Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
Int J Med Mushrooms ; 26(10): 55-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171631

RESUMEN

Solid-state fermentation of cereals with edible fungi is a promising strategy for producing functional flours. Hypothetically, the nutritional and functional properties of these flours could be modulated by manipulating substrate composition, fungal species, and incubation conditions. This article reports the variation over time in nutritional, polyphenol, and triterpene contents, as well as the antioxidant activity of rice and wheat fermented with Ganoderma sessile and Pleurotus ostreatus. Solid-state fermentation significantly improved the antioxidant power of the substrates which seemed to be highly correlated with the increase of the phenolic compounds. This increase peaked in the second to third week and decreased after this point. Triterpene content also increased, especially in substrates fermented with G. sessile. Substrates fermented with G. sessile showed higher values than those fermented with P. ostreatus in all compounds, which could be a result of a higher growth rate. Fermented wheat showed higher values than fermented rice in all measured compounds except reducing sugars which can be related to a slower progress in the fermentation due to the more complex structure of the wheat grain. Our results reinforce the importance of substrate and strain selection for product modulation to meet the industry's growing needs.


Asunto(s)
Antioxidantes , Grano Comestible , Fermentación , Ganoderma , Valor Nutritivo , Oryza , Pleurotus , Triticum , Pleurotus/metabolismo , Pleurotus/crecimiento & desarrollo , Pleurotus/química , Antioxidantes/metabolismo , Antioxidantes/análisis , Ganoderma/metabolismo , Ganoderma/química , Ganoderma/crecimiento & desarrollo , Oryza/química , Oryza/metabolismo , Grano Comestible/química , Grano Comestible/metabolismo , Triticum/química , Triticum/metabolismo , Polifenoles/metabolismo , Polifenoles/análisis , Polifenoles/química , Triterpenos/metabolismo
2.
J Ethnopharmacol ; 334: 118530, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977221

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY: The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS: In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS: The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aß1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS: Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.


Asunto(s)
Cloruro de Aluminio , Enfermedad de Alzheimer , Encéfalo , Galactosa , Ganoderma , Triterpenos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Ganoderma/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Ratones , Cloruro de Aluminio/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Péptidos beta-Amiloides/metabolismo , Línea Celular
3.
Phytochemistry ; 224: 114168, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823569

RESUMEN

Three previously undescribed highly modified lanostane triterpenoids, ganopyrone A, ganocolossusin I, and ganodermalactone Y, were isolated from the artificially cultivated fruiting bodies of the basidiomycete Ganoderma colossus TBRC-BCC 17711. Ganopyrone A possesses an unprecedented polycyclic carbon skeleton with an α-pyrone ring and C-18/C-23 bond. It showed antimalarial activity against Plasmodium falciparum K1 (multidrug-resistant strain) with an IC50 value of 7.8 µM (positive control: dihydroartemisinin, IC50 1.4 nM), while its cytotoxicity (Vero cells) was much weaker (IC50 103 µM).


Asunto(s)
Antimaláricos , Cuerpos Fructíferos de los Hongos , Ganoderma , Plasmodium falciparum , Triterpenos , Ganoderma/química , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Cuerpos Fructíferos de los Hongos/química , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Animales , Estructura Molecular , Células Vero , Chlorocebus aethiops , Lanosterol/análogos & derivados , Lanosterol/farmacología , Lanosterol/química , Lanosterol/aislamiento & purificación , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
4.
Int J Med Mushrooms ; 26(7): 13-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884263

RESUMEN

As a commonly used Chinese herbal medicine, Ganoderma applanatum (Pers.) Pat., also known as flat-ling Ganoderma (Chinese name bianlingzhi), old mother fungus (laomujun), and old ox liver (laoniugan), has high medicinal value. It is used as an anti-cancer drug in China and Japan. Besides, it can treat rheumatic tuberculosis and has the effect of relieving pain, clearing away heat, eliminating accumulation, stopping bleeding and eliminating phlegm. The purpose of this review is to analyze the research progress systematically and comprehensively in mycology, mycochemistry and pharmacological activities of G. applanatum, and discuss the prospect of prospective research and implementation of this medicinal material. A comprehensive literature search was performed on G. applanatum using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier. Collected data from different sources was comprehensively summarized for mycology, mycochemistry and pharmacology of G. applanatum. A total of 324 compounds were recorded, the main components of which were triterpenoids, meroterpenoids, steroids, and polysaccharides. G. applanatum and its active ingredients have a variety of pharmacological effects, including anti-tumor, liver protection, hypoglycemic, anti-fat, anti-oxidation, antibacterial and other activities. Although G. applanatum is widely used in traditional medicine and has diverse chemical constituents, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity.


Asunto(s)
Ganoderma , Ganoderma/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química
5.
J Am Chem Soc ; 146(25): 17446-17455, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861463

RESUMEN

Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.


Asunto(s)
Ganoderma , Glicosilación , Ganoderma/química , Estereoisomerismo , Oligosacáridos/química , Oligosacáridos/síntesis química , Polisacáridos/química , Polisacáridos/síntesis química
6.
Sci Rep ; 14(1): 11536, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773201

RESUMEN

Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.


Asunto(s)
Envejecimiento , Animales , Ratones , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Masculino , Umbral del Dolor/efectos de los fármacos , Dolor/tratamiento farmacológico , Ganoderma/química , Modelos Animales de Enfermedad , Dimensión del Dolor
7.
J Asian Nat Prod Res ; 26(8): 1001-1008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607260

RESUMEN

Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.


Asunto(s)
Ganoderma , Óxido Nítrico , Ganoderma/química , Ratones , Células RAW 264.7 , Animales , Estructura Molecular , Óxido Nítrico/biosíntesis , Óxido Nítrico/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Cuerpos Fructíferos de los Hongos/química
8.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639852

RESUMEN

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Asunto(s)
Antioxidantes , Fermentación , Ganoderma , Hordeum , Hordeum/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Flavonoides/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Flammulina/química , Flammulina/metabolismo , Reishi/metabolismo , Reishi/química , Manipulación de Alimentos/métodos
9.
Int J Biol Macromol ; 269(Pt 1): 131903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688342

RESUMEN

Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, ß-d-Glcp-(1→, ß-d-GlcpA-(1→, →3)-ß-d-Glcp-(1→, →3)-ß-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-ß-d-Manp-(1→, and →3,6)-ß-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.


Asunto(s)
Movimiento Celular , Ganoderma , Neoplasias de la Mama Triple Negativas , Humanos , Ganoderma/química , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Invasividad Neoplásica , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Transición Epitelial-Mesenquimal/efectos de los fármacos
10.
J Sci Food Agric ; 104(11): 6706-6713, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38551381

RESUMEN

BACKGROUND: Foods contain lipids that are easily susceptible to oxidation, which can modify their sensory properties. Although these compounds provide characteristic flavours and odours, there are also unwanted compounds, such as volatile secondary oxidation products, representing a recurring problem for both the industry and consumers. Synthetic antioxidants are often employed to prevent this but their chronic consumption can be detrimental to human health. The present study evaluates the antioxidant potential of ethanolic extracts from Ganoderma resinaceum and Phlebopus bruchii using an accelerated oxidation test. RESULTS: The composition profile of the extracts was investigated, identifying the presence of tryptophan, quinic acid, caffeic acid and 3,4-dihydroxyphenylglycol-phenolic acid. The antioxidant capacity of the extracts was compared with that of butylated hydroxytoluene (BHT) in sunflower oil that was oven-heated at 60 °C. Chemical (peroxide value, p-anisidine value and conjugated dienes) and volatile (2-octenal, 2-heptenal and 2,4-decadienal) indicators were measured over 28 days. The peroxide value decreased for both extracts at a similar level to that of BHT 0.02% w/w, and conjugate dienes decreased in the presence of G. resinaceum 0.1% w/w. Meanwhile, p-anisidine exhibited a slightly greater decrease for P. bruchii 0.1% w/w than for BHT. The sample with 0.1% w/w of extracts showed a reduction in volatile secondary oxidation compounds, indicating significant antioxidant activity. CONCLUSION: Based on these results, both extracts could be proposed as potential antioxidants in foods with a high lipid content. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Ganoderma , Oxidación-Reducción , Antioxidantes/química , Ganoderma/química , Peroxidación de Lípido/efectos de los fármacos , Lípidos/química
11.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542875

RESUMEN

BACKGROUND: Trapa bispinosa shells (TBs) and its flesh (TBf) have been recognized for their medicinal properties, including antioxidant, antitumor, and immunomodulatory effects. Despite these benefits, TBs are often discarded as waste material, and their applications remain to be further explored. METHODS: In this study, we optimized the solid-state fermentation process of Ganoderma sinense (GS) with TBs using a response surface experiment methodology to obtain the fermented production with the highest water extract rate and DPPH free radical scavenging activity. We prepared and characterized pre-fermentation purified polysaccharides (P1) and post-fermentation purified polysaccharides (P2). Alcoholic extracts before (AE1) and after (AE2) fermentation were analyzed for active components such as polyphenols and flavonoids using UPLC-QTOF-MS/MS (ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry). Mouse macrophages (RAW 264.7) were employed to compare the immune-stimulating ability of polysaccharides and the antioxidant activity of AE1 and AE2. RESULTS: Optimal fermentation conditions comprised a duration of 2 days, a temperature of 14 °C, and a humidity of 77%. The peak water extract yield and DPPH free radical scavenging rate of the water extract from TBs fermented by GS were observed under these conditions. The enhanced activity may be attributed to changes in the polysaccharide structure and the components of the alcoholic extract. The P2 treatment group indicated more secretion of RAW 264.7 cells of NO, iNOS, IL-2, IL-10, and TNF-α than P1, which shows that the polysaccharides demonstrated increased immune-stimulating ability, with their effect linked to the NF-кB pathway. Moreover, the results of the AE2 treatment group indicated that secretion of RAW 264.7 cells of T-AOC and T-SOD increased and MDA decreased, which shows that the alcoholic extract demonstrated enhanced antioxidant activity, with its effect linked to the Nrf2/Keap1-ARE pathway. CONCLUSIONS: Biphasic fermentation of Trapa bispinosa shells by Ganoderma sinense could change the composition and structure of the polysaccharides and the composition of the alcoholic extract, which could increase the products' immunomodulatory and antioxidant activity.


Asunto(s)
Antioxidantes , Ganoderma , Lythraceae , Animales , Ratones , Antioxidantes/análisis , Fermentación , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Espectrometría de Masas en Tándem , Factor 2 Relacionado con NF-E2/metabolismo , Polisacáridos/química , Ganoderma/química , Agua/metabolismo , Radicales Libres/metabolismo
12.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474661

RESUMEN

Ganoderma lucidum, known as the "herb of spiritual potency", is used for the treatment and prevention of various diseases, but the responsible constituents for its therapeutic effects are largely unknown. For the purpose of obtaining insight into the chemical and biological profiling of meroterpenoids in G. lucidum, various chromatographic approaches were utilized for the title fungus. As a result, six undescribed meroterpenoids, chizhienes A-F (1-6), containing two pairs of enantiomers (4 and 5), were isolated. Their structures were identified using spectroscopic and computational methods. In addition, the anti-inflammatory activities of all the isolates were evaluated by Western blot analysis in LPS-induced macrophage cells (RAW264.7), showing that 1 and 3 could dose dependently inhibit iNOS but not COX-2 expression. Further, 1 and 3 were found to inhibit nitric oxide (NO) production using the Greiss reagent test. The current study will aid in enriching the structural and biological diversity of Ganoderma-derived meroterpenoids.


Asunto(s)
Ganoderma , Reishi , Reishi/química , Ganoderma/química , Antiinflamatorios/farmacología , Línea Celular , Macrófagos , Estructura Molecular
13.
Med Res Rev ; 44(3): 1221-1266, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38204140

RESUMEN

Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.


Asunto(s)
Agaricales , Productos Biológicos , Ganoderma , Humanos , Terpenos/farmacología , Terpenos/química , Ganoderma/química , Productos Biológicos/farmacología , Estructura Molecular
14.
World J Microbiol Biotechnol ; 40(2): 69, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38225505

RESUMEN

Ganoderma capense is a precious medicinal fungus in China. In this study, a novel fungal immunomodulatory protein gene, named as FIP-gca, was cloned from G. capense by homologous cloning. Sequencing analysis indicated that FIP-gca was composed of 336 bp, which encoded a polypeptide of 110 amino acids. Protein sequence blasting and phylogenetic analysis showed that FIP-gca shared homology with other Ganoderma FIPs. FIP-gca was effectively expressed in Pichia pastoris GS115 at an expression level of 166.8 mg/L and purified using HisTrap™ fast-flow prepack columns. The immunomodulation capacity of rFIP-gca was demonstrated by that rFIP-gca could obviously stimulate cell proliferation and increase IL-2 secretion of murine spleen lymphocytes. Besides, antitumor activity of rFIP-gca towards human stomach cancer AGS cell line was evaluated in vitro. Cell wound scratch assay proved that rFIP-gca could inhibit migration of AGS cells. And flow cytometry assay revealed that rFIP-gca could significantly induce apoptosis of AGS cells. rFIP-gca was able to induce 18.12% and 22.29% cell apoptosis at 0.3 µM and 0.6 µM, respectively. Conclusively, the novel FIP-gca gene from G. capense has been functionally expressed in Pichia and rFIP-gca exhibited ideal immunomodulation and anti-tumour activities, which implies its potential application and study in future.


Asunto(s)
Ganoderma , Saccharomycetales , Animales , Ratones , Humanos , Filogenia , Ganoderma/genética , Ganoderma/química , Pichia/genética , Pichia/metabolismo , Proteínas Fúngicas/metabolismo
15.
Chemistry ; 30(17): e202400084, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38228507

RESUMEN

Secondary metabolites that have the same biological origin must share some relationship in their biosynthesis. Exploring this relationship has always been a significant task for synthetic biologists. However, from the perspective of synthetic chemists, it is equally important to propose, prove, or refute potential biosynthetic pathways in order to elucidate and understand the biosynthesis of homologous secondary metabolites. In this study, driven by the high structural similarity between the homologous Ganoderma meroterpenoids cochlearol B and ganocin B, two chemically synthetic strategies were designed and investigated sequentially for the synthesis of cochlearol B from ganocin B. These strategies include intramolecular metal-catalyzed hydrogen atom transfer (MHAT) and intramolecular photochemical [2+2] cycloaddition. The aim was to reveal their potential biosynthetic conversion relationship using chemical synthesis methods. As a result, a highly efficient total synthesis of cochlearol B, cochlearol T, cochlearol F, as well as the formal total synthesis of ganocins A-B, and ganocochlearins C-D, has been achieved. Additionally, a novel synthetic approach for the synthesis of 6,6-disubstituted 6H-dibenzo[b,d]pyran and its analogues has been developed through palladium(II)-catalyzed Wacker-type/cross-coupling cascade reactions.


Asunto(s)
Ganoderma , Ganoderma/química , Terpenos/química , Metales , Hidrógeno
16.
Phytochemistry ; 218: 113952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096963

RESUMEN

Lanostane-type triterpenoids are the main characteristic constituents in Ganoderma mushrooms. Phytochemical analysis on the ethanol extract of the fruiting bodies of Ganoderma amboinense led to isolation and identification of twelve previously undescribed lanostane triterpenoids (1-12). Their chemical structures were determined by HR-ESI-MS, IR, and NMR spectroscopic analysis, NMR calculation, as well as X-ray crystallography. All isolates were evaluated for the α-glucosidase inhibitory and anti-inflammatory activities. Compounds 1, 5, 6, and 11 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 33.5 µM to 96.0 µM. Moreover, compound 12 showed anti-inflammatory activity with IC50 value of 21.7 ± 2.1 µM.


Asunto(s)
Ganoderma , Triterpenos , Triterpenos/farmacología , Triterpenos/química , Estructura Molecular , Ganoderma/química , alfa-Glucosidasas , Cuerpos Fructíferos de los Hongos/química , Esteroides/análisis , Antiinflamatorios
17.
Int J Med Mushrooms ; 25(12): 15-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37947061

RESUMEN

Mycochemical properties and bioactivities of Ganoderma resinaceum and Serpula similis remain unexplored. The present study assessed antioxidant, cytotoxicity, and cell migration abilities of Ganoderma and Serpula extracts, followed by their phytochemical analyses. The MTT assay was conducted to determine the cytotoxicity along with the cell migration studies in human cancer cell lines. The antioxidant profiles were evaluated through DPPH and FRAP assays. Furthermore, LC-MS/MS analysis was performed to elucidate the phytochemicals responsible for anticancer and antioxidant activities. Significant concentration-dependent cytotoxicities of 12.7% and 13.7% were observed against HCT 116 cell lines at 1% and 5% concentrations of the G. resinaceum extract, respectively. Similarly, significant concentration-dependent cytotoxicities of 6.7% and 25.5% were observed at 1% and 5% concentrations of the S. similis extract, respectively. The extracts of G. resinaceum and S. similis both shows better anti-migration potential in lung cancer cells. Both extracts demonstrated good scavenging activity on DPPH and ferric ion free radicals. LC-MS analysis revealed 11 compounds from S. similis and 15 compounds from G. resinaceum fruiting bodies. Compounds such as terpenoids, alkaloids, cytotoxic peptides, and other metabolites were identified as major components in both extracts. These extracts exhibited cytotoxic activity against HCT 116 cancer cells, along with moderate antioxidant activity. This implies that the extracts might be used as bioactive natural sources in the pharmaceutical and food industries.


Asunto(s)
Antineoplásicos , Ganoderma , Humanos , Antioxidantes/química , Cromatografía Liquida , Terpenos/farmacología , Terpenos/metabolismo , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Ganoderma/química , Antineoplásicos/farmacología , Antineoplásicos/metabolismo
18.
Am J Chin Med ; 51(8): 1983-2040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903715

RESUMEN

Ganoderma is the dried fruiting bodiy of Ganoderma lucidum (Leyss.ex Fr.) Karst. or Ganoderma sinense Zhao, Xu et Zhang, belonging to the family Polyporaceae, which grows mainly in tropical, subtropical, and temperate regions. As a traditional Chinese medicine, Ganoderma has been used in China for more than 2000 years because of its medicinal properties, such as relieving cough and asthma, providing nourishment, and strengthening. Currently, more than 470 natural compounds have been obtained from the fungus, mainly including terpenoids, steroids, alkaloids, phenols, and other types of compounds. Modern pharmacological studies have shown that Ganoderma has antitumor, anti-inflammatory, hypoglycemic, hypolipidemic, and immunomodulatory effects. It is mainly used in clinical practice for the treatment of Diabetic Nephropathy and malignant tumors, with few side effects and high safety. This paper reviews the progress of research on its chemical composition, pharmacological effects, and clinical applications, with the goal of providing a basis for the better development and utilization of Ganoderma.


Asunto(s)
Ganoderma , Neoplasias , Polyporaceae , Reishi , Triterpenos , Humanos , Ganoderma/química , Reishi/química , Neoplasias/tratamiento farmacológico , Medicina Tradicional China , Triterpenos/uso terapéutico
19.
Int J Med Mushrooms ; 25(9): 63-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824406

RESUMEN

The genus Ganoderma has a long history of use in traditional Asiatic medicine due to its different nutritional and medicinal properties. In Mexico, the species G. tuberculosum is used in indigenous communities, for example, the Wixaritari and mestizos of Villa Guerrero Jalisco for the treatment of diseases that may be related to parasitic infections; however, few chemical studies corroborate its traditional medicinal potential. Thereby, the objective of this study was to isolate and identify anti-parasitic activity compounds from a strain of G. tuberculosum native to Mexico. From the fruiting bodies of G. tuberculosum (GVL-21) a hexane extract was obtained which was subjected to guided fractioning to isolate pure compounds. The in vitro anti-parasitic activity of the pure compound (IC50) was assayed against Leishmania amazonensis, Trypanosoma cruzi, Acanthamoeba castellanii Neff, and Naegleria fowleri. Furthermore, the cytotoxicity (CC50) of the isolated compounds was determined against murine macrophages. The guided fractioning produced 5 compounds: ergosterol (1), ergosta-4,6,8(14),22-tetraen-3-one (2), ergosta-7,22-dien-3ß-ol (3), 3,5-dihydroxy-ergosta-7,22-dien-6-one (4), and ganoderic acid DM (5). Compounds 2 and 5 showed the best anti-parasitic activity in an IC50 range of 54.34 ± 8.02 to 12.38 ± 2.72 µM against all the parasites assayed and low cytotoxicity against murine macrophages. The present study showed for the first time the in vitro anti-parasitic activity of compounds 1-5 against L. amazonensis, T. cruzi, A. castellanii Neff, and N. fowleri, corroborating the medicinal potential of Ganoderma and its traditional applications.


Asunto(s)
Antiinfecciosos , Ganoderma , Animales , Ratones , Antiparasitarios , México , Ganoderma/química
20.
Int J Med Mushrooms ; 25(10): 65-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37830197

RESUMEN

Ganoderma species have been used in folk medicine against different illnesses and are characterized by producing a diversity of bioactive metabolites (triterpenoids, polysaccharides, flavonoids, and phenols) with numerous medicinal effects (anti-proliferative, antioxidant, anti-inflammatory, and antibacterial). This work aims to evaluate ethanolic extracts of fruiting bodies of Ganoderma oerstedii, G. weberianum, and G. subincrustatum strains from the Sonoran Desert in the anti-proliferative activity by the MTT assay on cancer cell lines; anti-inflammatory effect by quantifying nitric oxide (NO) production; antioxidant activity by DPPH, ABTS, and FRAP assays; total phenolic and flavonoid content by Folin-Ciocalteu and AlCl3 method, respectively; antibacterial activity by the broth microdilution method against Escherichia coli and Staphylococcus aureus. Extracts showed anti-proliferative activity with IC50 < 100 µg/mL on the cancer cell lines MDA-MB-231, A549, and HeLa, except G. subincrustatum extract with an IC50 > 100 µg/mL; anti-proliferative activity was not selective, being affected non-cancerous cell line ARPE-19. Extracts showed significant inhibition of NO release in cells stimulated by LPS, up to 60% with G. subincrustatum and G. oerstedii, and 47% with G. weberianum. All tested assays showed moderate antioxidant potential; the most active was G. lucium (control strain) with IC50 of 69 and 30 µg/mL by DPPH and ABTS respectively; and 271 µg Trolox equivalents/g by FRAP. Total phenols and flavonoids ranged from 38 to 56 mg GAE/g and 0.53 to 0.93 mg QE/g, respectively. A significant correlation was found between the antioxidant activities revealed by DPPH, ABTS, and FRAP with total phenol and flavonoid contents. Antibacterial activity was weak against S. aureus (MIC50 > 10 mg/mL). These results demonstrate that tested Ganoderma mushrooms have medicinal potential such as anti-inflammatory and anti-proliferative.


Asunto(s)
Antioxidantes , Ganoderma , Antioxidantes/farmacología , Antioxidantes/química , México , Staphylococcus aureus , Extractos Vegetales/química , Antibacterianos/farmacología , Fenoles/análisis , Ganoderma/química , Flavonoides/farmacología , Antiinflamatorios/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA