Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Cells ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38994973

RESUMEN

Throughout embryonic development, the shaping of the functional and morphological characteristics of embryos is orchestrated by an intricate interaction between transcription factors and cis-regulatory elements. In this study, we conducted a comprehensive analysis of deuterostome cis-regulatory landscapes during gastrulation, focusing on four paradigmatic species: the echinoderm Strongylocentrotus purpuratus, the cephalochordate Branchiostoma lanceolatum, the urochordate Ciona intestinalis, and the vertebrate Danio rerio. Our approach involved comparative computational analysis of ATAC-seq datasets to explore the genome-wide blueprint of conserved transcription factor binding motifs underlying gastrulation. We identified a core set of conserved DNA binding motifs associated with 62 known transcription factors, indicating the remarkable conservation of the gastrulation regulatory landscape across deuterostomes. Our findings offer valuable insights into the evolutionary molecular dynamics of embryonic development, shedding light on conserved regulatory subprograms and providing a comprehensive perspective on the conservation and divergence of gene regulation underlying the gastrulation process.


Asunto(s)
Ciona intestinalis , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Animales , Gastrulación/genética , Ciona intestinalis/genética , Ciona intestinalis/embriología , Pez Cebra/genética , Pez Cebra/embriología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/embriología , Secuencia Conservada/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Anfioxos/genética , Anfioxos/embriología , Evolución Molecular
2.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949298

RESUMEN

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.


Asunto(s)
Gastrulación , Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Gastrulación/genética , Femenino , Embrión de Mamíferos , Estratos Germinativos/citología , Análisis de Secuencia de ARN/métodos , Embarazo
3.
Open Biol ; 14(7): 240139, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955223

RESUMEN

The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells' behaviour and the evolution of axial growth zones.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Organizadores Embrionarios , Animales , Embrión de Pollo , Organizadores Embrionarios/metabolismo , Tipificación del Cuerpo/genética , Gastrulación/genética , Transcriptoma , Perfilación de la Expresión Génica
4.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007346

RESUMEN

Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.


Asunto(s)
Characidae , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Animales , Characidae/genética , Characidae/embriología , Transcriptoma/genética , Evolución Biológica , Cuevas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gastrulación/genética , Evolución Molecular
5.
Cells Dev ; 179: 203933, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908828

RESUMEN

Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers -- such as pax2a, fgf8a, wnt1, and gbx2 -- was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción PAX2 , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/metabolismo , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX2/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Gastrulación/genética , Animales Modificados Genéticamente , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Embrión no Mamífero/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Desarrollo Embrionario/genética , Mesencéfalo/metabolismo , Mesencéfalo/embriología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Somitos/metabolismo , Somitos/embriología , Factores de Crecimiento de Fibroblastos
6.
Nat Commun ; 15(1): 4976, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862520

RESUMEN

Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.


Asunto(s)
Proteínas Morfogenéticas Óseas , Transducción de Señal , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Ratones , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Glicoproteínas/metabolismo , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Sitios de Unión , Dominios Proteicos , Unión Proteica , Organoides/metabolismo , Organoides/embriología , Células HEK293 , Gastrulación/genética , Mutación , Cristalografía por Rayos X , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas
7.
Dev Biol ; 511: 53-62, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593904

RESUMEN

Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes. Taf5 and Taf12 mutant embryos exhibited a failure to implant post-blastocyst formation, and Taf5 mutants have aberrant lineage specification within the inner cell mass. In contrast, Taf13 mutant embryos successfully implant and form egg-cylinder stages but fail to initiate gastrulation. Strikingly, we observed a depletion of pluripotency factors in TAF13-deficient embryos, including OCT4, NANOG and SOX2, highlighting an indispensable role of TAF13 in maintaining pluripotency. Transcriptomic analysis revealed distinct gene targets affected by the loss of TAF5, TAF12 and TAF13. Thus, we propose that TAF5, TAF12 and TAF13 convey locus specificity to the TFIID complex throughout the mouse genome.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Factores Asociados con la Proteína de Unión a TATA , Animales , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/genética , Ratones , Desarrollo Embrionario/genética , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/genética , Femenino , Blastocisto/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Gastrulación/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Embrión de Mamíferos/metabolismo
8.
Sci Adv ; 10(12): eadl4239, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507484

RESUMEN

In animal models, Nipbl deficiency phenocopies gene expression changes and birth defects seen in Cornelia de Lange syndrome, the most common cause of which is Nipbl haploinsufficiency. Previous studies in Nipbl+/- mice suggested that heart development is abnormal as soon as cardiogenic tissue is formed. To investigate this, we performed single-cell RNA sequencing on wild-type and Nipbl+/- mouse embryos at gastrulation and early cardiac crescent stages. Nipbl+/- embryos had fewer mesoderm cells than wild-type and altered proportions of mesodermal cell subpopulations. These findings were associated with underexpression of genes implicated in driving specific mesodermal lineages. In addition, Nanog was found to be overexpressed in all germ layers, and many gene expression changes observed in Nipbl+/- embryos could be attributed to Nanog overexpression. These findings establish a link between Nipbl deficiency, Nanog overexpression, and gene expression dysregulation/lineage misallocation, which ultimately manifest as birth defects in Nipbl+/- animals and Cornelia de Lange syndrome.


Asunto(s)
Síndrome de Cornelia de Lange , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Síndrome de Cornelia de Lange/genética , Gastrulación/genética , Expresión Génica , Mutación , Fenotipo
9.
Dev Biol ; 510: 50-65, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521499

RESUMEN

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Sistema Nervioso , Gastrulación/genética , Genes Homeobox
10.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38411343

RESUMEN

In the nascent mesoderm, TBXT expression must be precisely regulated to ensure that cells exit the primitive streak and pattern the anterior-posterior axis, but how varying dosage informs morphogenesis is not well understood. In this study, we define the transcriptional consequences of TBXT dosage reduction during early human gastrulation using human induced pluripotent stem cell models of gastrulation and mesoderm differentiation. Multi-omic single-nucleus RNA and single-nucleus ATAC sequencing of 2D gastruloids comprising wild-type, TBXT heterozygous or TBXT null human induced pluripotent stem cells reveal that varying TBXT dosage does not compromise the ability of a cell to differentiate into nascent mesoderm, but instead directly influences the temporal progression of the epithelial-to-mesenchymal transition with wild type transitioning first, followed by TBXT heterozygous and then TBXT null. By differentiating cells into nascent mesoderm in a monolayer format, we further illustrate that TBXT dosage directly impacts the persistence of junctional proteins and cell-cell adhesions. These results demonstrate that epithelial-to-mesenchymal transition progression can be decoupled from the acquisition of mesodermal identity in the early gastrula and shed light on the mechanisms underlying human embryogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Mesodermo/metabolismo , Gástrula/metabolismo , Gastrulación/genética , Diferenciación Celular/genética
11.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38366558

RESUMEN

In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.


Asunto(s)
Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Elementos de Facilitación Genéticos , Gastrulación/genética , Morfogénesis/genética , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
12.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355799

RESUMEN

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genética
13.
Dev Biol ; 507: 34-43, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159623

RESUMEN

Epigenetic regulation of chromatin states is crucial for proper gene expression programs and progression during development, but precise mechanisms by which epigenetic factors influence differentiation remain poorly understood. Here we find that the histone variant H2A.Z accumulates at Sox motif-containing promoters during zebrafish gastrulation while neighboring genes become transcriptionally active. These changes coincide with reduced expression of anp32e, the H2A.Z histone removal chaperone, suggesting that loss of Anp32e may lead to increases in H2A.Z binding during differentiation. Remarkably, genetic removal of Anp32e in embryos leads to H2A.Z accumulation prior to gastrulation and developmental genes become precociously active. Accordingly, H2A.Z accumulation occurs most extensively at Sox motif-associated genes, including many which are normally activated following gastrulation. Altogether, our results provide compelling evidence for a mechanism in which Anp32e preferentially restricts H2A.Z accumulation at Sox motifs to regulate the initial phases of developmental differentiation in zebrafish.


Asunto(s)
Histonas , Pez Cebra , Animales , Histonas/genética , Histonas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Gastrulación/genética , Epigénesis Genética , Cromatina , Nucleosomas
14.
Cell Rep ; 42(10): 113289, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37858470

RESUMEN

Single-cell technologies promise to uncover how transcriptional programs orchestrate complex processes during embryogenesis. Here, we apply a combination of single-cell technology and genetic analysis to investigate the dynamic transcriptional changes associated with Drosophila embryo morphogenesis at gastrulation. Our dataset encompassing the blastoderm-to-gastrula transition provides a comprehensive single-cell map of gene expression across cell lineages validated by genetic analysis. Subclustering and trajectory analyses revealed a surprising stepwise progression in patterning to transition zygotic gene expression and specify germ layers as well as uncovered an early role for ecdysone signaling in epithelial-to-mesenchymal transition in the mesoderm. We also show multipotent progenitors arise prior to gastrulation by analyzing the transcription trajectory of caudal mesoderm cells, including a derivative that ultimately incorporates into visceral muscles of the midgut and hindgut. This study provides a rich resource of gastrulation and elucidates spatially regulated temporal transitions of transcription states during the process.


Asunto(s)
Drosophila , Transcriptoma , Animales , Drosophila/genética , Gastrulación/genética , Gástrula , Mesodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica
15.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37665167

RESUMEN

Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Gastrulación , Proteínas de Pez Cebra , Pez Cebra , Animales , Tipificación del Cuerpo/genética , Gastrulación/genética , Morfogénesis/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo
16.
Dev Cell ; 58(18): 1627-1642.e7, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37633271

RESUMEN

Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.


Asunto(s)
Gastrulación , Proteínas de Dominio T Box , Ratones , Animales , Gastrulación/genética , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Mesodermo/metabolismo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo
17.
Curr Opin Genet Dev ; 82: 102102, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37604096

RESUMEN

During early development, extrinsic cues prompt a collection of pluripotent cells to begin the extensive process of cellular differentiation that gives rise to all tissues in the mammalian embryo, a process known as gastrulation. Advances in stem cell biology have resulted in the generation of stem cell-based in vitro models of mammalian gastrulation called gastruloids. Gastruloids and subsequent gastruloid-based models are tractable, scalable and more accessible than mammalian embryos. As such, they have opened an unprecedented avenue for modelling in vitro self-organisation, patterning and fate specification. This review focuses on discussing the recent advances of this rapidly moving research area, clarifying what structures they model and the underlying signal hierarchy. We highlight the exciting potential of these models and where the field might be heading.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Animales , Gastrulación/genética , Células Madre , Mamíferos/genética
18.
Cell Rep ; 42(7): 112707, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37433294

RESUMEN

During development, positional information directs cells to specific fates, leading them to differentiate with their own transcriptomes and express specific behaviors and functions. However, the mechanisms underlying these processes in a genome-wide view remain ambiguous, partly because the single-cell transcriptomic data of early developing embryos containing accurate spatial and lineage information are still lacking. Here, we report a single-cell transcriptome atlas of Drosophila gastrulae, divided into 77 transcriptomically distinct clusters. We find that the expression profiles of plasma-membrane-related genes, but not those of transcription-factor genes, represent each germ layer, supporting the nonequivalent contribution of each transcription-factor mRNA level to effector gene expression profiles at the transcriptome level. We also reconstruct the spatial expression patterns of all genes at the single-cell stripe level as the smallest unit. This atlas is an important resource for the genome-wide understanding of the mechanisms by which genes cooperatively orchestrate Drosophila gastrulation.


Asunto(s)
Gástrula , Transcriptoma , Animales , Transcriptoma/genética , Drosophila/genética , Gastrulación/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica
19.
Nat Cell Biol ; 25(7): 1061-1072, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37322291

RESUMEN

Traditionally, the mouse has been the favoured vertebrate model for biomedical research, due to its experimental and genetic tractability. However, non-rodent embryological studies highlight that many aspects of early mouse development, such as its egg-cylinder gastrulation and method of implantation, diverge from other mammals, thus complicating inferences about human development. Like the human embryo, rabbits develop as a flat-bilaminar disc. Here we constructed a morphological and molecular atlas of rabbit development. We report transcriptional and chromatin accessibility profiles for over 180,000 single cells and high-resolution histology sections from embryos spanning gastrulation, implantation, amniogenesis and early organogenesis. Using a neighbourhood comparison pipeline, we compare the transcriptional landscape of rabbit and mouse at the scale of the entire organism. We characterize the gene regulatory programmes underlying trophoblast differentiation and identify signalling interactions involving the yolk sac mesothelium during haematopoiesis. We demonstrate how the combination of both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse macaque and human data. The datasets and computational pipelines reported here set a framework for a broader cross-species approach to decipher early mammalian development, and are readily adaptable to deploy single-cell comparative genomics more broadly across biomedical research.


Asunto(s)
Gastrulación , Organogénesis , Conejos , Humanos , Animales , Ratones , Gastrulación/genética , Organogénesis/genética , Implantación del Embrión/genética , Embrión de Mamíferos , Diferenciación Celular , Desarrollo Embrionario/genética , Mamíferos
20.
Genes (Basel) ; 14(6)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372324

RESUMEN

Pluripotent embryonic stem cells have a unique and characteristic epigenetic profile, which is critical for differentiation to all embryonic germ lineages. When stem cells exit the pluripotent state and commit to lineage-specific identities during the process of gastrulation in early embryogenesis, extensive epigenetic remodelling mediates both the switch in cellular programme and the loss of potential to adopt alternative lineage programmes. However, it remains to be understood how the stem cell epigenetic profile encodes pluripotency, or how dynamic epigenetic regulation helps to direct cell fate specification. Recent advances in stem cell culture techniques, cellular reprogramming, and single-cell technologies that can quantitatively profile epigenetic marks have led to significant insights into these questions, which are important for understanding both embryonic development and cell fate engineering. This review provides an overview of key concepts and highlights exciting new advances in the field.


Asunto(s)
Epigénesis Genética , Gastrulación , Animales , Gastrulación/genética , Linaje de la Célula/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA