE/metabolismo , Temozolomida/farmacología
11.
Curr Opin Virol ; 51: 34-47, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34592709

RESUMEN

The Paramyxoviridae family includes enveloped single-stranded negative-sense RNA viruses such as measles, mumps, human parainfluenza, canine distemper, Hendra, and Nipah viruses, which cause a tremendous global health burden. The ability of paramyxoviral glycoproteins to merge viral and host membranes allows entry of the viral genome into host cells, as well as cell-cell fusion, an important contributor to disease progression. Recent molecular and structural advances in our understanding of the paramyxovirus membrane fusion machinery gave rise to various therapeutic approaches aiming at inhibiting viral infection, spread, and cytopathic effects. These therapeutic approaches include peptide mimics, antibodies, and small molecule inhibitors with various levels of success at inhibiting viral entry, increasing the potential of effective antiviral therapeutic development.


Asunto(s)
Antivirales/farmacología , Membrana Celular/metabolismo , Fusión de Membrana/efectos de los fármacos , Infecciones por Paramyxoviridae/tratamiento farmacológico , Infecciones por Paramyxoviridae/virología , Paramyxoviridae/efectos de los fármacos , Paramyxoviridae/metabolismo , Animales , Antivirales/uso terapéutico , Fusión Celular , Membrana Celular/efectos de los fármacos , Humanos
12.
Antiviral Res ; 193: 105125, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197863

RESUMEN

Several arenaviruses, including Lassa and Lujo viruses in Africa and five New World arenavirus (NWA) species in the Americas, cause life-threatening viral hemorrhagic fevers. In the absence of licensed antiviral therapies, these viruses pose a significant public health risk. The envelope glycoprotein complex (GPC) mediates arenavirus entry through a pH-dependent fusion of the viral and host endosomal membranes. It thus is recognized as a viable target for small-molecule fusion inhibitors. Here, we report on the antiviral activity and pre-clinical development of the novel broad-spectrum arenavirus fusion inhibitors, ARN-75039 and ARN-75041. In Tacaribe virus (TCRV) pseudotyped and native virus assays, the ARN compounds were active in the low to sub-nanomolar range with selectivity indices exceeding 1000. Pharmacokinetic analysis of the orally administered compounds revealed an extended half-life in mice supporting once-daily dosing, and the compounds were well tolerated at the highest tested dose of 100 mg/kg. In a proof-of-concept prophylactic efficacy study, doses of 10 and 35 mg/kg of either compound dramatically improved survival outcome and potently inhibited TCRV replication in serum and various tissues. Additionally, in contrast to surviving mice that received ribavirin or placebo, animals treated with ARN-75039 or ARN-75041 were cured of TCRV infection. In a follow-up study with ARN-75039, impressive therapeutic efficacy was demonstrated under conditions where treatment was withheld until after the onset of disease. Taken together, the data strongly support the continued development of ARN-75039 as a candidate therapeutic for the treatment of severe arenaviral diseases.


Asunto(s)
Antivirales/farmacología , Infecciones por Arenaviridae/tratamiento farmacológico , Arenavirus del Nuevo Mundo/efectos de los fármacos , Fusión de Membrana/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Administración Oral , Animales , Antivirales/farmacocinética , Chlorocebus aethiops , Masculino , Ratones , Ribavirina/farmacología , Bibliotecas de Moléculas Pequeñas/farmacocinética , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos
13.
Sci Rep ; 11(1): 10955, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040104

RESUMEN

The primary hallmark of Parkinson's disease (PD) is the generation of Lewy bodies of which major component is α-synuclein (α-Syn). Because of increasing evidence of the fundamental roles of α-Syn oligomers in disease progression, α-Syn oligomers have become potential targets for therapeutic interventions for PD. One of the potential toxicities of α-Syn oligomers is their inhibition of SNARE-mediated vesicle fusion by specifically interacting with vesicle-SNARE protein synaptobrevin-2 (Syb2), which hampers dopamine release. Here, we show that α-Syn monomers and oligomers cooperatively inhibit neuronal SNARE-mediated vesicle fusion. α-Syn monomers at submicromolar concentrations increase the fusion inhibition by α-Syn oligomers. This cooperative pathological effect stems from the synergically enhanced vesicle clustering. Based on this cooperative inhibition mechanism, we reverse the fusion inhibitory effect of α-Syn oligomers using small peptide fragments. The small peptide fragments, derivatives of α-Syn, block the binding of α-Syn oligomers to Syb2 and dramatically reverse the toxicity of α-Syn oligomers in vesicle fusion. Our findings demonstrate a new strategy for therapeutic intervention in PD and related diseases based on this specific interaction of α-Syn.


