Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
J Med Virol ; 96(5): e29680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767144

RESUMEN

Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.


Asunto(s)
Antioxidantes , Tratamiento Farmacológico de COVID-19 , Ginkgólidos , Glutatión Peroxidasa , Nanomedicina , Nanopartículas , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Ginkgólidos/farmacología , Nanomedicina/métodos , Glutatión Peroxidasa/metabolismo , COVID-19/metabolismo , Lactonas/farmacología , Quercetina/farmacología , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/virología
2.
Artículo en Ruso | MEDLINE | ID: mdl-38676673

RESUMEN

The review presents an analysis of experimental data on the study of neurobiological effects of ginkgolide B, which may find application in the therapy of Alzheimer's disease (AD). Ginkgolide B is a diterpene trilactone isolated from the leaves of the relict woody plant Ginkgo biloba L., which has been used for thousands of years in traditional Chinese medicine as a neuroprotective agent. In recent years, this compound has attracted attention because of its wide range of neurobiological effects. The neuroprotective effect of ginkgolide B on brain neurons when exposed to various neurotoxins has been established. This compound has also been shown to effectively protect neurons from the effects of beta-amyloid. Studies have revealed the ability of ginkgolide B to reduce microglia activity and regulate neurotransmitter release. In vivo experiments have shown that this substance significantly increases the expression of brain-derived neurotrophic factor (BDNF) and improves cognitive functions, including memory and learning. It is concluded that ginkgolide B, apparently, may find application in the future as a multi-targeted agent of complex therapy of AD.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Ginkgo biloba , Ginkgólidos , Lactonas , Fármacos Neuroprotectores , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Lactonas/uso terapéutico , Lactonas/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Memoria/efectos de los fármacos
3.
Fitoterapia ; 175: 105915, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508499

RESUMEN

Four undescribed ginkgolides, including two rare sesquiterpene ginkgolides (compounds 1 and 2) and two diterpenoid ginkgolides (compounds 3 and 4), were isolated from Ginkgo biloba L. The structures of these four ginkgolides were identified based on extensive spectroscopic analysis, DP4+ probability analysis and X-ray diffraction. Compounds 1 and 2 exhibited excellent antiplatelet aggregation activities with IC50 values of 1.20 ± 0.25 and 4.11 ± 0.34 µM, respectively.


Asunto(s)
Ginkgo biloba , Ginkgólidos , Fitoquímicos , Inhibidores de Agregación Plaquetaria , Ginkgo biloba/química , Estructura Molecular , Ginkgólidos/farmacología , Ginkgólidos/aislamiento & purificación , Ginkgólidos/química , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Inhibidores de Agregación Plaquetaria/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Animales , Agregación Plaquetaria/efectos de los fármacos
4.
Biochem Biophys Res Commun ; 705: 149722, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38442447

RESUMEN

This research delves into the effectiveness of Ginkgolide B (GB), a compound from Ginkgo biloba, in combating cell death caused by glaucoma, with a focus on mitochondrial impairment and the mitochondrial permeability transition pore (mPTP). Utilizing models of high intraocular pressure and in vitro glaucoma simulations, the study investigates GB's impact on retinal progenitor cells (RPCs) under oxygen-glucose deprivation/reperfusion (OGD/R) and in a rat glaucoma model. The study methodologies included apoptosis assessment, apoptotic marker analysis via Western blot, and mitochondrial structure and function evaluation. The findings reveal that GB notably decreases apoptosis in RPCs exposed to OGD/R in vitro, and reduces ischemia-reperfusion damage in vivo. GB's protective role is attributed to its ability to preserve mitochondrial integrity, maintain membrane potential, regulate calcium levels, and inhibit mPTP opening. These results underscore GB's potential as a therapeutic agent for acute primary angle-closure glaucoma, highlighting its capability to alleviate mitochondrial damage and apoptosis in RPCs and retinal nerve fiber layer cells.


Asunto(s)
Glaucoma , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Ratas , Ginkgólidos/farmacología , Lactonas/farmacología , Glucosa , Oxígeno
5.
Biomater Sci ; 11(11): 3998-4008, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37128751

RESUMEN

Ischemic stroke (IS) is a leading cause of death in the world, and there is still a lack of effective treatments. Ginkgolide B (GB) can antagonize the platelet activating factor receptor and has shown a significant curative effect on cerebral ischemia. However, GB and other drugs for IS have shown poor clinical efficacy due to their inability to cross the blood-brain barrier (BBB). Herein, red fluorescent carbonized polymer dots (CPDs) were developed as biocompatible nanocarriers to deliver GB to the brain tissue. Both in vivo and in vitro experiments verified the ability of GB-CPDs to penetrate the BBB, and GB-CPDs remained in the brain significantly longer than unmodified CPDs. In a rat model of middle cerebral artery occlusion (MCAO), circulatory administration of GB-CPDs effectively reduced cerebral infarct size and neuronal apoptosis, with a significantly better therapeutic effect compared to GB. This study provided a novel GB-based nanodrug that could target the brain with improved efficacy, showing great application potential in central nervous system diseases.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Encéfalo , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Barrera Hematoencefálica , Daño por Reperfusión/tratamiento farmacológico
6.
J Ethnopharmacol ; 312: 116537, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37094696

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. (Ginkgoaceae), a traditional Chinese medicine, has been applied for thousands of years for the treatment of cardio-cerebral vascular diseases in China. It is written in Compendium of Materia Medica that Ginkgo has the property of "dispersing poison", which is now referred to as anti-inflammatory and antioxidant. Ginkgolides are important active ingredients in Ginkgo biloba leaves and ginkgolide injection has been frequently applied in clinical practice for the treatment of ischemic stroke. However, few studies have explored the effect and mechanism of ginkgolide C (GC) with anti-inflammatory activity in cerebral ischemia/reperfusion injury (CI/RI). AIM OF THE STUDY: The present study aimed to demonstrate whether GC was capable of attenuating CI/RI. Furthermore, the anti-inflammatory effect of GC in CI/RI was explored around the CD40/NF-κB pathway. MATERIALS AND METHODS: In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in rats. The neuroprotective effect of GC was assessed by neurological scores, cerebral infarct rate, microvessel ultrastructure, blood-brain barrier (BBB) integrity, brain edema, neutrophil infiltration, and levels of TNF-α, IL-1ß, IL-6, ICAM-1, VCAM-1, and iNOS. In vitro, rat brain microvessel endothelial cells (rBMECs) were preincubated in GC before hypoxia/reoxygenation (H/R) culture. The cell viability, levels of CD40, ICAM-1, MMP-9, TNF-α, IL-1ß, and IL-6, and activation of NF-κB pathway were examined. In addition, the anti-inflammatory effect of GC was also investigated by silencing CD40 gene in rBMECs. RESULTS: GC attenuated CI/RI as demonstrated by decreasing neurological scores, reducing cerebral infarct rate, improving microvessel ultrastructural features, ameliorating BBB disruption, attenuating brain edema, inhibiting MPO activity, and downregulating levels of TNF-α, IL-1ß, IL-6, ICAM-1, VCAM-1, and iNOS. Coherently, in rBMECs exposed to H/R GC enhanced cell viability and downregulated levels of ICAM-1, MMP-9, TNF-α, IL-1ß, and IL-6. Furthermore, GC suppressed CD40 overexpression and hindered translocation of NF-κB p65 from the cytosol to the nucleus, phosphorylation of IκB-α, and activation of IKK-ß in H/R rBMECs. However, GC failed to protect rBMECs from H/R-induced inflammatory impairments and suppress activation of NF-κB pathway when CD40 gene was silenced. CONCLUSIONS: GC attenuates cerebral ischemia/reperfusion-induced inflammatory impairments by suppressing CD40/NF-κB pathway, which may provide an available therapeutic drug for CI/RI.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Ratas , Animales , FN-kappa B/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Edema Encefálico/tratamiento farmacológico , Interleucina-6/metabolismo , Células Endoteliales/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Reperfusión , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo
7.
Life Sci ; 317: 121439, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731645

RESUMEN

Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.


Asunto(s)
Ginkgólidos , Ácido gamma-Aminobutírico , Ratones , Animales , Ácido gamma-Aminobutírico/farmacología , Ginkgólidos/farmacología , Cabello , Alopecia , Folículo Piloso
8.
J Neurosci Res ; 101(6): 866-880, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36634122

RESUMEN

The effects of a single and multiple doses of ginkgolide A, B, C, and bilobalide, active components of Ginkgo biloba extract (EGb 761), on absence seizures were investigated in male WAG/Rij rats, a genetic animal model of absence epilepsy. Furthermore, the interactions of ginkgolide A together with NMDA receptor antagonist MK-801, AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or L-type calcium channel blocker nicardipine were studied to figure out how ginkgolide A affects spike-wave discharges (SWDs) in the brain. The experiments were done using 6-8-month-old male WAG/Rij rats with infusion cannula and EEG electrode implanted. Ginkgolide A, B, C, and bilobalide were administered intraperitoneally for 7 days at a dose of 6 mg/kg. In interaction groups, 6 µg ginkgolide A was injected intracerebroventricularly in combination with MK-801 (10 µg), CNQX (1 µg), and nicardipine (50 µg) for 7 days. EEG was recorded from animals at the baseline, first dose, and seventh dose periods for 4 h. Ginkgolide A (p = .028), C (p = .046), and bilobalide (p = .043) significantly increased the frequency of SWDs in WAG/Rij rats. Ginkgolide A injected into the lateral ventricle with MK-801 (p = .046), CNQX (p = .043), and nicardipine (p = .046) significantly increased the number of SWDs after seventh dose. Finally, the EGb 761-related increase in absence epilepsy was determined to be caused by ginkgolide A, C, and bilobalide. All three receptor antagonists/channel blockers do not inhibit the pro-absence effect of ginkgolide A. The findings revealed that ginkgolide A's pro-absence effect is mediated by brain circuits other than ionotropic glutamate receptors or L-type calcium channels.


Asunto(s)
Bilobálidos , Epilepsia Tipo Ausencia , Ratas , Masculino , Animales , Epilepsia Tipo Ausencia/genética , 6-Ciano 7-nitroquinoxalina 2,3-diona , Maleato de Dizocilpina , Nicardipino , Ginkgólidos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Electroencefalografía , Modelos Animales de Enfermedad
9.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364373

RESUMEN

Ginkgolide is a unique terpenoid natural compound in Ginkgo biloba, and it has an important medicinal value. Proper selenium has been reported to promote plant growth and development, and improve plant quality, stress resistance, and disease resistance. In order to study the effects of exogenous selenium (Se) on the physiological growth and the content of terpene triolactones (TTLs) in G. biloba seedlings, the seedlings in this work were treated with Na2SeO3. Then, the physiological indexes, the content of the TTLs, and the expression of the related genes were determined. The results showed that a low dose of Na2SeO3 was beneficial to plant photosynthesis as it promoted the growth of ginkgo seedlings and increased the root to shoot ratio. Foliar Se application significantly increased the content of soluble sugar and protein and promoted the content of TTLs in ginkgo leaves; indeed, it reached the maximum value of 7.95 mg/g in the ninth week, whereas the application of Se to the roots inhibited the synthesis of TTLs. Transcriptome analysis showed that foliar Se application promoted the expression levels of GbMECPs, GbMECT, GbHMGR, and GbMVD genes, whereas its application to the roots promoted the expression of GbDXS and GbDXR genes. The combined analysis results of metabolome and transcriptome showed that genes such as GbDXS, GbDXR, GbHMGR, GbMECPs, and GbCYP450 were significantly positively correlated with transcription factors (TFs) GbWRKY and GbAP2/ERF, and they were also positively correlated with the contents of terpene lactones (ginkgolide A, ginkgolide B, ginkgolide M, and bilobalide). Endogenous hormones (MeJA-ILE, ETH, and GA7) were also involved in this process. The results suggested that Na2SeO3 treatment affected the transcription factors related to the regulation of endogenous hormones in G. biloba, and further regulated the expression of genes related to the terpene synthesis structure, thus promoting the synthesis of ginkgo TTLs.


Asunto(s)
Ginkgo biloba , Selenio , Ginkgo biloba/química , Terpenos/química , Reguladores del Crecimiento de las Plantas , Selenito de Sodio , Ginkgólidos/farmacología , Ginkgólidos/química , Lactonas/química , Extractos Vegetales , Factores de Transcripción , Hormonas
10.
Phytomedicine ; 106: 154391, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35994847

RESUMEN

BACKGROUND: Elderly patients with ischemic stroke (IS) have worse functional outcomes and poorer quality of life after suffering a stroke than younger patients. The identification of effective agents is critical to optimizing the therapy of IS in elderly patients. PURPOSE: To examine the efficacy of diterpene ginkgolides meglumine injection (DGMI) vs. Ginaton in treating patients with IS, across different age subgroups. METHODS: Efficacy was determined through the post hoc analysis of a randomized controlled study, which had a cohort of 998 patients with IS. Participants were pooled and grouped by age (elderly [aged ≥ 65 yr] vs. non-elderly [aged < 65 yr]). The primary efficacy outcome was the proportion of patients with modified Rankin Scale (mRS) score ranging from 0 to 1 at 90 d. The secondary outcomes were neurological deficit (tested using the National Institutes of Health Stroke Scale [NIHSS] score) and quality of life (tested using the EuroQol-5 Dimension [EQ-5D] and EQ visual analog scale [EQ-VAS] questionnaires). RESULTS: There were 399 (40%) patients in the elderly group (average age = 69.8±3.3 yr) and 599 (60%) patients in the non-elderly group (average age = 55.8±6.8 yr). The randomized treatment groups had similar baseline characteristics. For the elderly group, 174 (94%) of the 185 participants in the DGMI group and 169 (79%) of the 214 participants in the Ginaton group achieved the main outcome of a mRS score of 0-1 after three months (odds ratio [OR] = 0.87 [95% confidence interval [CI] = 0.81-0.93], p<0.001). For the non-elderly group, 301 (96%) of the 314 participants in the DGMI group and 237 (83%) of the 214 participants in the Ginaton group achieved the main outcome of a mRS score of 0-1 after three months (OR = 0.88 [95% CI = 0.84-0.92], p<0.001). The overall mean EQ-5D index score and EQ-VAS of the DGMI group were higher than that of the Ginaton group for elderly patients. After controlling other covariates including treatments, gender, weight, height and medical history, the results of mRS score, NIHSS score, EQ-5D index score, and EQ-VAS based on generalized linear model were similar to those of the single covariate analysis. CONCLUSIONS: DGMI demonstrated a superior efficacy to Ginaton for patients with IS in both elderly and non-elderly ages.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Anciano , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Humanos , Meglumina/farmacología , Meglumina/uso terapéutico , Persona de Mediana Edad , Calidad de Vida , Accidente Cerebrovascular/tratamiento farmacológico
11.
J Ethnopharmacol ; 298: 115609, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952968

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. is a rare tree species unique to China. Ginkgo biloba is a traditional Chinese medicinal with a long history, acting on the heart and lung meridians, and has been reported to have a significant effect on non-small cell lung cancer. However, the mechanism underlying this metabolic effect is poorly understood. AIM OF THE STUDY: To identify the active components of Ginkgo biloba extract that may have effects on non-small cell lung cancer and their mechanisms of metabolic regulation. MATERIALS AND METHODS: In this study, LC-MS/MS was used to investigate the chemical constituents of Ginkgo biloba extract. Network pharmacology was used to identify the active components potentially valuable in the treatment of non-small cell lung cancer. Antitumor activity was evaluated using CCK-8 and apoptosis assays. The mechanisms of metabolic regulation by the active components were further explored using untargeted metabolomics, targeted metabolomics, and western blot experiments. RESULTS: Network pharmacology and component analysis of Ginkgo biloba extract identified four ginkgolides that significantly affect non-small cell lung cancer. Their antiproliferative activity in A549 cells was evaluated using CCK-8 and apoptosis assays. The metabolomics results indicated that the ginkgolides had a significant regulatory effect on metabolic pathways related to one-carbon metabolisms, such as purine metabolism, glutathione metabolism, and the methionine cycle. Further targeted metabolomics analysis on one-carbon metabolism found that the ginkgolides may significantly affect the content of multiple metabolites in A549 cells, including purine, S-adenyl methionine, S-adenylyl homocysteine, and glutathione upregulated, and adenosine, tetrahydrofolate, and 10-Formyl-tetrahydrofolate significantly decreased. Notably, dihydrofolate reductase (DHFR) and methylenetetrahydrofolate dehydrogenases (MTHFR) were found to be altered after the treatment of ginkgolides. CONCLUSION: This in vitro study indicated that ginkgolides might inhibit the growth of A549 cells by targeting one-carbon metabolism. This study also demonstrated that metabolomics combined with network pharmacology is a powerful tool for identifying traditional Chinese medicines' active components and metabolic mechanisms.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carbono , Cromatografía Liquida , Ginkgo biloba/química , Ginkgólidos/farmacología , Glutatión , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Metabolómica/métodos , Metionina , Farmacología en Red , Purinas , Espectrometría de Masas en Tándem , Tetrahidrofolatos
12.
Phytochemistry ; 203: 113355, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948139

RESUMEN

Ginkgolides are the most important bioactive components of Ginkgo biloba L, of which ginkgolide B has been successfully developed and marketed as a drug. The reported ginkgolides are very rare and exhibit a complex matrix due to the chemodiversity of Ginkgo biloba L. Herein, the global profile of characteristic ion and neutral loss recognition strategy were used for to discover eight undescribed ginkgolides, very rare cyclohexane ginkgolides R-V, ginkgolides D-F, and eight known ginkgolides. These ginkgolides were target isolated and identified using high-resolution mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray crystallography. The undescribed and known ginkgolides exhibited antiplatelet aggregation activities. In particular, compounds U and D had IC50 values of 2.20 ± 0.15 and 6.50 ± 0.87 µM, respectively. This study has enriched the known structural diversity of ginkgolides and extended the application of mass spectrometry to the global profiling of natural products present in Ginkgo biloba L. Moreover, it could help chemists rapidly discover unreported compounds from a complex matrix.


Asunto(s)
Diterpenos , Ginkgo biloba , Ciclohexanos , Ginkgo biloba/química , Ginkgólidos/análisis , Ginkgólidos/química , Ginkgólidos/farmacología , Lactonas , Espectrometría de Masas , Extractos Vegetales
13.
Am J Chin Med ; 50(6): 1565-1597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35902245

RESUMEN

Currently, therapies for ischemic stroke are limited. Ginkgolides, unique Folium Ginkgo components, have potential benefits for ischemic stroke patients, but there is little evidence that ginkgolides improve neurological function in these patients. Clinical studies have confirmed the neurological improvement efficacy of diterpene ginkgolides meglumine injection (DGMI), an extract of Ginkgo biloba containing ginkgolides A (GA), B (GB), and K (GK), in ischemic stroke patients. In the present study, we performed transcriptome analyses using RNA-seq and explored the potential mechanism of ginkgolides in seven in vitro cell models that mimic pathological stroke processes. Transcriptome analyses revealed that the ginkgolides had potential antiplatelet properties and neuroprotective activities in the nervous system. Specifically, human umbilical vein endothelial cells (HUVEC-T1 cells) showed the strongest response to DGMI and U251 human glioma cells ranked next. The results of pathway enrichment analysis via gene set enrichment analysis (GSEA) showed that the neuroprotective activities of DGMI and its monomers in the U251 cell model were related to their regulation of the sphingolipid and neurotrophin signaling pathways. We next verified these in vitro findings in an in vivo cuprizone (CPZ, bis(cyclohexanone)oxaldihydrazone)-induced model. GB and GK protected against demyelination in the corpus callosum (CC) and promoted oligodendrocyte regeneration in CPZ-fed mice. Moreover, GB and GK antagonized platelet-activating factor (PAF) receptor (PAFR) expression in astrocytes, inhibited PAF-induced inflammatory responses, and promoted brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion, supporting remyelination. These findings are critical for developing therapies that promote remyelination and prevent stroke progression.


Asunto(s)
Enfermedades Desmielinizantes , Diterpenos , Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Animales , Astrocitos/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Diterpenos/farmacología , Diterpenos/uso terapéutico , Células Endoteliales , Ginkgo biloba , Ginkgólidos/metabolismo , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Humanos , Lactonas/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/genética
14.
Oxid Med Cell Longev ; 2022: 7832983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707280

RESUMEN

Paraquat (PQ), a highly toxic herbicide and primary attack for lung, results in severe acute lung injury (ALI) appeared as evident oxidative stress, inflammation, and apoptosis. Increasing evidence elucidates that nuclear factor erythroid-2-related factor 2 (Nrf2) and its associated nuclear factor-κB (NF-κB) exhibit many merits for protection of ALI by coordinating a fine-turned response to oxidative stress, inflammation, and apoptosis. Ginkgolide C (GC) has been reported to be a safe and potent therapeutic agent against ALI. However, whether GC could protect ALI induced by PQ poisoning and the possible underlining mechanisms have remained not to be fully elucidated. A rat model of ALI and a model of acute type II alveolar epithelial cell (RLE-6TN) injury constructed by exposure to PQ were applied to discuss the protective effect of GC. Furthermore, Nrf2 gene silencing RLE-6TN cells were used to discuss the exact mechanism. We confirmed that GC significantly ameliorated the histopathological damages, ultrastructural changes, lung injury score, W/D ratio, and Hyp activity of lung tissue and inhibited polymorphonuclear neutrophil (PMN) infiltration after PQ poisoning. Further results revealed that GC remarkably activated Nrf2-based cytoprotective system and inhibited NF-κB-induced inflammatory injury as well as apoptosis. Taken together, we concluded that GC preserved protection of PQ-induced ALI via the Nrf2-NF-κB dependent signal pathway, which may provide us novel insights into the treatment strategies for PQ poisoning.


Asunto(s)
Lesión Pulmonar Aguda , Ginkgólidos , Factor 2 Relacionado con NF-E2 , FN-kappa B , Paraquat , Animales , Ratas , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Ginkgólidos/farmacología , Inflamación/patología , Lactonas , Pulmón/patología , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Paraquat/envenenamiento , Transducción de Señal
15.
Eur J Pharmacol ; 923: 174932, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35367419

RESUMEN

Ginkgolides are terpenoids peculiar to Ginkgo biloba, which have protective properties against cardiac diseases. This study aims to explore whether ginkgolide A (GA) could improve cardiac dysfunction of MI mice, and whether it could alleviate cardiac remodeling via binding to matrix metalloproteinase-9 (MMP9) to attenuate inflammation. Cardiac remodeling in mice induced by left coronary artery ligation were used in the in vivo model, and angiotensin (Ang) II-induced cardiac fibroblasts (NRCFs) and cardiomyocytes (NRCMs) isolated from neonatal rats were used in in vitro fibrosis and hypertrophy models, respectively. Cardiac dysfunction and fibrosis in MI mice were alleviated by GA treatment. Upregulations of collagen I (Col I), collagen III (Col III) and fibronectin in NRCFs, and enhanced levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (ß-MHC) in NRCMs were inhibited by GA treatment. A total of 100 potential targets were found in 5 databases (TCMSP, BATMAN-TCM, PharmMapper, ETCM and SWISS Target). According to Protein Data Bank database GA could form hydrogen bonds between LYS65, GLU157, ASN17, ARG109, ARG106 of MMP9 protein, a target of GA. The regulatory role of GA in downregulating Col I, Col III, fibronectin in NRCFs, and enhancing levels of ANP, BNP and ß-MHC in NRCMs were reversed by MMP9 overexpression, so as the downregulation of IL-1ß, IL-6 and TNF-α in Ang II-induced NRCFs and NRCMs. GA could alleviate cardiac dysfunction and remodeling via binding to MMP9 to attenuate inflammation. Therefore, GA is a potential drug for cardiac remodeling therapy.


Asunto(s)
Cardiopatías , Infarto del Miocardio , Angiotensina II/farmacología , Animales , Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiotónicos/uso terapéutico , Fibronectinas/metabolismo , Fibrosis , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Cardiopatías/metabolismo , Inflamación/metabolismo , Lactonas , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Miocitos Cardíacos , Ratas , Remodelación Ventricular
16.
IUBMB Life ; 74(8): 763-779, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35384262

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual deterioration of cognitive function, memory, and inability to perform daily, social, or occupational activities. Its etiology is associated with the accumulation of ß-amyloid peptides, phosphorylated tau protein, and neuroinflammatory and oxidative processes in the brain. Currently, there is no successful pharmacological treatment for AD. The few approved drugs are mainly aimed at treating the symptoms; however, due to the increasing discovery of etiopathological factors, there are great efforts to find new multifunctional molecules to slow down the course of this neurodegenerative disease. The commercial Ginkgo biloba formulation EGb 761® and Huperzine A, an alkaloid present in the plant Huperzia serrata, have shown in clinical trials to possess cholinergic and neuroprotective activities, including improvement in cognition, activities of daily living, and neuropsychiatric symptoms in AD patients. The purpose of this review is to expose the positive results of intervention with EGb 761® and Huperzine in patients with mild to moderate AD in the last 10 years, highlighting the pharmacological functions that justify their use in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Ginkgólidos/uso terapéutico , Actividades Cotidianas , Alcaloides/farmacología , Alcaloides/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Ginkgólidos/farmacología , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
17.
Biomed Pharmacother ; 149: 112805, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35276465

RESUMEN

Ginkgo (Ginkgo biloba L.) is a traditional economic tree species in China. Ginkgo biloba extract (GBE) is widely used in combination to treat hypertension and complications in clinical practice. However, the antihypertensive effect of GBE alone is weak and it is also difficult to study the mechanism because of its complex composition. This study was to prepare a new component group of Ginkgo biloba leaves (GBLCG) with clear chemical structures, and to investigate its effect on reducing blood pressure and improving myocardial hypertrophy in spontaneously hypertensive rats with GBE and amlodipine as positive controls. The results showed that total flavonoid aglycones (TFAs) of GBLCG was mainly composed of quercetin (QCT), kaempferol (KMF) and isorhamnetin (ISR); Total terpenoid lactones (TTLs) of GBLCG might be a novel cocrystal composed of Ginkgolide A (GA), Ginkgolide B (GB) Ginkgolide C (GC), Ginkgolide J (GJ) and bilobalide (BB). The hypotensive activity of GBLCG (4.4 mg/kg) group was better than that of GBE group (p < 0.05), and the effect of improving myocardial hypertrophy was better than that of amlodipine besylate group (p < 0.01). GBLCG might reduce blood pressure and improve myocardial hypertrophy by promoting the synthesis and release of NO in endothelial cells, reducing oxidative stress, inhibiting platelet aggregation and promoting lesion circulation. Eventually, we hope to introduce GBLCG as a new drug for hypertension.


Asunto(s)
Ginkgo biloba , Hipertensión , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Células Endoteliales , Ginkgo biloba/química , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertrofia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta , Ratas , Ratas Endogámicas SHR
18.
Appl Biochem Biotechnol ; 194(6): 2448-2464, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35129804

RESUMEN

SYNOPSIS: NF-κB signaling has been reported to play a key regulatory role in the pathogenesis of Alzheimer's disease (AD). The purpose of this study is to investigate the effects of ginkgolide on cell viability in an AD cellular model involving an APP/PS1 double gene-transfected HEK293 cell line (APP/PS1-HEK293) and further explore the mechanisms of action related to NF-κB signaling. The optimal time point and concentration of ginkgolide for cell proliferation were screened using a cell counting kit-8 assay. Based on the results, an in vitro study was performed by co-culture of APP/PS1-HEK293 with different dosages of ginkgolide, followed by an enzyme-linked immunosorbent assay to measure the levels of supernatant tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6, as well as western blotting and real-time polymerase chain reaction to detect intracellular protein and mRNA expression of NF-κB p65, IκBa, Bcl-2, and Bax. APP/PS1-HEK293 cells exhibited the highest cell viability at a concentration of 100 µg/ml after 48 h of treatment with ginkgolide. The supernatant levels of TNF-α, IL-1ß, and IL-6 in the high-dosage ginkgolide-treated groups were lower than those in the control group. Compared with the control group, there were decreased intracellular protein and mRNA expression of NF-κB p65 and Bax, but increased protein and mRNA expression of IκBa in both high-dosage and low-dosage groups. Ginkgolide may enhance cell viability, indicative of its neuroprotective effects on AD, at least partially via suppression of the NF-κB signaling pathway involving anti-apoptosis and anti-inflammation mechanisms. Therefore, ginkgolide might be a promising therapeutic agent against AD.


Asunto(s)
Enfermedad de Alzheimer , FN-kappa B , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ginkgólidos/farmacología , Células HEK293 , Humanos , Interleucina-6 , FN-kappa B/metabolismo , ARN Mensajero , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Proteína X Asociada a bcl-2
19.
J Neuroimmunol ; 364: 577806, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35121334

RESUMEN

Parkinson's disease (PD) is a chronic and progressive movement disorder caused by the selective loss of midbrain dopaminergic neurons of unknown etiology. Up to now, although there is a great development on treatments of PD, cures with neuroprotective or nerve regenerative effects are underway for PD patients. Here we reported neuroprotective effects of Ginkgolide K (GK) when mice were upon acute MPTP exposure, in which GK ameliorated the gait dysfunction and dopaminergic neuron loss. GK exhibits its ability in immunomodulation, including switching microglia to M2 phenotype and decreasing the microglia-mediated inflammation, inhibiting peripheral CD4+IFN-γ+ and CD4+IL-17+ T cells and α-synuclein specific autoantibodies. The expression of neurotrophic factors BDNF, GDNF and NT-3 was promoted with a treatment of GK in MPTP mice brains. Notably, GK enhanced the expression of nestin in GFAP+ astrocytes followed by the transdifferentiation of astrocyte-to-neuron independent on the Wnt signaling although GK induced the expression of Wnt signaling on astrocytes. Based on these results, our work implicates a therapeutic potential of GK for protecting TH+ neurons by multiple and intercellular pathways to modify nerve regeneration in MPTP mice. However, its exactly cellular and molecular mechanisms need to be further explored and confirmed.


Asunto(s)
Astrocitos/efectos de los fármacos , Transdiferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas , Ginkgólidos/farmacología , Lactonas/farmacología , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Neurologist ; 27(6): 299-303, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855657

RESUMEN

BACKGROUND: To: (i) explore the effect of diterpene ginkgolides meglumine injection (DGMI) on neurological deficit symptoms in acute atherosclerotic cerebral infarction (AACI) patients; (ii) measure the level of plasma plasminogen activator inhibitor (PAI)-1 and tissue plasminogen activator (t-PA). METHODS: Eighty AACI patients were divided equally and randomly into the DGMI group and control group. In addition to basic treatment, the DGMI group was treated with DGMI (25 mg/d) for 14 days. The control group had basic treatment without DGMI. Before and after treatment, the degree of neurological deficit was assessed, thromboelastography undertaken, and plasma levels of PAI-1 and t-PA measured. RESULTS: The National Institutes of Health Stroke Scale score of patients in the DGMI group after treatment was lower than that in the control group, and the Barthel Index was higher than that in the control group ( P <0.05). Thromboelastography revealed that, in the DGMI group, the R value and K value after treatment were higher than before treatment, the angle and maximum amplitude value were lower than before treatment, and both were significant ( P <0.05). Compared with the control group, the plasma PAI-1 level of patients in the DGMI group was lower than that in the control group, and the t-PA level was higher than that in the control group ( P <0.05) after 14 days of treatment. CONCLUSIONS: DGMI may affect the activity of the blood coagulation and fibrinolysis system by regulating the plasma level of PAI-1 and t-PA, and improving neurological deficit symptoms. DGMI is important for improving the prognosis of patients with AACI.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Activador de Tejido Plasminógeno/uso terapéutico , Activador de Tejido Plasminógeno/farmacología , Inhibidor 1 de Activador Plasminogénico/farmacología , Ginkgólidos/farmacología , Ginkgólidos/uso terapéutico , Fibrinólisis , Meglumina/farmacología , Enfermedad Aguda , Infarto Cerebral/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA