RESUMEN
BACKGROUND: In renal cell carcinoma (RCC), no clinically available biomarker has been utilized for checkpoint inhibitor immunotherapy (IO) + tyrosine kinase inhibitor (TKI) combinations. Galectin-1 overexpression is found in tumors, with potential immune-regulating roles. METHODS: RNA-sequencing was performed in two cohorts of RCC treated with IO/TKI combination therapy (ZS-MRCC, JAVELIN-101). Immunohistochemistry and flow cytometry were performed to investigate immune cell infiltration and function in the tumor microenvironment of RCC. The RECIST criteria were used to define response and progression-free survival (PFS). RESULTS: Galectin-1 expression was elevated in RCC with higher stage (p < 0.001) and grade (p < 0.001). Galectin-1 expression was also elevated in non-responders of IO/TKI therapy (p = 0.047). High galectin-1 was related with shorter PFS in both ZS-MRCC cohort (p = 0.036) and JAVELIN-101 cohort (p = 0.005). Multivariate Cox analysis defined galectin-1 as an independent factor for PFS (HR 2.505; 95% CI 1.116-5.622; p = 0.026). In the tumor microenvironment, high galectin-1 was related with decreased GZMB+CD8+ T cells (Speraman's ρ = -0.31, p = 0.05), and increased PD1 + CD8+ T cells (Speraman's ρ = 0.40, p = 0.01). Besides, elevated number of regulatory T cells (p = 0.039) and fibroblasts (p = 0.011) was also found in high galectin-1 tumors. Finally, a random-forest score (RFscore) was built for predicting IO/TKI benefit. IO/TKI therapy showed benefit only in low-RFscore patients (HR 0.489, 95% CI 0.358-0.669, p < 0.001), rather than high-RFscore patients (HR 0.875, 95% CI 0.658-1.163, p = 0.357). CONCLUSIONS: High galectin-1 indicated therapeutic resistance and shorter PFS of IO/TKI therapy. High galectin-1 also indicated CD8+ T cell dysfunction. High galectin-1 could be applied for patient selection of IO/TKI therapy in RCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Galectina 1/genética , Galectina 1/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas Tirosina Quinasas , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Renales/patología , Microambiente TumoralRESUMEN
Glioblastoma (GBM) remains the most malignant primary brain tumor, with a median survival rarely exceeding 2 years. Tumor heterogeneity and an immunosuppressive microenvironment are key factors contributing to the poor response rates of current therapeutic approaches. GBM-associated macrophages (GAMs) often exhibit immunosuppressive features that promote tumor progression. However, their dynamic interactions with GBM tumor cells remain poorly understood. Here, we used patient-derived GBM stem cell cultures and combined single-cell RNA sequencing of GAM-GBM co-cultures and real-time in vivo monitoring of GAM-GBM interactions in orthotopic zebrafish xenograft models to provide insight into the cellular, molecular, and spatial heterogeneity. Our analyses revealed substantial heterogeneity across GBM patients in GBM-induced GAM polarization and the ability to attract and activate GAMs-features that correlated with patient survival. Differential gene expression analysis, immunohistochemistry on original tumor samples, and knock-out experiments in zebrafish subsequently identified LGALS1 as a primary regulator of immunosuppression. Overall, our work highlights that GAM-GBM interactions can be studied in a clinically relevant way using co-cultures and avatar models, while offering new opportunities to identify promising immune-modulating targets.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Glioblastoma/patología , Pez Cebra , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/uso terapéutico , Línea Celular Tumoral , Macrófagos/metabolismo , Neoplasias Encefálicas/patología , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND & AIMS: The immune landscape of hepatocellular carcinoma (HCC) following transarterial chemoembolisation (TACE) remains to be clarified. This study aimed to characterise the immune landscape following TACE and the underlying mechanism of HCC progression. METHODS: Tumour samples from five patients with treatment-naive HCC and five patients who received TACE therapy were collected and subjected to single-cell RNA sequencing. Another 22 paired samples were validated using immunofluorescence staining and flow cytometry. To clarify the underlying mechanisms, in vitro co-culture experiments and two types of TREM2-KO/WT mouse models, namely, an HCC cell orthotopic injection model and a spontaneous HCC model, were used. RESULTS: A reduced number of CD8+ T cells and an increased number of tumour-associated macrophages (TAMs) were observed in the post-TACE microenvironment. TACE therapy reduced the cluster CD8_C4, which was highly enriched with tumour-specific CD8+ T cells of pre-exhausted phenotype. TREM2 was found to be highly expressed in TAMs following TACE, which was associated with a poor prognosis. TREM2+ TAMs secreted less CXCL9 but more galectin-1 than did TREM2- TAMs. Galectin-1 promoted PD-L1 overexpression in vessel endothelial cells, impeding CD8+ T cell recruitment. TREM2 deficiency also increased CD8+ T cell infiltration, which inhibited tumour growth in both in vivo HCC models. More importantly, TREM2 deficiency enhanced the therapeutic effect of anti-PD-L1 blockade. CONCLUSIONS: This study shows that TREM2+ TAMs play an important role in suppressing CD8+ T cells. TREM2 deficiency increased the therapeutic effect of anti-PD-L1 blockade by enhancing antitumour activity of CD8+ T cells. These findings explain the reasons for recurrence and progression after TACE and provide a new target for HCC immunotherapy after TACE. IMPACT AND IMPLICATIONS: Studying the immune landscape in post-TACE HCC is important to uncover the mechanisms of HCC progression. By using scRNA sequencing and functional assays, we discovered that both the number and function of CD8+ T cells are compromised, whereas the number of TREM2+ TAMs is increased in post-TACE HCC, correlating with worse prognosis. Moreover, TREM2 deficiency dramatically increases CD8+ T cell infiltration and augments the therapeutic efficacy of anti-PD-L1 blockade. Mechanistically, TREM2+ TAMs display lower CXCL9 and increased Gal-1 secretion than do TREM2- TAMs, with Gal-1 mediating the overexpression of PD-L1 in vessel endothelial cells. These results suggest that TREM2 could be a novel immunotherapeutic target for patients treated with TACE in HCC. This provides an opportunity to break the plateau of limited therapeutic effect. This study has the value of understanding the tumour microenvironment of post-TACE HCC and thinking a new strategy of immunotherapy in the field of HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Galectina 1/uso terapéutico , Linfocitos T CD8-positivos , Células Endoteliales/patología , Macrófagos , Microambiente TumoralRESUMEN
Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.
Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Galectina 1/genética , Galectina 1/uso terapéutico , Reprogramación Celular , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/uso terapéutico , Análisis de la Célula IndividualRESUMEN
Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).
Asunto(s)
Epilepsia del Lóbulo Temporal , Fármacos Neuroprotectores , Estado Epiléptico , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Galectina 1/farmacología , Galectina 1/uso terapéutico , Galectina 1/metabolismo , Ratas Wistar , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Pilocarpina , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Convulsiones/metabolismo , Hipocampo/metabolismo , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Ischemic stroke affects about 700 000 patients per year in the United States, and to date, there are no effective pharmacological agents that promote recovery. Here, we studied the pharmacokinetics, pharmacodynamics, and efficacy of NTS-105, a novel neuroactive steroid, and NTS-104, a prodrug of NTS-105, in 2 models of ischemic stroke. METHODS: The pharmacodynamics and pharmacokinetics of NTS-104/105 were investigated in naive and stroke rats, and models of embolic and transient middle cerebral artery occlusion were used to investigate the dose-related effects of NTS-104. All rats were randomly assigned into the experimental groups, and all outcome measurements were performed blindly. RESULTS: Blood plasma and brain pharmacokinetic analysis revealed that NTS-104 rapidly converted to NTS-105, which reached peak concentration at ≈1 hour after dosing and distributed similarly to normal and ischemic brains. NTS-104 administration 4 hours after embolic middle cerebral artery occlusion led to a dose-dependent improvement of neurological outcomes and a dose-dependent reduction of infarct volumes relative to vehicle-treated animals. A single dose level study confirmed that NTS-104 administered 4 hours after transient middle cerebral artery occlusion was also neuroprotective. Quantitative ELISA revealed that NTS-104 treatment resulted in time- and dose-dependent changes in AKT activation and cytokine levels within the ischemic brain, which included reductions of IL-6, VEGF, ICAM-1, IL-1ß, MCP-1, RAGE, and GM-CSF. Time- and dose-dependent reductions in IL-6 and GM-CSF were also observed in the plasma along with an elevation of galectin-1. CONCLUSIONS: NTS-104 is a novel prodrug that converts to a novel neuroactive steroid, NTS-105, which improves functional outcomes in experimental ischemic stroke models.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Neuroesteroides , Profármacos , Accidente Cerebrovascular , Animales , Ratas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Profármacos/farmacología , Profármacos/uso terapéutico , Molécula 1 de Adhesión Intercelular/uso terapéutico , Galectina 1/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Interleucina-6 , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Modelos Animales de Enfermedad , Accidente Cerebrovascular/tratamiento farmacológicoRESUMEN
Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of ß-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)-glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals. IMPORTANCE Antiretroviral therapy has led to a dramatic reduction in HIV-related morbidity and mortality. However, cART does not eradicate the virus, which persists in resting CD4+ T cells as the main viral reservoir, consequently requiring lifelong treatment. A major question is how the functional status of the immune system during antiretroviral therapy determines the activity and size of the viral reservoir. In this study, we identified a central role for galectin-1 (Gal-1), a glycan-binding protein released in response to extracellular vesicles (EVs), in modulating the activity of HIV reservoir, thus shaping chronic immune activation in HIV-infected patients. Our work unveils a central role of Gal-1 in linking chronic immune activation and reservoir dynamics, highlighting new therapeutic opportunities in HIV infection.
Asunto(s)
Vesículas Extracelulares , Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Galectina 1/uso terapéutico , VIH-1/fisiología , Humanos , Inflamación , ARN , Latencia del Virus , Replicación ViralRESUMEN
Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.
Asunto(s)
Galectina 1 , Distrofia Muscular de Cinturas , Sarcolema , Galectina 1/metabolismo , Galectina 1/farmacología , Galectina 1/uso terapéutico , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/tratamiento farmacológico , Sarcolema/efectos de los fármacos , Sarcolema/fisiologíaRESUMEN
Two of the main pathologies characterizing dysferlinopathies are disrupted muscle membrane repair and chronic inflammation, which lead to symptoms of muscle weakness and wasting. Here, we used recombinant human Galectin-1 (rHsGal-1) as a therapeutic for LGMD2B mouse and human models. Various redox and multimerization states of Gal-1 show that rHsGal-1 is the most effective form in both increasing muscle repair and decreasing inflammation, due to its monomer-dimer equilibrium. Dose-response testing shows an effective 25-fold safety profile between 0.54 and 13.5 mg/kg rHsGal-1 in Bla/J mice. Mice treated weekly with rHsGal-1 showed downregulation of canonical NF-κB inflammation markers, decreased muscle fat deposition, upregulated anti-inflammatory cytokines, increased membrane repair, and increased functional movement compared to non-treated mice. Gal-1 treatment also resulted in a positive self-upregulation loop of increased endogenous Gal-1 expression independent of NF-κB activation. A similar reduction in disease pathologies in patient-derived human cells demonstrates the therapeutic potential of Gal-1 in LGMD2B patients.
Asunto(s)
Galectina 1/uso terapéutico , Distrofia Muscular de Cinturas/patología , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Disferlina/deficiencia , Disferlina/metabolismo , Humanos , Inflamación/patología , Masculino , Membranas , Ratones , Fibras Musculares Esqueléticas/metabolismo , FN-kappa B/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/uso terapéutico , Transducción de SeñalRESUMEN
BACKGROUND AND AIM: Galectin-1 plays a protective role against colitis by binding with polylactosamine structures on macrophages in ß-1,4-galactosyltransferase I-deficient mice, but the precise function of galectin-1 remains unknown. In the present study, we investigated the anti-inflammatory role of galectin-1 on macrophages to ameliorate ulcerative colitis in both animal model and human tissue samples. METHODS: The expression of galectin-1 in colonic tissues of ulcerative colitis patients was evaluated by immunohistochemistry. Cytokine production of mouse bone marrow-derived macrophages (BMDMs) cultured with galectin-1 was investigated. Galectin-1 binding capacity and polylactosamine expression in macrophages stimulated with lipopolysaccharides were evaluated by flow cytometry. BMDMs cultured with galectin-1 were transferred into Recombination activating gene (Rag) 2-/- mice, and the severity of the dextran sodium sulfate-induced colitis model was investigated. Furthermore, RNA sequencing was performed to characterize macrophages treated with galectin-1. RESULTS: In ulcerative colitis patients, tissue expression of galectin-1was decreased in inflamed mucosa compared with non-inflamed mucosa. Galectin-1 induced interleukin-10 production in BMDMs, and the interleukin-10 production was abrogated by lactose, which inhibits the interaction of oligosaccharide-galectin binding. Dextran sodium sulfate colitis was significantly ameliorated in Rag2-/- mice undergoing galectin-1-treated BMDM transfer compared with those undergoing vehicle-treated BMDM transfer. RNA sequencing revealed that treatment with galectin-1 increased the expression of CCAAT/enhancer binding protein ß and CD163, but decreased the expression of CD80 on BMDMs. CONCLUSION: Galectin-1, whose expression is decreased in the inflamed mucosa of ulcerative colitis patients, can ameliorate murine colitis by conferring oligosaccharide-dependent anti-inflammatory properties to macrophages.
Asunto(s)
Colitis Ulcerosa/genética , Galectina 1/fisiología , Expresión Génica , Macrófagos/metabolismo , Macrófagos/fisiología , Oligosacáridos , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Modelos Animales de Enfermedad , Galectina 1/genética , Galectina 1/metabolismo , Galectina 1/uso terapéutico , Humanos , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Lactosa/farmacología , Ratones Endogámicos C57BL , Oligosacáridos/metabolismo , Unión Proteica , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismoRESUMEN
The vicious cycle between the chronicactivationofmicroglia and dopamine neurons degeneration is linked with the progression of Parkinson's disease (PD). Targeting microglialactivationhas proven to be a viable option to develop a disease-modified therapy for PD. Galectin-1, which has been reported to have an anti-neuroinflammation effect was used in the present study to evaluate its therapeutic effects on microglia activation and neuronal degeneration in Parkinson's disease model. It was found that galectin-1 attenuated the inflammatory insult and the apoptosis of SK-N-SH human neuroblastoma cells from conditioned medium of activated microglia induced by Lipopolysaccharides (LPS). Nonetheless, galectin-1 administration (0.5â¯mg/kg) inhibited the microglia activation, improved the motor deficits in PD mice model induced by MPTP (25â¯mg/kg weight of mouse, i.p.) and prevented the degeneration of dopaminergic neurons in the substantia nigra. Administration of galectin-1 resulted in p38 and ERK1/2 dephosphorylation followed by IκB/NFκB signaling pathway inhibition. Galectin-1 significantly decreased the secretion of pro-inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The protective effects and modulation of the MAPK/IκB/NFκB signaling pathway were abolished with ß-D-galactose which blocked the carbohydrate-recognition domain of galectin-1. The present study demonstrated that galectin-1 inhibited microglia activation and ameliorated neurodegenerative process in PD model by modulating MAPK/IκB/NFκB axis through its carbohydrate-recognition domain.
Asunto(s)
Galectina 1/química , Galectina 1/uso terapéutico , Proteínas I-kappa B/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Galectina 1/farmacología , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Dominios Proteicos , Sustancia Negra/citología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismoRESUMEN
Donor-derived tolerogenic dendritic cells (DCs) and apoptotic lymphocytes (ALs) are practical tools for controlling rejection after transplantation by targeting direct and indirect allorecognition pathways, respectively. To date, few studies have investigated the combination of donor-derived tolerogenic DCs and ALs infusion in organ transplantation protection. In the present study, we generated galectin-1-induced tolerogenic DCs (DCgal-1s) and ultraviolet irradiation-induced ALs with stable immune characteristics in vitro and potential immune regulatory activity in vivo. A rat model of acute liver transplant rejection was established, and the intrinsic tolerogenic profiles associated with the short-term alleviation of rejection and the long-term maintenance of tolerance in the absence of immunosuppressive drugs were evaluated. The DCgal-1-AL treatment prolonged allograft survival more significantly than a transfusion of DCgal-1s or ALs alone. This benefit was associated with CD4+ Treg cell expansion and decreased interferon (IFN)-γ+ T cell levels. Moreover, DCgal-1-AL treatment led to different cytokine/chemokine changes in the allograft and peripheral blood, that indicated an alleviation of local and systemic inflammation on day 7 post-transplantation. TGF-ß1 and TGF-ß2 were significantly increased in the long-term surviving allografts after DCgal-1-AL treatment. Our results indicate that the combination of DCgal-1s with ALs effectively prolongs liver allograft survival and represents a novel therapeutic strategy for liver transplant rejection.
Asunto(s)
Células Dendríticas/inmunología , Galectina 1/uso terapéutico , Rechazo de Injerto/inmunología , Trasplante de Hígado , Hígado/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Aloinjertos/inmunología , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Células Dendríticas/trasplante , Rechazo de Injerto/prevención & control , Antígenos de Histocompatibilidad/inmunología , Humanos , Tolerancia Inmunológica , Hígado/patología , Transfusión de Linfocitos , Masculino , Ratas , Ratas Endogámicas Lew , Trasplante HomólogoRESUMEN
Galectin-1 (Gal-1) is a ß-galactoside-binding protein with diverse biological activities in the pathogenesis of inflammation, however the mechanisms by which Gal-1 modulates cellular responses in allergic inflammatory processes have not been fully determined. In this study, we evaluated the therapeutic potential of Gal-1 eye drops in an experimental model of conjunctivitis. Wistar rats received a topical application of compound (C)48/80 (100â¯mg/ml) into right eyes and a drop of vehicle into the contralateral eye. Another group of rats received Gal-1 (0.3 or 3⯵g/eye) or sodium cromoglycate (SCG; 40â¯mg/ml) in both eyes and, after 15â¯min, right eye was challenged with C48/80. Conjunctivitis-induced by C48/80 was characterized by severe eyelid oedema and tearing, but clinical signs were ameliorated by eye drop doses of both Gal-1 (0.3/3⯵g) and SCG. As expected, an increased proportion of degranulated mast cells (62%, Pâ¯<â¯0.01) and lower histamine levels were observed after 6â¯h of C48/80 challenge, compared to control (32%). This effect was abrogated by Gal-1 and SCG, which reduced mast cell degranulation (31-36%), eosinophil migration and eosinophil peroxidase levels in the eyes. Gal-1 (3⯵g) and SCG treatments also decreased IL-4 levels, as well as activation of mitogen activated protein kinases compared to untreated C48/80 eyes. Our findings suggest that Gal-1 eye drops represent a new therapeutic strategy for ocular allergic inflammation.
Asunto(s)
Antialérgicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Conjuntivitis Alérgica/tratamiento farmacológico , Galectina 1/uso terapéutico , Animales , Antialérgicos/administración & dosificación , Antiinflamatorios/administración & dosificación , Degranulación de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Conjuntivitis Alérgica/inducido químicamente , Conjuntivitis Alérgica/inmunología , Conjuntivitis Alérgica/patología , Citocinas/inmunología , Eosinófilos/efectos de los fármacos , Eosinófilos/enzimología , Eosinófilos/fisiología , Ojo/efectos de los fármacos , Ojo/inmunología , Ojo/patología , Galectina 1/administración & dosificación , Histamina/inmunología , Mastocitos/efectos de los fármacos , Mastocitos/fisiología , Proteínas Quinasas Activadas por Mitógenos/inmunología , Soluciones Oftálmicas , Peroxidasas/metabolismo , Ratas Wistar , p-Metoxi-N-metilfenetilaminaRESUMEN
OBJECTIVE: The therapeutic potential of umbilical cord mesenchymal stem cells (UC-MSCs) in rheumatoid arthritis (RA) has attracted more and more attention, because of it can suppress the various inflammatory effects of T cells. Galectin-1 is highly expressed in UC-MSCs, as the first lectin mediating the immunomodulatory effect of MSCs. Our study will investigate the effects of galectin-1 in regulation of UC-MSCs on rheumatoid arthritis T cells. METHODS: Lentivirus transfected shRNA technique was used to knock down the expression of galectin-1 in UC-MSCs to construct UC-MSCs(Gal-1-). The effects of UC-MSCs and UC-MSCs(Gal-1-) on CD4+ T cells in RA patients were investigated by contact system, including negative control group (CD4+ T cells), positive control group [CD4+ T-phytohemagg lutinin (PHA)], UC-MSCs-CD4+ T cells co-culture group, UC-MSCs(control shRNA)-CD4+ T cells co-culture group, and UC-MSCs(Gal-1-)-CD4+ T cells co-culture group. The proliferation of CD4+ T cells was detected by MTS assay. The level of tumor necrosis factors α (TNF-α) in cells supernatant was detected by enzyme linked immunosorbent assay (ELISA). The effect of UC-MSCs on helper T cell (Th) subset was detected by flow cytometry. RESULTS: In vitro, UC-MSCs were capable of inhibiting PHA induced proliferation of CD4+ T cells from RA patients, but UC-MSCs(Gal-1-) did not show the significant inhibitory effect. Galectin-1 affect the TNF-α level of CD4+ T cells regulated by UC-MSCs. UC-MSCs and UC-MSCs(control shRNA) significantly inhibited the expression of TNF-α in PHA-induced CD4+ T cells. However, UC-MSCs(Gal-1-) had no significant inhibitory effect. Furthermore, the Th1 cells were also significantly suppressed by UC-MSCs and UC-MSCs(control shRNA) (4.83%±1.37% and 5.13%±0.87%,P=0.012 and P=0.018). These was no significant difference in the proportion of the Th1 cells between the control group and UC-MSCs(Gal-1-) group (8.51%±2.04% and 6.41%±0.96%,P=0.101). The Th2 cells were protected after silence galectin-1 in UC-MSCs, whereas there was no significant difference. The proportion of Th17 was decreased by co-culture with UC-MSCs and UC-MSCs (control shRNA), but these was also no significant difference. CONCLUSION: UC-MSCs can inhibit the proliferation and differentiation of CD4+ T cells from RA patients, but these effect declined after knocking down the expression of galectin-1. Galectin-1 maybe take part in the regulation of UC-MSCs on rheumatoid arthritis CD4+ T cells.
Asunto(s)
Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Linfocitos T CD4-Positivos/efectos de los fármacos , Trasplante de Células Madre de Sangre del Cordón Umbilical , Galectina 1/inmunología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Citometría de Flujo , Galectina 1/uso terapéutico , Humanos , Células Madre Mesenquimatosas/inmunología , Células Th17 , Factor de Necrosis Tumoral alfa/inmunologíaAsunto(s)
Galectina 1/metabolismo , Vaina de Mielina/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Galectina 1/uso terapéutico , Humanos , Ratones , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Neuroglía/metabolismo , RatasRESUMEN
Galectin-1 (Gal-1), a member of a highly conserved family of animal lectins, binds to the common disaccharide [Galß(1-4)-GlcNAc] on both N- and O-glycans decorating cell surface glycoconjugates. Current evidence supports a role for Gal-1 in the pathophysiology of multiple sclerosis (MS), one of the most prevalent chronic inflammatory diseases. Previous studies showed that Gal-1 exerts neuroprotective effects by promoting microglial deactivation in a model of autoimmune neuroinflammation and induces axonal regeneration in spinal cord injury. Seeking a model that could link demyelination, oligodendrocyte (OLG) responses and microglial activation, here we used a lysolecithin (LPC)-induced demyelination model to evaluate the ability of Gal-1 to preserve myelin without taking part in T-cell modulation. Gal-1 treatment after LPC-induced demyelination promoted a significant decrease in the demyelinated area and fostered more efficient remyelination, concomitantly with an attenuated oligodendroglial progenitor response reflecting less severe myelination damage. These results were accompanied by a decrease in the area of microglial activation with a shift toward an M2-polarized microglial phenotype and diminished astroglial activation. In vitro studies further showed that, mechanistically, Gal-1 targets activated microglia, promoting an increase in their myelin phagocytic capacity and their shift toward an M2 phenotype, and leads to oligodendroglial differentiation. Therefore, this study supports the use of Gal-1 as a potential treatment for demyelinating diseases such as MS.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Enfermedades Desmielinizantes , Galectina 1/farmacología , Galectina 1/uso terapéutico , Microglía/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/ultraestructura , Polaridad Celular/efectos de los fármacos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisofosfatidilcolinas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/ultraestructura , Técnicas de Cultivo de TejidosRESUMEN
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by mutations in the dystrophin gene, leading to the loss of a critical component of the sarcolemmal dystrophin glycoprotein complex. Galectin-1 is a small 14 kDa protein normally found in skeletal muscle and has been shown to be a modifier of immune response, muscle repair, and apoptosis. Galectin-1 levels are elevated in the muscle of mouse and dog models of DMD. Together, these findings led us to hypothesize that Galectin-1 may serve as a modifier of disease progression in DMD. To test this hypothesis, recombinant mouse Galectin-1 was produced and used to treat myogenic cells and the mdx mouse model of DMD. Here we show that intramuscular and intraperitoneal injections of Galectin-1 into mdx mice prevented pathology and improved muscle function in skeletal muscle. These improvements were a result of enhanced sarcolemmal stability mediated by elevated utrophin and α7ß1 integrin protein levels. Together our results demonstrate for the first time that Galectin-1 may serve as an exciting new protein therapeutic for the treatment of DMD.
Asunto(s)
Galectina 1/uso terapéutico , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/terapia , Animales , Línea Celular , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Proteínas Recombinantes/uso terapéutico , Sarcolema/metabolismo , Utrofina/metabolismoRESUMEN
Galectin-1 (Gal-1), an evolutionarily conserved ß-galactoside-binding lectin, plays essential roles in the control of inflammation and neovascularization. Although identified as a major component of the contractile apparatus of cardiomyocytes, the potential role of Gal-1 in modulating heart pathophysiology is uncertain. Here, we aimed to characterize Gal-1 expression and function in the infarcted heart. Expression of Gal-1 was substantially increased in the mouse heart 7 days after acute myocardial infarction (AMI) and in hearts from patients with end-stage chronic heart failure. This lectin was localized mainly in cardiomyocytes and inflammatory infiltrates in peri-infarct areas, but not in remote areas. Both simulated hypoxia and proinflammatory cytokines selectively up-regulated Gal-1 expression in mouse cardiomyocytes, whereas anti-inflammatory cytokines inhibited expression of this lectin or had no considerable effect. Compared with their wild-type counterpart, Gal-1-deficient (Lgals1(-/-)) mice showed enhanced cardiac inflammation, characterized by increased numbers of macrophages, natural killer cells, and total T cells, but reduced frequency of regulatory T cells, leading to impaired cardiac function at baseline and impaired ventricular remodeling 7 days after nonreperfused AMI. Treatment of mice with recombinant Gal-1 attenuated cardiac damage in reperfused AMI. Taken together, our results indicate a protective role for Gal-1 in normal cardiac homeostasis and postinfarction remodeling by preventing cardiac inflammation. Thus, Gal-1 treatment represents a potential novel strategy to attenuate heart failure in AMI.
Asunto(s)
Galectina 1/fisiología , Infarto del Miocardio/fisiopatología , Miocarditis/metabolismo , Remodelación Ventricular/fisiología , Adulto , Anciano , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Células Cultivadas , Citocinas/farmacología , Femenino , Galectina 1/biosíntesis , Galectina 1/farmacología , Galectina 1/uso terapéutico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Humanos , Mediadores de Inflamación/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocarditis/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes/uso terapéutico , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Función Ventricular Izquierda/fisiología , Adulto JovenRESUMEN
Inflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Galectina 1/inmunología , Antígenos Comunes de Leucocito/metabolismo , Microglía/inmunología , Animales , Astrocitos/metabolismo , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Quimiocina CCL2/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Galectina 1/metabolismo , Galectina 1/uso terapéutico , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.