Asunto(s)
Fusión de Membrana/efectos de los fármacos , Proteínas SNARE/antagonistas & inhibidores , alfa-Sinucleína/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dopamina/metabolismo , Dopamina/farmacología , Evaluación Preclínica de Medicamentos , Liposomas , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Fragmentos de Péptidos/farmacología , Mutación Puntual , Unión Proteica , Multimerización de Proteína , Proteolípidos/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas SNARE/fisiología , Proteína 2 de Membrana Asociada a Vesículas/antagonistas & inhibidores , Proteína 2 de Membrana Asociada a Vesículas/fisiología , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
14.
Viruses ; 13(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922579

RESUMEN

HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.


Asunto(s)
Inhibidores de Fusión de VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Fusión de Membrana/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Antirretrovirales/farmacología , Inhibidores de Fusión de VIH/clasificación , Infecciones por VIH/virología , Humanos
15.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920542

RESUMEN

Autophagy is a specific macromolecule and organelle degradation process. The target macromolecule or organelle is first enclosed in an autophagosome, and then delivered along acetylated microtubules to the lysosome. Autophagy is triggered by stress and largely contributes to cell survival. We have previously shown that S6K1 kinase is essential for autophagic flux under stress conditions. Here, we aimed to elucidate the underlying mechanism of S6K1 involvement in autophagy. We stimulated autophagy in S6K1/2 double-knockout mouse embryonic fibroblasts by exposing them to different stress conditions. Transient gene overexpression or silencing, immunoblotting, immunofluorescence, flow cytometry, and ratiometric fluorescence analyses revealed that the perturbation of autophagic flux in S6K1-deficient cells did not stem from impaired lysosomal function. Instead, the absence of S6K1 abolished stress-induced tubulin acetylation and disrupted the acetylated microtubule network, in turn impairing the autophagosome-lysosome fusion. S6K1 overexpression restored tubulin acetylation and autophagic flux in stressed S6K1/2-deficient cells. Similar effect of S6K1 status was observed in prostate cancer cells. Furthermore, overexpression of an acetylation-mimicking, but not acetylation-resistant, tubulin variant effectively restored autophagic flux in stressed S6K1/2-deficient cells. Collectively, S6K1 controls tubulin acetylation, hence contributing to the autophagic flux induced by different stress conditions and in different cells.


Asunto(s)
Autofagia , Microtúbulos/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Estrés Fisiológico , Acetilación/efectos de los fármacos , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Glucosa/deficiencia , Humanos , Isotiocianatos/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Fusión de Membrana/efectos de los fármacos , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Modelos Biológicos , Fenotipo , Fosforilación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Sulfóxidos/farmacología , Tubulina (Proteína)/metabolismo
16.
Photochem Photobiol Sci ; 20(2): 321-326, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33721250

RESUMEN

Charge recombination kinetics of bacterial photosynthetic protein Reaction Center displays an exquisite sensitivity to the actual occupancy of ubiquinone-10 in its QB-binding site. Here, we have exploited such phenomenon for assessing the growth and the aggregation/fusion of phosphocholine vesicles embedding RC in their membrane, when treated with sodium oleate.


Asunto(s)
Proteínas Bacterianas/química , Liposomas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/metabolismo , Dispersión Dinámica de Luz , Fusión de Membrana/efectos de los fármacos , Ácido Oléico/química , Ácido Oléico/farmacología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
17.
Sci Rep ; 11(1): 5558, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692386

RESUMEN

The recent COVID-19 pandemic poses a serious threat to global public health, thus there is an urgent need to define the molecular mechanisms involved in SARS-CoV-2 spike (S) protein-mediated virus entry that is essential for preventing and/or treating this emerging infectious disease. In this study, we examined the blocking activity of human COVID-19 convalescent plasma by cell-cell fusion assays using SARS-CoV-2-S-transfected 293 T as effector cells and ACE2-expressing 293 T as target cells. We demonstrate that the SARS-CoV-2 S protein exhibits a very high capacity for membrane fusion and is efficient in mediating virus fusion and entry into target cells. Importantly, we find that COVID-19 convalescent plasma with high titers of IgG neutralizing antibodies can block cell-cell fusion and virus entry by interfering with the SARS-CoV-2-S/ACE2 or SARS-CoV-S/ACE2 interactions. These findings suggest that COVID-19 convalescent plasma may not only inhibit SARS-CoV-2-S but also cross-neutralize SARS-CoV-S-mediated membrane fusion and virus entry, supporting its potential as a preventive and/or therapeutic agent against SARS-CoV-2 as well as other SARS-CoV infections.


Asunto(s)
COVID-19/inmunología , COVID-19/terapia , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Fusión Celular/métodos , Femenino , Humanos , Inmunización Pasiva/métodos , Masculino , Fusión de Membrana/efectos de los fármacos , Persona de Mediana Edad , Pandemias/prevención & control , Plasma/química , Receptores Virales/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Sueroterapia para COVID-19
18.
Science ; 371(6536): 1379-1382, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33597220

RESUMEN

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Asunto(s)
COVID-19/transmisión , Lipopéptidos/administración & dosificación , Fusión de Membrana/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteínas Virales de Fusión/administración & dosificación , Internalización del Virus/efectos de los fármacos , Administración Intranasal , Animales , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Diseño de Fármacos , Hurones , Lipopéptidos/química , Lipopéptidos/farmacocinética , Lipopéptidos/farmacología , Ratones , Profilaxis Pre-Exposición , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Distribución Tisular , Células Vero , Inhibidores de Proteínas Virales de Fusión/química , Inhibidores de Proteínas Virales de Fusión/farmacocinética , Inhibidores de Proteínas Virales de Fusión/farmacología
19.
Eur J Pharmacol ; 894: 173836, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33387467

RESUMEN

The COVID-19 pandemic has spread rapidly and poses an unprecedented threat to the global economy and human health. Broad-spectrum antivirals are currently being administered to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). China's prevention and treatment guidelines suggest the use of an anti-influenza drug, arbidol, for the clinical treatment of COVID-19. Reports indicate that arbidol could neutralize SARS-CoV-2. Monotherapy with arbidol is superior to lopinavir-ritonavir or favipiravir for treating COVID-19. In SARS-CoV-2 infection, arbidol acts by interfering with viral binding to host cells. However, the detailed mechanism by which arbidol induces the inhibition of SARS-CoV-2 is not known. Here, we present atomistic insights into the mechanism underlying membrane fusion inhibition of SARS-CoV-2 by arbidol. Molecular dynamics (MD) simulation-based analyses demonstrate that arbidol binds and stabilizes at the receptor-binding domain (RBD)/ACE2 interface with a high affinity. It forms stronger intermolecular interactions with the RBD than ACE2. Analyses of the detailed decomposition of energy components and binding affinities revealed a substantial increase in the affinity between the RBD and ACE2 in the arbidol-bound RBD/ACE2 complex, suggesting that arbidol generates favorable interactions between them. Based on our MD simulation results, we propose that the binding of arbidol induces structural rigidity in the viral glycoprotein, thus restricting the conformational rearrangements associated with membrane fusion and virus entry. Furthermore, key residues of the RBD and ACE2 that interact with arbidol were identified, opening the door for developing therapeutic strategies and higher-efficacy arbidol derivatives or lead drug candidates.


Asunto(s)
Antivirales/metabolismo , Antivirales/farmacología , Indoles/metabolismo , Indoles/farmacología , SARS-CoV-2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/metabolismo , Simulación por Computador , Glicoproteínas/efectos de los fármacos , Glicoproteínas/metabolismo , Humanos , Fusión de Membrana/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Dominios Proteicos , Tratamiento Farmacológico de COVID-19
20.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466417

RESUMEN

Liposomes are highly biocompatible and versatile drug carriers with an increasing number of applications in the field of nuclear medicine and diagnostics. So far, only negatively charged liposomes with intercalated radiometals, e.g., 64Cu, 99mTc, have been reported. However, the process of cellular uptake of liposomes by endocytosis is rather slow. Cellular uptake can be accelerated by recently developed cationic liposomes, which exhibit extraordinarily high membrane fusion ability. The aim of the present study was the development of the formulation and the characterization of such cationic fusogenic liposomes with intercalated radioactive [131I]I- for potential use in therapeutic applications. The epithelial human breast cancer cell line MDA-MB-231 was used as a model for invasive cancer cells and cellular uptake of [131I]I- was monitored in vitro. Delivery efficiencies of cationic and neutral liposomes were compared with uptake of free iodide. The best cargo delivery efficiency (~10%) was achieved using cationic fusogenic liposomes due to their special delivery pathway of membrane fusion. Additionally, human blood cells were also incubated with cationic control liposomes and free [131I]I-. In these cases, iodide delivery efficiencies remained below 3%.


Asunto(s)
Cationes/química , Portadores de Fármacos/química , Radioisótopos de Yodo/administración & dosificación , Radioisótopos de Yodo/química , Liposomas/química , Nanopartículas/química , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetulus , Endocitosis/efectos de los fármacos , Humanos , Fusión de Membrana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA