Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.184
Filtrar
1.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830761

RESUMEN

The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.


Asunto(s)
Proteínas de Homeodominio , Cresta Neural , Neuroglía , Ganglio Nudoso , Factores de Transcripción , Animales , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ratones , Neuroglía/metabolismo , Neuroglía/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Femenino , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Endogámicos C57BL
2.
Auton Neurosci ; 253: 103177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636284

RESUMEN

BACKGROUND: Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS: Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS: CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS: This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Esófago , Ganglio Nudoso , Células Receptoras Sensoriales , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/análisis , Esófago/inervación , Esófago/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Ganglio Nudoso/metabolismo , Placa Motora/metabolismo , Ratas , Ganglios Espinales/metabolismo , Bulbo Raquídeo/metabolismo , Sustancia P/metabolismo , Músculo Estriado/inervación , Músculo Estriado/metabolismo , Nervio Vago/metabolismo , Ratas Wistar , Ratas Sprague-Dawley , Fibras Musculares Esqueléticas/metabolismo , Canales Catiónicos TRPV/metabolismo , Amidinas
3.
Neuropeptides ; 105: 102418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442503

RESUMEN

The aim of this study is to verify the impact of Leptin in blood pressure (BP) regulation and Leptin-resistance in metabolic/neurogenic hypertension through baroreflex afferents and dysregulation. Artery BP/heart rate (HR) were measured while nodose (NG) microinjection of Leptin, membrane depolarization/inward current were obtained by whole-cell patch from NG neurons isolated from adult female rats. Baroreflex sensitivity (BRS) tested with PE/SNP, distribution/expression of Leptin/receptors in the NG/nucleus tractus solitary (NTS) examined using immumostaining and qRT-PCR, and serum concentrations of Leptin/NE measured by ELISA were observed in control and high fructose-drinking induced hypertension (HTN-HFD) rats. The results showed that BP was significantly/dose-dependently reduced by Leptin NG microinjection likely through direct excitation of female-specific subpopulation of Ah-type neurons showing a potent membrane depolarization/inward currents. Sex-specific distribution/expression of OB-Ra/OB-Rb in the NG were detected with estrogen-dependent manner, similar observations were also confirmed in the NTS. As expected, BRS was dramatically decreased in the presence of PE/SNP in both male and female rats except for the female with PE at given concentrations. Additionally, serum concentration of Leptin was elevated in HFD-HTN model rats of either sex with more obvious in females. Under hypertensive condition, the mean fluorescent density of OB-R and mRNA expression for OB-Ra/OB-Rb in the NG/NTS were significantly down-regulated. These results have demonstrated that Leptin play a role in dominant parasympathetic drive via baroreflex afferent activation to buffer Leptin-mediated sympathetic activation systemically and Leptin-resistance is an innegligible mechanism for metabolic/neurogenic hypertension through baroreflex afferent dysregulation.


Asunto(s)
Barorreflejo , Presión Sanguínea , Hipertensión , Leptina , Animales , Femenino , Masculino , Ratas , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Leptina/farmacología , Leptina/metabolismo , Leptina/sangre , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Leptina/metabolismo , Núcleo Solitario/metabolismo , Núcleo Solitario/efectos de los fármacos
4.
Cell Tissue Res ; 396(3): 313-327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383905

RESUMEN

Understanding how the gut communicates with the brain, via sensory nerves, is of significant interest to medical science. Enteroendocrine cells (EEC) that line the mucosa of the gastrointestinal tract release neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT). How the release of substances, like 5-HT, from enterochromaffin (EC) cells activates vagal afferent nerve endings is unresolved. We performed anterograde labelling from nodose ganglia in vivo and identified vagal afferent axons and nerve endings in the mucosa of whole-mount full-length preparations of mouse colon. We then determined the spatial relationship between mucosal-projecting vagal afferent nerve endings and EC cells in situ using 3D imaging. The mean distances between vagal afferent nerve endings in the mucosa, or nearest varicosities along vagal afferent axon branches, and the nearest EC cell were 29.6 ± 19.2 µm (n = 107, N = 6) and 25.7 ± 15.2 µm (n = 119, N = 6), respectively. No vagal afferent endings made close contacts with EC cells. The distances between EC cells and vagal afferent endings are many hundreds of times greater than known distances between pre- and post-synaptic membranes (typically 10-20 nm) that underlie synaptic transmission in vertebrates. The absence of any close physical contacts between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa leads to the inescapable conclusion that the mechanism by which 5-HT release from ECs in the colonic mucosa occurs in a paracrine fashion, to activate vagal afferents.


Asunto(s)
Colon , Células Enterocromafines , Nervio Vago , Animales , Células Enterocromafines/metabolismo , Colon/inervación , Nervio Vago/fisiología , Ratones , Ratones Endogámicos C57BL , Masculino , Terminaciones Nerviosas , Ganglio Nudoso/citología , Neuronas Aferentes
5.
Can J Physiol Pharmacol ; 101(10): 521-528, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311256

RESUMEN

Vagal afferents convey signals of mechanical stimulation in the gut to the brain, which is essential for the regulation of food intake. However, ion channels sensing mechanical stimuli are not fully understood. This study aimed to examine the ionic currents activated by mechanical stimulation and a possible neuro-modulatory role of nitric oxide on vagal afferents. Nodose neuronal currents and potentials, and intestinal afferent firing by mechanical stimulation were measured by whole-cell patch clamp, and in vitro afferent recording, respectively. Osmotically activated cation and two-pore domain K+ currents were identified in nodose neurons. The membrane potential displayed a biphasic change under hypotonic stimulation. Cation channel-mediated depolarization was followed by a hyperpolarization mediated by K+ channels. The latter was inhibited by l-methionine (TREK1 channel inhibitor) and l-NNA (nitric oxide synthase inhibitor). Correspondingly, mechanical stimulation activated opposing cation and TREK1 currents. NOS inhibition decreased TREK1 currents and potentiated jejunal afferent nerve firing induced by mechanical stimuli. This study suggested a novel activation mechanism of ion channels underlying adaptation under mechanical distension in vagal afferent neurons. The guts' ability to perceive mechanical stimuli is vital in determining how it responds to food intake. The mechanosensation through ion channels could initiate and control gut function.


Asunto(s)
Óxido Nítrico , Ganglio Nudoso , Ganglio Nudoso/fisiología , Nervio Vago , Neuronas Aferentes/fisiología , Neuronas
6.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36975145

RESUMEN

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Asunto(s)
Ritmo Circadiano , Ácido Glutámico , Núcleo Solitario , Sinapsis , Ritmo Circadiano/fisiología , Ácido Glutámico/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Neuronas Aferentes/metabolismo , Nervio Vago/citología , Nervio Vago/fisiología , Potenciales de Acción , Masculino , Animales , Ratones , Ganglio Nudoso/metabolismo , Transducción de Señal , Conductividad Eléctrica , Técnicas de Placa-Clamp
7.
J Neural Eng ; 20(2)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920156

RESUMEN

Objective.Sensory nerves of the peripheral nervous system (PNS) transmit afferent signals from the body to the brain. These peripheral nerves are composed of distinct subsets of fibers and associated cell bodies, which reside in peripheral ganglia distributed throughout the viscera and along the spinal cord. The vagus nerve (cranial nerve X) is a complex polymodal nerve that transmits a wide array of sensory information, including signals related to mechanical, chemical, and noxious stimuli. To understand how stimuli applied to the vagus nerve are encoded by vagal sensory neurons in the jugular-nodose ganglia, we developed a framework for micro-endoscopic calcium imaging and analysis.Approach.We developed novel methods forin vivoimaging of the intact jugular-nodose ganglion using a miniature microscope (Miniscope) in transgenic mice with the genetically-encoded calcium indicator GCaMP6f. We adapted the Python-based analysis package Calcium Imaging Analysis (CaImAn) to process the resulting one-photon fluorescence data into calcium transients for subsequent analysis. Random forest classification was then used to identify specific types of neuronal responders.Results.We demonstrate that recordings from the jugular-nodose ganglia can be accomplished through careful surgical dissection and ganglia stabilization. Using a customized acquisition and analysis pipeline, we show that subsets of vagal sensory neurons respond to different chemical stimuli applied to the vagus nerve. Successful classification of the responses with a random forest model indicates that certain calcium transient features, such as amplitude and duration, are important for encoding these stimuli by sensory neurons.Significance.This experimental approach presents a new framework for investigating how individual vagal sensory neurons encode various stimuli on the vagus nerve. Our surgical and analytical approach can be applied to other PNS ganglia in rodents and other small animal species to elucidate previously unexplored roles for peripheral neurons in a diverse set of physiological functions.


Asunto(s)
Calcio , Ganglio Nudoso , Ratones , Animales , Ganglio Nudoso/metabolismo , Calcio/metabolismo , Nervio Vago , Células Receptoras Sensoriales/metabolismo , Vías Aferentes
8.
J Physiol ; 601(6): 1139-1150, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36750759

RESUMEN

The influence of NaV 1.9 on inflammatory mediator-induced activation of airway vagal nodose C-fibres was evaluated by comparing responses in wild-type versus NaV 1.9-/- mice. A single-cell RT-PCR analysis indicated that virtually all nodose C-fibre neurons expressed NaV 1.9 (SCN11A) mRNA. Using extracellular electrophysiological recordings in an isolated vagally innervated mouse trachea-lung preparation, it was noted that mediators acting via G protein-coupled receptors (PAR2), or ionotropic receptors (P2×3) were 70-85% less effective in evoking action potential discharge in the absence of NaV 1.9. However, there was no difference in action potential discharge between wild-type and NaV 1.9-/- when the stimulus was a rapid punctate mechanical stimulus. An analysis of the passive and active properties of isolated nodose neurons revealed no difference between neurons from wild-type and NaV 1.9-/- mice, with the exception of a modest difference in the duration of the afterhyperpolarization. There was also no difference in the amount of current required to evoke action potentials (rheobase) or the action potential voltage threshold. The inward current evoked by the chemical mediator by a P2×3 agonist was the same in wild-type versus NaV 1.9-/- neurons. However, the current was sufficient to evoke action potential only in the wild-type neurons. The data support the speculation that NaV 1.9 could be an attractive therapeutic target for inflammatory airway disease by selectively inhibiting inflammatory mediator-associated vagal C-fibre activation. KEY POINTS: Inflammatory mediators were much less effective in activating the terminals of vagal airway C-fibres in mice lacking NaV 1.9. The active and passive properties of nodose neurons were the same between wild-type neurons and NaV 1.9-/- neurons. Nerves lacking NaV 1.9 responded, normally, with action potential discharge to rapid punctate mechanical stimulation of the terminals or the rapid stimulation of the cell bodies with inward current injections. NaV 1.9 channels could be an attractive target to selectively inhibit vagal nociceptive C-fibre activation evoked by inflammatory mediators without blocking the nerves' responses to the potentially hazardous stimuli associated with aspiration.


Asunto(s)
Pulmón , Nervio Vago , Animales , Ratones , Nervio Vago/fisiología , Pulmón/fisiología , Neuronas , Potenciales de Acción/fisiología , Tráquea/inervación , Ganglio Nudoso/fisiología , Canal de Sodio Activado por Voltaje NAV1.9
9.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36680690

RESUMEN

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Asunto(s)
Ganglio Nudoso , Receptores Purinérgicos P2X7 , Ratas , Animales , Ganglio Nudoso/fisiología , Nervio Vago/fisiología , Adenosina Trifosfato/farmacología , Células Receptoras Sensoriales
10.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36192157

RESUMEN

The Emx1-IRES-Cre transgenic mouse is commonly used to direct genetic recombination in forebrain excitatory neurons. However, the original study reported that Emx1-Cre is also expressed embryonically in peripheral autonomic ganglia, which could potentially affect the interpretation of targeted circuitry contributing to systemic phenotypes. Here, we report that Emx1-Cre is expressed in the afferent vagus nerve system involved in autonomic cardiorespiratory regulatory pathways. Our imaging studies revealed expression of Emx1-Cre driven tdtomato fluorescence in the afferent vagus nerve innervating the dorsal medulla of brainstem, cell bodies in the nodose ganglion, and their potential target structures at the carotid bifurcation such as the carotid sinus and the superior cervical ganglion (SCG). Photostimulation of the afferent terminals in the nucleus tractus solitarius (NTS) in vitro using Emx1-Cre driven ChR2 reliably evoked EPSCs in the postsynaptic neurons with electrophysiological characteristics consistent with the vagus afferent nerves. In addition, optogenetic stimulation targeting the Emx1-Cre expressing structures identified in this study, such as vagus nerve, carotid bifurcation, and the dorsal medulla surface transiently depressed cardiorespiratory rate in urethane anesthetized mice in vivo Together, our study demonstrates that Emx1-IRES-Cre is expressed in the key peripheral autonomic nerve system and can modulate cardiorespiratory function independently of forebrain expression. These results raise caution when interpreting systemic phenotypes of Emx1-IRES-Cre conditional recombinant mice, and also suggest the utility of this line to investigate modulators of the afferent vagal system.


Asunto(s)
Ganglio Nudoso , Núcleo Solitario , Animales , Ganglios Autónomos , Integrasas , Ratones , Ganglio Nudoso/metabolismo , Uretano , Nervio Vago/metabolismo
11.
J Comp Neurol ; 530(17): 3072-3103, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988033

RESUMEN

Anatomical tracing studies examining the vagal system can conflate details of sensory afferent and motor efferent neurons. Here, we used a serotype of adeno-associated virus that transports retrogradely and exhibits selective tropism for vagal afferents, to map their soma location and central termination sites within the nucleus of the solitary tract (NTS). We examined the vagal sensory afferents innervating the trachea, duodenum, stomach, or heart, and in some animals, from two organs concurrently. We observed no obvious somatotopy in the somata distribution within the nodose ganglion. The central termination patterns of afferents from different organs within the NTS overlap substantially. Convergence of vagal afferent inputs from different organs onto single NTS neurons is observed. Abdominal and thoracic afferents terminate throughout the NTS, including in the rostral NTS, where the 7th cranial nerve inputs are known to synapse. To address whether the axonal labeling produced by viral transduction is so widespread because it fills axons traveling to their targets, and not just terminal fields, we labeled pre and postsynaptic elements of vagal afferents in the NTS . Vagal afferents form multiple putative synapses as they course through the NTS, with each vagal afferent neuron distributing sensory signals to multiple second-order NTS neurons. We observe little selectivity between vagal afferents from different visceral targets and NTS neurons with common neurochemical phenotypes, with afferents from different organs making close appositions with the same NTS neuron. We conclude that specific viscerosensory information is distributed widely within the NTS and that the coding of this input is probably determined by the intrinsic properties and projections of the second-order neuron.


Asunto(s)
Núcleo Solitario , Nervio Vago , Animales , Neuronas Motoras , Neuronas Aferentes/fisiología , Ganglio Nudoso , Ratas , Núcleo Solitario/fisiología , Nervio Vago/fisiología
12.
Auton Neurosci ; 242: 103019, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35905544

RESUMEN

Heart is an extensively innervated organ and its function is strictly coordinated by autonomic neural circuits. After pathological events such as myocardial infarction (MI), cardiac nerves undergo a structural and functional remodeling contributing to cardiac dysfunction. Although the efferent component of the cardiac nerves has been well described, sensory innervation of the heart has not been defined in detail. Considering its importance, comprehensive description of vagal afferent innervation on the whole heart would enable a better description of autonomic imbalances manifesting as sympathoexcitation and vagal withdrawal in post-ischemic states. To address this issue, we globally mapped the vagal nodose afferent fibers innervating the whole murine heart with unprecedented resolution. By using the Phox2b-Cre::tdTomato transgenic mouse line, we described the detailed distribution and distinct vagal sensory ending morphologies at both the dorsal and ventral sides of the mouse heart. By neural tracing analysis, we quantitated the distribution and prevalence of vagal afferent nerve fibers with varying diameters across dorsal and ventral surfaces of the heart. Moreover, we demonstrated that vagal afferents formed flower spray and end-net-like endings within the atria and ventricles. As distinct from the atria, vagal afferents formed intramuscular array-like endings within the ventricles. Furthermore, we showed that vagal afferents undergo structural remodeling by forming axonal sprouts around the infarct area in post-MI hearts. These findings improve our understanding of the potential effect of vagal afferent remodeling on autonomic imbalance and generation of cardiac arrhythmias and could prospectively contribute to the development of more effective neuromodulatory therapies.


Asunto(s)
Atrios Cardíacos , Nervio Vago , Animales , Axones , Ratones , Ratones Transgénicos , Neuronas Aferentes , Ganglio Nudoso , Nervio Vago/fisiología
13.
Methods Mol Biol ; 2506: 297-314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35771480

RESUMEN

Internal organs, including the airway, are innervated by neurons of the autonomic and sensory nervous systems. The airway-innervating sensory neurons primarily originate from the vagus nerve, whose cell bodies are found, in rodents, in the jugular and nodose ganglia complex (JNC). About half of these sensory neurons expressed the heat-sensing ion channel TRPV1 and evolved to limit tissue damage by detecting chemical, mechanical, or thermal threats and to initiate protective airway reflexes such as coughing and bronchoconstriction. They also help monitor the host homeostasis by sensing nutrients, pressure, and O2 levels and help mount airway defenses by controlling immune and goblet cell activity. To better appreciate the scope of the physiological role and pathological contributions of these neurons, we will review gain and loss-of-function approaches geared at controlling the activity of these neurons. We will also present a method to study transcriptomic changes in airway-innervating neurons and a co-culture approach designed to understand how nociceptors modulate immune responses.


Asunto(s)
Ganglio Nudoso , Nervio Vago , Nociceptores , Células Receptoras Sensoriales/fisiología , Transcriptoma
14.
Neuropeptides ; 94: 102261, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35704969

RESUMEN

Thyrotropin-releasing hormone (TRH) plays a central role in metabolic homeostasis, and single-cell sequencing has recently demonstrated that vagal sensory neurons in the nodose ganglion express thyrotropin-releasing hormone receptor 1 (TRHR1). Here, in situ hybridization validated the presence of TRHR1 in nodose ganglion (NG) neurons and immunohistochemistry showed that the receptor is expressed at the protein level. However, it has yet to be demonstrated whether TRHR1 is functionally active in NG neurons. Using NG explants transduced with a genetically encoded Ca2+ indicator (GECI), we show that TRH increases Ca2+ in a subset of NG neurons. TRH-induced Ca2+ transients were briefer compared to those induced by CCK-8, 2-Me-5-HT and ATP. Blocking Na+ channels with TTX or Na+ substitution did not affect the TRH-induced Ca2+ increase, but blocking Gq signaling with YM-254890 abolished the TRH-induced response. Field potential recordings from the vagus nerve in vitro showed an increase in response to TRH, suggesting that TRH signaling produces action potentials in NG neurons. These observations indicate that TRH activates a small group of NG neurons, involving Gq pathways, and we hypothesize that these neurons may play a role in gut-brain signaling.


Asunto(s)
Ganglio Nudoso , Hormona Liberadora de Tirotropina , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Nervio Vago/metabolismo
15.
J Physiol ; 600(12): 2953-2971, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35430729

RESUMEN

The KV 1/D-type potassium current (ID ) is an important determinant of neuronal excitability. This study explored whether and how ID channels regulate the activation of bronchopulmonary vagal afferent nerves. The single-neuron RT-PCR assay revealed that nearly all mouse bronchopulmonary nodose neurons expressed the transcripts of α-dendrotoxin (α-DTX)-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits, with the expression of KV 1.6 being most prevalent. Patch-clamp recordings showed that ID , defined as the α-DTX-sensitive K+ current, activated at voltages slightly more negative than the resting membrane potential in lung-specific nodose neurons and displayed little inactivation at subthreshold voltages. Inhibition of ID channels by α-DTX depolarized the lung-specific nodose neurons and caused an increase in input resistance, decrease in rheobase, as well as increase in action potential number and firing frequency in response to suprathreshold current steps. Application of α-DTX to the lungs via trachea in the mouse ex vivo vagally innervated trachea-lungs preparation led to action potential discharges in nearly half of bronchopulmonary nodose afferent nerve fibres, including nodose C-fibres, as detected by the two-photon microscopic Ca2+ imaging technique and extracellular electrophysiological recordings. In conclusion, ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves by stabilizing the membrane potential, counterbalancing the subthreshold depolarization and promoting the adaptation of action potential firings. Down-regulation of ID channels, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway diseases that are associated with excessive coughing, dyspnoea, and reflex bronchospasm and secretions. KEY POINTS: The α-dendrotoxin (α-DTX)-sensitive D-type K+ current (ID ) is an important determinant of neuronal excitability. Nearly all bronchopulmonary nodose afferent neurons in the mouse express ID and the transcripts of α-DTX-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits. Inhibition of ID channels by α-DTX depolarizes the bronchopulmonary nodose neurons, reduces the minimal depolarizing current needed to evoke an action potential (AP) and increases AP number and AP firing frequency in response to suprathreshold stimulations. Application of α-DTX to the lungs ex vivo elicits AP discharges in about half of bronchopulmonary nodose C-fibre terminals. Our novel finding that ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves suggests that their down-regulation, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway inflammation associated with excessive respiratory symptoms.


Asunto(s)
Canales de Potasio , Nervio Vago , Potenciales de Acción/fisiología , Animales , Potenciales de la Membrana/fisiología , Ratones , Neuronas Aferentes , Ganglio Nudoso , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Nervio Vago/fisiología
16.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35365503

RESUMEN

The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.


Asunto(s)
Ganglios Espinales , Nervio Vago , Vías Aferentes , Animales , Pulmón/inervación , Pulmón/metabolismo , Ratones , Neuronas , Neuronas Aferentes/fisiología , Ganglio Nudoso , Nervio Vago/metabolismo
17.
Biochem Biophys Res Commun ; 608: 66-72, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35390674

RESUMEN

Enteroendocrine cells (EECs) are the primary sensory cells that sense the gut luminal environment and secret hormones to regulate organ function. Recent studies revealed that vagal afferent neurons are connected to EECs and relay sensory information from EECs to the brain stem. To date, however, the identity of vagal afferent neurons connected to a given EEC subtype and the mode of their gene responses to its intestinal hormone have remained unknown. Hypothesizing that EEC-associated vagal afferent neurons change their gene expression in response to the microbiota-related extracellular stimuli, we conducted comparative gene expression analyses of the nodose-petrosal ganglion complex (NPG) using specific pathogen-free (SPF) and germ-free (GF) mice. We report here that the Uts2b gene, which encodes a functionally unknown neuropeptide, urotensin 2B (UTS2B), is expressed in a microbiota-dependent manner in NPG neurons. In cultured NPG neurons, expression of Uts2b was induced by AR420626, the selective agonist for FFAR3. Moreover, distinct gastrointestinal hormones exerted differential effects on Uts2b expression in NPG neurons, where cholecystokinin (CCK) significantly increased its expression. The majority of Uts2b-expressing NPG neurons expressed CCK-A, the receptor for CCK, which comprised approximately 25% of all CCK-A-expressing NPG neurons. Selective fluorescent labeling of Uts2b-expressing NPG neurons revealed a direct contact of their nerve fibers to CCK-expressing EECs. This study identifies the Uts2b as a microbiota-regulated gene, demonstrates that Uts2b-expressing vagal afferent neurons transduce sensory information from CCK-expressing EECs to the brain, and suggests potential involvement of UTS2B in a modality of CCK actions.


Asunto(s)
Colecistoquinina , Péptidos y Proteínas de Señalización Intracelular , Microbiota , Neuronas Aferentes , Hormonas Peptídicas , Nervio Vago , Animales , Colecistoquinina/genética , Colecistoquinina/metabolismo , Células Enteroendocrinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Neuronas Aferentes/metabolismo , Ganglio Nudoso/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Nervio Vago/metabolismo
18.
J Anat ; 241(2): 230-244, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396708

RESUMEN

Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.


Asunto(s)
Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Animales , Masculino , Ganglio Nudoso/metabolismo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio/metabolismo , Nervio Vago/metabolismo
19.
Sci Rep ; 12(1): 3431, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236901

RESUMEN

We examined the role of TRPA1s in triggering the swallowing reflex. TRPA1s predominantly localized on thin nerve fibers and fibroblast-like cells in swallowing-related regions and on small to medium-sized superior laryngeal nerve-afferents in the nodose-petrosal-jugular ganglionic complex. Topical application of a TRPA1 agonist, allyl isothiocyanate (AITC), dose-dependently triggered swallowing reflexes. Prior topical application of a TRPA1 antagonist significantly attenuated the AITC-induced reflexes. Application of cold AITC (4 °C) very briefly reduced the on-site temperature to < 17 °C (temperature at which TRPA1s can be activated), but had no effect on triggering of the reflex. By contrast, reducing the on-site temperature to < 17 °C for a longer time by continuous flow of cold AITC or by application of iced AITC paradoxically delayed/prevented the triggering of AITC-induced reflexes. Prior application of the TRPA1 antagonist had no effect on the threshold for the punctate mechanical stimuli-induced reflex or the number of low-force or high-force continuous mechanical pressure stimuli-induced reflexes. TRPA1s are functional and act as chemosensors, but not as cold sensors or mechanosensors, for triggering of the swallowing reflex. A brief cold stimulus has no effect on triggering of the reflex. However, a longer cold stimulus delays/prevents triggering of the reflex because of cold anesthesia.


Asunto(s)
Deglución , Reflejo , Animales , Frío , Deglución/fisiología , Isotiocianatos/farmacología , Nervios Laríngeos , Ganglio Nudoso , Ratas , Reflejo/fisiología , Canal Catiónico TRPA1
20.
Int J Obes (Lond) ; 46(6): 1212-1221, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35241786

RESUMEN

BACKGROUND/OBJECTIVES: Disrupted leptin signaling in vagal afferent neurons contributes to hyperphagia and obesity. Thus, we tested the hypothesis that intrinsic negative regulators of leptin signaling, suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) underlie dysfunctional leptin-mediated vagal afferent satiety signaling during obesity. METHODS: Experiments were performed on standard chow-fed control mice, high-fat fed (HFF), or low-fat fed (LFF) mice. SOCS3 and PTP1B expression were quantified using western blot and quantitative PCR. Nodose ganglion neuronal excitability and jejunal afferent sensitivity were measured by patch clamp and extracellular afferent recordings, respectively. RESULTS: Increased expression of SOCS3 and PTP1B were observed in the jejunum of HFF mice. Prolonged incubation with leptin attenuated nodose ganglion neuronal excitability, and this effect was reversed by inhibition of SOCS3. Leptin potentiated jejunal afferent nerve responses to CCK in LFF mice but decreased them in HFF mice. Inhibition of SOCS3 restored impaired vagal afferent neuronal excitability and afferent nerve responses to satiety mediators during obesity. Two-pore domain K+ channel (K2P) conductance and nitric oxide (NO) production that we previously demonstrated were elevated during obesity were decreased by inhibitions of SOCS3 or PTP1B. CONCLUSIONS: This study suggests that obesity impairs vagal afferent sensitivity via SOCS3 and PTP1B, likely as a consequence of obesity-induced hyperleptinemia. The mechanisms underlying leptin resistance appear also to cause a more global impairment of satiety-related vagal afferent responsiveness.


Asunto(s)
Leptina , Obesidad , Animales , Leptina/metabolismo , Ratones , Ganglio Nudoso/metabolismo , Obesidad/metabolismo , Saciedad/fisiología , Nervio Vago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA