Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.015
Filtrar
1.
BMC Plant Biol ; 24(1): 762, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123107

RESUMEN

BACKGROUND: Dendrobium Sw. represents one of the most expansive genera within the Orchidaceae family, renowned for its species' high medicinal and ornamental value. In higher plants, the ankyrin (ANK) repeat protein family is characterized by a unique ANK repeat domain, integral to a plethora of biological functions and biochemical activities. The ANK gene family plays a pivotal role in various plant physiological processes, including stress responses, hormone signaling, and growth. Hence, investigating the ANK gene family and identifying disease-resistance genes in Dendrobium is of paramount importance. RESULTS: This research identified 78 ANK genes in Dendrobium officinale Kimura et Migo, 77 in Dendrobium nobile Lindl., and 58 in Dendrobium chrysotoxum Lindl. Subsequently, we conducted comprehensive bioinformatics analyses on these ANK gene families, encompassing gene classification, chromosomal localization, phylogenetic relationships, gene structure and motif characterization, cis-acting regulatory element identification, collinearity assessment, protein-protein interaction network construction, and gene expression profiling. Concurrently, three DoANK genes (DoANK14, DoANK19, and DoANK47) in D. officinale were discerned to indirectly activate the NPR1 transcription factor in the ETI system via SA, thereby modulating the expression of the antibacterial PR gene. Hormonal treatments with GA3 and ABA revealed that 17 and 8 genes were significantly up-regulated, while 4 and 8 genes were significantly down-regulated, respectively. DoANK32 was found to localize to the ArfGAP gene in the endocytosis pathway, impacting vesicle transport and the polar movement of auxin. CONCLUSION: Our findings provide a robust framework for the taxonomic classification, evolutionary analysis, and functional prediction of Dendrobium ANK genes. The three highlighted ANK genes (DoANK14, DoANK19, and DoANK47) from D. officinale may prove valuable in disease resistance and stress response research. DoANK32 is implicated in the morphogenesis and development of D. officinale through its role in vesicular transport and auxin polarity, with subcellular localization studies confirming its presence in the nucleus and cell membrane. ANK genes displaying significant expression changes in response to hormonal treatments could play a crucial role in the hormonal response of D. officinale, potentially inhibiting its growth and development through the modulation of plant hormones such as GA3 and ABA.


Asunto(s)
Ácido Abscísico , Dendrobium , Giberelinas , Familia de Multigenes , Filogenia , Reguladores del Crecimiento de las Plantas , Dendrobium/genética , Dendrobium/efectos de los fármacos , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Repetición de Anquirina/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Genoma de Planta , Perfilación de la Expresión Génica
2.
J Pineal Res ; 76(5): e13004, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145574

RESUMEN

Both seed germination and subsequent seedling establishment are key checkpoints during the life cycle of seed plants, yet flooding stress markedly inhibits both processes, leading to economic losses from agricultural production. Here, we report that melatonin (MT) seed priming treatment enhances the performance of seeds from several crops, including soybean, wheat, maize, and alfalfa, under flooding stress. Transcriptome analysis revealed that MT priming promotes seed germination and seedling establishment associated with changes in abscisic acid (ABA), gibberellin (GA), and reactive oxygen species (ROS) biosynthesis and signaling pathways. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed that MT priming increases the expression levels of GA biosynthesis genes, ABA catabolism genes, and ROS biosynthesis genes while decreasing the expression of positive ABA regulatory genes. Further, measurements of ABA and GA concentrations are consistent with these trends. Following MT priming, quantification of ROS metabolism-related enzyme activities and the concentrations of H2O2 and superoxide anions (O2 -) after MT priming were consistent with the results of transcriptome analysis and qRT-PCR. Finally, exogenous application of GA, fluridone (an ABA biosynthesis inhibitor), or H2O2 partially rescued the poor germination of non-primed seeds under flooding stress. Collectively, this study uncovers the application and molecular mechanisms underlying MT priming in modulating crop seed vigor under flooding stress.


Asunto(s)
Ácido Abscísico , Inundaciones , Germinación , Giberelinas , Melatonina , Especies Reactivas de Oxígeno , Plantones , Semillas , Melatonina/farmacología , Melatonina/metabolismo , Germinación/efectos de los fármacos , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/genética , Semillas/efectos de los fármacos , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Estrés Fisiológico , Productos Agrícolas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
3.
BMC Plant Biol ; 24(1): 643, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973005

RESUMEN

BACKGROUND: Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS: Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS: The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Reguladores del Crecimiento de las Plantas , Prunus persica , Giberelinas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982341

RESUMEN

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores del Crecimiento de las Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacología , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Herbicidas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Giberelinas/farmacología , Giberelinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ésteres
5.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063054

RESUMEN

The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo
6.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063209

RESUMEN

'Duli' (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gibberellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3-) uptake and metabolism in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N metabolism of 'Duli' seedlings under NO3- deficiency. The results showed that exogenous GA3 significantly improves 'Duli' growth under NO3- deficiency. On the one hand, GA3 altered the root architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced photosynthesis; on the other hand, it enhanced the activities of N-metabolizing enzymes and the accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chlorophyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3- uptake and metabolism and relieve the growth inhibition of 'Duli' seedlings under NO3- deficiency.


Asunto(s)
Giberelinas , Nitratos , Nitrógeno , Pyrus , Plantones , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Nitratos/metabolismo , Giberelinas/metabolismo , Nitrógeno/metabolismo , Pyrus/metabolismo , Pyrus/genética , Pyrus/crecimiento & desarrollo , Pyrus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Clorofila/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000509

RESUMEN

Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Prunus persica , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Árboles/genética , Árboles/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo
8.
Sci Rep ; 14(1): 17694, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085421

RESUMEN

The application of exogenous paclobutrazol (PP333) can improve the ability of winter warming to promote flowering in Chaenomeles speciosa, but the underlying mechanism is unclear. In this study, the cultivar 'Changshouguan' was sprayed with different concentrations of PP333 during flower bud differentiation, and the changes in the anatomical structures and physiological characteristics of the flower buds during the differentiation process, as well as the growth state of the flower buds and the effect on flowering promotion after winter warming treatment, were comprehensively investigated. The results showed that different concentrations of PP333 could advance the flowering time of 'Changshouguan' by 15-24 d under the warming treatment and increase the flowering duration to 17 d compared with those under the warming treatment alone (CK), and 1000 mg/L was the best treatment. Compared with the CK treatment, the PP333 treatment decreased the contents of indole acetic acid (IAA) and gibberellic acid (GAs) and increased the contents of zeatin ribosides (ZRs) and abscisic acid (ABA), thus changing the balance of hormones during flower bud differentiation. The inflection point (low point) of the curve shapes of the ZRs/GAs and ZRs/IAA ratios appeared significantly earlier, which showed a pattern consistent with soluble sugar and protein content and antioxidant activity. Interestingly, the above changes also corresponded to earlier flowering times during the warming process. Taken together, these results indicate that spraying an appropriate concentration of PP333 in the early stage of 'Changshouguan' flower bud differentiation promotes the early differentiation of flower buds and early flowering under winter warming treatment by altering their endogenous hormone content and homeostasis and changing their physiological state. The key to maintaining a relatively long flowering period in plants in the PP333 treatment group after flowering promotion was the increased accumulation of sugars and proteins.


Asunto(s)
Flores , Reguladores del Crecimiento de las Plantas , Estaciones del Año , Triazoles , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Triazoles/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Rosaceae/fisiología , Rosaceae/efectos de los fármacos , Rosaceae/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología
9.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999081

RESUMEN

Abscisic acid (ABA) is one of the many naturally occurring phytohormones widely found in plants. This study focused on refining APAn, a series of previously developed agonism/antagonism switching probes. Twelve novel APAn analogues were synthesized by introducing varied branched or oxygen-containing chains at the C-6' position, and these were screened. Through germination assays conducted on A. thaliana, colza, and rice seeds, as well as investigations into stomatal movement, several highly active ABA receptor antagonists were identified. Microscale thermophoresis (MST) assays, molecular docking, and molecular dynamics simulation showed that they had stronger receptor affinity than ABA, while PP2C phosphatase assays indicated that the C-6'-tail chain extending from the 3' channel effectively prevented the ligand-receptor binary complex from binding to PP2C phosphatase, demonstrating strong antagonistic activity. These antagonists showed effective potential in promoting seed germination and stomatal opening of plants exposed to abiotic stress, particularly cold and salt stress, offering advantages for cultivating crops under adverse conditions. Moreover, their combined application with fluridone and gibberellic acid could provide more practical agricultural solutions, presenting new insights and tools for overcoming agricultural challenges.


Asunto(s)
Ácido Abscísico , Germinación , Simulación del Acoplamiento Molecular , Ácido Abscísico/química , Germinación/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/efectos de los fármacos , Semillas/química , Semillas/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Simulación de Dinámica Molecular , Agricultura/métodos , Giberelinas/química , Giberelinas/metabolismo , Piridonas
10.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062872

RESUMEN

Rice (Oryza sativa L.), a fundamental global staple, nourishes over half of the world's population. The identification of the ddt1 mutant in rice through EMS mutagenesis of the indica cultivar Shuhui527 revealed a dwarf phenotype, characterized by reduced plant height, smaller grain size, and decreased grain weight. Detailed phenotypic analysis and map-based cloning pinpointed the mutation to a single-base transversion in the LOC_Os03g04680 gene, encoding a cytochrome P450 enzyme, which results in a premature termination of the protein. Functional complementation tests confirmed LOC_Os03g04680 as the DDT1 gene responsible for the observed phenotype. We further demonstrated that the ddt1 mutation leads to significant alterations in gibberellic acid (GA) metabolism and signal transduction, evidenced by the differential expression of key GA-related genes such as OsGA20OX2, OsGA20OX3, and SLR1. The mutant also displayed enhanced drought tolerance, as indicated by higher survival rates, reduced water loss, and rapid stomatal closure under drought conditions. This increased drought resistance was linked to the mutant's improved antioxidant capacity, with elevated activities of antioxidant enzymes and higher expression levels of related genes. Our findings suggest that DDT1 plays a crucial role in regulating both plant height and drought stress responses. The potential for using gene editing of DDT1 to mitigate the dwarf phenotype while retaining improved drought resistance offers promising avenues for rice improvement.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Mutación , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Agua/metabolismo , Fenotipo , Sequías , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
11.
J Integr Plant Biol ; 66(8): 1752-1768, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961693

RESUMEN

Dwarfing is a pivotal agronomic trait affecting both yield and quality. Citrus species exhibit substantial variation in plant height, among which internode length is a core element. However, the molecular mechanism governing internode elongation remains unclear. Here, we unveiled that the transcriptional cascade consisting of B-BOX DOMAIN PROTEIN 22 (BBX22) and ELONGATED HYPOCOTYL 5 (HY5) finely tunes plant height and internode elongation in citrus. Loss-of-function mutations of BBX22 in an early-flowering citrus (Citrus hindsii "SJG") promoted internode elongation and reduced pigment accumulation, whereas ectopic expression of BBX22 in SJG, sweet orange (C. sinensis), pomelo (C. maxima) or heterologous expression of BBX22 in tomato (Solanum lycopersicum) significantly decreased internode length. Furthermore, exogenous application of gibberellin A3 (GA3) rescued the shortened internode and dwarf phenotype caused by BBX22 overexpression. Additional experiments revealed that BBX22 played a dual role in regulation internode elongation and pigmentation in citrus. On the one hand, it directly bound to and activated the expression of HY5, GA metabolism gene (GA2 OXIDASE 8, GA2ox8), carotenoid biosynthesis gene (PHYTOENE SYNTHASE 1, PSY1) and anthocyanin regulatory gene (Ruby1, a MYB DOMAIN PROTEIN). On the other hand, it acted as a cofactor of HY5, enhancing the ability of HY5 to regulate target genes expression. Together, our results reveal the critical role of the transcriptional cascade consisting of BBX22 and HY5 in controlling internode elongation and pigment accumulation in citrus. Unraveling the crosstalk regulatory mechanism between internode elongation and fruit pigmentation provides key genes for breeding of novel types with both dwarf and health-beneficial fortification in citrus.


Asunto(s)
Citrus , Frutas , Regulación de la Expresión Génica de las Plantas , Pigmentación , Proteínas de Plantas , Citrus/genética , Citrus/crecimiento & desarrollo , Citrus/anatomía & histología , Citrus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Pigmentación/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fenotipo
12.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877396

RESUMEN

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Regulación de la Expresión Génica de las Plantas
13.
Physiol Plant ; 176(3): e14378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887925

RESUMEN

D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Gossypium , Fotoperiodo , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiología , Gossypium/metabolismo , Flores/genética , Flores/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Plantas Modificadas Genéticamente , Transporte de Electrón
14.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892313

RESUMEN

Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Spinacia oleracea , Factores de Transcripción , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
15.
Curr Biol ; 34(13): 2893-2906.e3, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38876102

RESUMEN

Secondary dormancy is an adaptive trait that increases reproductive success by aligning seed germination with permissive conditions for seedling establishment. Aethionema arabicum is an annual plant and member of the Brassicaceae that grows in environments characterized by hot and dry summers. Aethionema arabicum seeds may germinate in early spring when seedling establishment is permissible. We demonstrate that long-day light regimes induce secondary dormancy in the seeds of Aethionema arabicum (CYP accession), repressing germination in summer when seedling establishment is riskier. Characterization of mutants screened for defective secondary dormancy demonstrated that RGL2 mediates repression of genes involved in gibberellin (GA) signaling. Exposure to high temperature alleviates secondary dormancy, restoring germination potential. These data are consistent with the hypothesis that long-day-induced secondary dormancy and its alleviation by high temperatures may be part of an adaptive response limiting germination to conditions permissive for seedling establishment in spring and autumn.


Asunto(s)
Brassicaceae , Germinación , Latencia en las Plantas , Semillas , Semillas/crecimiento & desarrollo , Semillas/fisiología , Brassicaceae/fisiología , Fotoperiodo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/metabolismo , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/fisiología , Adaptación Fisiológica
16.
Theor Appl Genet ; 137(7): 151, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849610

RESUMEN

Dwarfing is an ideal agronomic trait in crop breeding, which can improve lodging resistance and increase crop productivity. In this study, we identified a dwarf mutant cp-3 from an EMS-mutagenized population, which had extremely short internodes, and the cell length and number of internodes were significantly reduced. Meanwhile, exogenous GA3 treatment partially rescued the plant height of the cp-3. Inheritance analysis showed that the cp-3 mutant was regulated via a recessive nuclear locus. A candidate gene, CsERECTA, encoding an LRR receptor-like serine/threonine-protein kinase, was cloned through a map-based cloning strategy. Sequence analysis showed that a nucleotide mutation (C ~ T) in exon 26 of CsERECTA led to premature termination of the protein. Subsequently, two transgenic lines were generated using the CRISPR/Cas9 system, and they showed plant dwarfing. Plant endogenous hormones quantitative and RNA-sequencing analysis revealed that GA3 content and the expression levels of genes related to GA biosynthesis were significantly reduced in Cser knockout mutants. Meanwhile, exogenous GA3 treatment partially rescued the dwarf phenotype of Cser knockout mutants. These findings revealed that CsERECTA controls stem elongation by regulating GA biosynthesis in cucumber.


Asunto(s)
Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Giberelinas , Fenotipo , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Genes de Plantas , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Mutación , Clonación Molecular
17.
Plant Cell Rep ; 43(7): 170, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869848

RESUMEN

KEY MESSAGE: The silencing of GhGASA14 and the identification of superior allelic variation in its coding region indicate that GhGASA14 may positively regulate flowering and the response to GA3. Gibberellic acid-stimulated Arabidopsis (GASA), a member of the gibberellin-regulated short amino acid family, has been extensively investigated in several plant species and found to be critical for plant growth and development. However, research on this topic in cotton has been limited. In this study, we identified 38 GhGASAs that were dispersed across 18 chromosomes in upland cotton, and all of these genes had a GASA core domain. Transcriptome expression patterns and qRT-PCR results revealed that GhGASA9 and GhGASA14 exhibited upregulated expression not only in the floral organs but also in the leaves of early-maturing cultivars. The two genes were functionally characterized by virus-induced gene silencing (VIGS), and the budding and flowering times after silencing the target genes were later than those of the control (TRV:00). Compared with that in the water-treated group (MOCK), the flowering period of the different fruiting branches in the GA3-treated group was more concentrated. Interestingly, allelic variation was detected in the coding sequence of GhGASA14 between early-maturing and late-maturing accessions, and the frequency of this favorable allele was greater in high-latitude cotton cultivars than in low-latitude ones. Additionally, a significant linear relationship was observed between the expression level of GhGASA14 and flowering time among the 12 upland cotton accessions. Taken together, these results indicated that GhGASA14 may positively regulate flowering time and respond to GA3. These findings could lead to the use of valuable genetic resources for breeding early-maturing cotton cultivars in the future.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiología , Gossypium/efectos de los fármacos , Flores/genética , Flores/efectos de los fármacos , Flores/fisiología , Flores/crecimiento & desarrollo , Giberelinas/farmacología , Giberelinas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Silenciador del Gen
18.
BMC Plant Biol ; 24(1): 581, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898382

RESUMEN

Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.


Asunto(s)
Asparagus , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas , Tallos de la Planta , Asparagus/genética , Asparagus/metabolismo , Asparagus/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Azúcares/metabolismo , Giberelinas/metabolismo
19.
BMC Plant Biol ; 24(1): 579, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890571

RESUMEN

BACKGROUND: The quality of maize kernels is significantly enhanced by amino acids, which are the fundamental building blocks of proteins. Meanwhile, calcium (Ca) and magnesium (Mg), as important nutrients for maize growth, are vital in regulating the metabolic pathways and enzyme activities of amino acid synthesis. Therefore, our study analyzed the response process and changes of amino acid content, endogenous hormone content, and antioxidant enzyme activity in kernels to the coupling addition of sugar alcohol-chelated Ca and Mg fertilizers with spraying on maize. RESULT: (1) The coupled addition of Ca and Mg fertilizers increased the Ca and Mg content, endogenous hormone components (indole-3-acetic acid, IAA; gibberellin, GA; zeatin riboside, ZR) content, antioxidant enzyme activity, and amino acid content of maize kernels. The content of Ca and Mg in kernels increased with the increasing levels of Ca and Mg fertilizers within a certain range from the filling to the wax ripening stage, and significantly positively correlated with antioxidant enzyme activities. (2) The contents of IAA, GA, and ZR continued to rise, and the activities of superoxide dismutase (SOD) and catalase (CAT) were elevated, which effectively enhanced the ability of cells to resist oxidative damage, promoted cell elongation and division, and facilitated the growth and development of maize. However, the malondialdehyde (MDA) content increased consistently, which would attack the defense system of the cell membrane plasma to some extent. (3) Leucine (LEU) exhibited the highest percentage of essential amino acid components and a gradual decline from the filling to the wax ripening stage, with the most substantial beneficial effect on essential amino acids. (4) CAT and SOD favorably governed essential amino acids, while IAA and MDA negatively regulated them. The dominant physiological driving pathway for the synthesis of essential amino acids was "IAA-CAT-LEU", in which IAA first negatively drove CAT activity, and CAT then advantageously controlled LEU synthesis. CONCLUSION: These findings provide a potential approach to the physiological and biochemical metabolism of amino acid synthesis, and the nutritional quality enhancement of maize kernel.


Asunto(s)
Aminoácidos , Calcio , Magnesio , Reguladores del Crecimiento de las Plantas , Zea mays , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/fisiología , Magnesio/metabolismo , Aminoácidos/metabolismo , Calcio/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fertilizantes , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Giberelinas/metabolismo
20.
Methods Mol Biol ; 2832: 257-279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869802

RESUMEN

Various bacterial species are associated with plant roots. However, symbiotic and free-living plant growth-promoting bacteria (PGPB) can only help plants to grow and develop under normal and stressful conditions. Several biochemical and in vitro assays were previously designed to differentiate between the PGPB and other plant-associated bacterial strains. This chapter describes and summarizes some of these assays and proposes a strategy to screen for PGPB. To determine the involvement of the PGPB in abiotic stress tolerance, assays for the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, ammonium, gibberellic acid (GA), indole acetic acid (IAA), and microbial volatile organic compounds (mVOCs) are described in this chapter. Additionally, assays to show the capacity to solubilize micronutrients such as potassium, phosphorus, and zinc by bacteria were also summarized in this chapter. To determine the contribution of the PGPB in biotic stress tolerance in plants, Fe-siderophore, hydrogen cyanide, and antibiotic and antifungal metabolites production assays were described. Moreover, assays to investigate the growth-promotion activities of a bacterium strain on plants, using the gnotobiotic root elongation, in vitro, and pots assays, were explained. Finally, an assay for the localization of endophytic bacterium in plant tissues was also presented in this chapter. Although the assays described in this chapter can give evidence of the nature of the mechanism behind the PGPB actions, other unknown growth-promoting means are yet to decipher, and until then, new methodologies will be developed.


Asunto(s)
Bacterias , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Estrés Fisiológico , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Simbiosis , Plantas/microbiología , Plantas/metabolismo , Microbiología del Suelo , Giberelinas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA