Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Food Chem ; 455: 139909, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843717

RESUMEN

In our study, we explored how gluten's role during dough formation and thermal processing can mitigate the adverse effects of physical factors on product quality. We discovered that a gluten network with a gliadin/glutenin ratio of 5:5 effectively limits oil penetration into the dough's core. This particular ratio is found to reduce the exposure of hydrophobic groups due to the presence of hydrated ß-sheet structures. In contrast, gluten networks with higher gliadin proportions than typical wheat gluten tend to be looser, leading to increased chromophore exposure and facilitating more oil absorption. These observations highlighted the complex link between changes in gluten structure, varying protein compositions, and oil content in fried dough sticks. This research provided a foundation for developing specialized low-fat wheat flour and improving the quality of fried dough products.


Asunto(s)
Culinaria , Harina , Glútenes , Calor , Triticum , Glútenes/química , Glútenes/análisis , Harina/análisis , Triticum/química , Gliadina/química , Gliadina/análisis , Pan/análisis
2.
Food Res Int ; 188: 114503, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823881

RESUMEN

The aim of this work was to investigate wheat gluten protein network structure throughout the deep-frying process and evaluate its contribution to frying-induced micro- and macrostructure development. Gluten polymerization, gluten-water interactions, and molecular mobility were assessed as a function of the deep-frying time (0 - 180 s) for gluten-water model systems of differing hydration levels (40 - 60 % moisture content). Results showed that gluten protein extractability decreased considerably upon deep frying (5 s) mainly due to glutenin polymerization by disulfide covalent cross-linking. Stronger gliadin and glutenin protein-protein interactions were attributed to the formation of covalent linkages and evaporation of water interacting with protein chains. Longer deep-frying (> 60 s) resulted in progressively lower protein extractabilities, mainly due to the loss in gliadin protein extractability, which was associated with gliadin co-polymerization with glutenin by thiol-disulfide exchange reactions. The mobility of gluten polymers was substantially reduced during deep-frying (based on the lower T2 relaxation time of the proton fraction representing the non-exchanging protons of gluten) and gluten proteins gradually transitioned from the rubbery to the glassy state (based on the increased area of said protons). The sample volume during deep-frying was strongly correlated to the reduced protein extractability (r = -0.792, p < 0.001) and T2 relaxation time of non-exchanging protons of gluten proteins (r = -0.866, p < 0.001) thus demonstrating that the extent of gluten structural expansion as a result of deep-frying is dictated both by the polymerization of proteins and the reduction in their molecular mobility.


Asunto(s)
Culinaria , Gliadina , Glútenes , Calor , Triticum , Glútenes/química , Triticum/química , Culinaria/métodos , Gliadina/química , Polimerizacion , Agua/química
3.
J Agric Food Chem ; 72(19): 11080-11093, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690996

RESUMEN

Amyloid-like aggregation widely occurs during the processing and production of natural proteins, with evidence indicating its presence following the thermal processing of wheat gluten. However, significant gaps remain in understanding the underlying fibrillation mechanisms and structural polymorphisms. In this study, the amyloid-like aggregation behavior of wheat gluten and its components (glutenin and gliadin) during cooking was systematically analyzed through physicochemical assessment and structural characterization. The presence of amyloid-like fibrils (AFs) was confirmed using X-ray diffraction and Congo red staining, while Thioflavin T fluorescence revealed different patterns and rates of AFs growth among wheat gluten, glutenin, and gliadin. AFs in gliadin exhibited linear growth curves, while those in gluten and glutenin showed S-shaped curves, with the shortest lag phase and fastest growth rate (t1/2 = 2.11 min) observed in glutenin. Molecular weight analyses revealed AFs primarily in the 10-15 kDa range, shifting to higher weights over time. Glutenin-derived AFs had the smallest ζ-potential value (-19.5 mV) and the most significant size increase post cooking (approximately 400 nm). AFs in gluten involve interchain reorganization, hydrophobic interactions, and conformational transitions, leading to additional cross ß-sheets. Atomic force microscopy depicted varying fibril structures during cooking, notably longer, taller, and stiffer AFs from glutenin.


Asunto(s)
Amiloide , Culinaria , Glútenes , Triticum , Glútenes/química , Triticum/química , Amiloide/química , Gliadina/química , Calor , Agregado de Proteínas , Peso Molecular , Difracción de Rayos X
4.
Int J Biol Macromol ; 268(Pt 2): 131764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657935

RESUMEN

This study aimed to improve the mechanical properties of wheat starch gels (WSG) and the stability and bioaccessibility of resveratrol (Res) in prolamin nanoparticles. Res-loaded gliadin (Gli), zein, deamidated gliadin (DG) and deamidated zein (DZ) nanoparticles were filled in WSG. The hardness, G' and G'' of WSG were notably increased. It can be attributed to the more ordered and stable structure induced by the interaction of prolamin nanoparticles and starch. The Res retention of nanoparticles and nanoparticle-filled starch gels was at least 24.6 % and 36.0 % higher than free Res upon heating. When exposed to ultraviolet, the Res retention was enhanced by over 6.1 % and 37.5 %. The in-vitro digestion demonstrated that the Res releasing percentage for nanoparticle-filled starch gels was 25.8 %-38.7 % lower than nanoparticles in the simulated stomach, and more Res was released in the simulated intestine. This resulted in a higher bioaccessibility of 82.1 %-93.2 %. The bioaccessibility of Res in Gli/Res/WSG and DG/Res/WSG was greater than that of Zein/Res/WSG and DZ/Res/WSG. More hydrophobic interactions occurred between Res and Gli, DG. The interactions between Res and zein, DZ were mainly hydrogen bonding. The microstructure showed that nanoparticles exhibited dense spherical structures and were uniformly embedded in the pores of starch gels.


Asunto(s)
Geles , Nanopartículas , Prolaminas , Resveratrol , Almidón , Almidón/química , Resveratrol/química , Resveratrol/farmacocinética , Nanopartículas/química , Geles/química , Prolaminas/química , Zeína/química , Portadores de Fármacos/química , Triticum/química , Gliadina/química
5.
J Colloid Interface Sci ; 668: 252-263, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678881

RESUMEN

Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.


Asunto(s)
Gliadina , Triticum , Liposomas Unilamelares , Gliadina/química , Gliadina/aislamiento & purificación , Triticum/química , Concentración de Iones de Hidrógeno , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Agua/química , Lípidos de la Membrana/química , Separación de Fases
6.
J Proteome Res ; 23(5): 1649-1665, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574199

RESUMEN

Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).


Asunto(s)
Adhesivos , Harina , Glútenes , Proteoma , Almidón , Triticum , Triticum/química , Harina/análisis , Almidón/química , Proteoma/análisis , Proteoma/química , Adhesivos/química , Glútenes/química , Glútenes/análisis , Proteómica/métodos , Proteínas de Plantas/análisis , Gliadina/química , Gliadina/análisis
7.
J Sci Food Agric ; 104(11): 6893-6901, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38591632

RESUMEN

BACKGROUND: Gluten composition is an important quality parameter of wheat flour. Reversed-phase high-performance liquid chromatography (RP-HPLC) is a state-of-the-art method for its analysis. As this is a very labour-intensive and time-consuming procedure, alternative faster methods are desirable. Enzyme-linked immunosorbent assay (ELISA) is a high-throughput method often used for the analysis of gluten traces in gluten-free products. In this proof-of-principle study, we introduce an experimental triple ELISA for the relative quantitation of gliadins, high-molecular-weight glutenin subunits (HMW-GS) and low-molecular-weight glutenin subunits (LMW-GS) of one wheat flour extract. RESULTS: The results of 80 common wheat flour samples obtained from the triple ELISA and RP-HPLC were correlated. The results for gliadins (r = 0.69) and HMW-GS (r = 0.81) showed a medium and high correlation, respectively. Only a very weak correlation of ELISA and RP-HPLC results was observed for LMW-GS (r = 0.49). Results for glutenins (r = 0.69) and gluten (r = 0.72) had a medium correlation. The gliadin/glutenin ratio (r = 0.47) and LMW-GS/HMW-GS ratio (r = 0.40) showed a weak or no correlation. The gliadin, LMW-GS and gluten contents were lower and the HMW-GS content was higher in the ELISA measurement compared to RP-HPLC. CONCLUSION: The quantitation of gliadins and HMW-GS by the experimental triple ELISA showed comparable results to RP-HPLC, whereas no strong correlation between the results from the two methods was found for LMW-GS. Overall, the experimental triple ELISA is suitable for relative gluten quantitation, especially for the analysis of large sample sets. Further work will focus on improving the experimental procedure of the ELISA. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Harina , Gliadina , Glútenes , Triticum , Glútenes/análisis , Triticum/química , Ensayo de Inmunoadsorción Enzimática/métodos , Harina/análisis , Gliadina/análisis , Gliadina/química , Cromatografía Líquida de Alta Presión/métodos , Peso Molecular
8.
Molecules ; 29(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38542847

RESUMEN

This study evaluated the effects of four highland barley proteins (HBPs), namely, albumin, globulin, gliadin and glutenin, on the short-term retrogradation of highland barley starch (HBS). The findings reveal that HBPs could reduce the viscosity, storage modulus and hardness of HBS, with albumin and globulin showing more prominent effects. Furthermore, with the addition of HBPs, the loss tangent (tan δ) of HBS loss increased from 0.07 to 0.10, and the enthalpy of gelatinization decreased from 8.33 to 7.23. The degree of retrogradation (DR%) of HBS was 5.57%, and the DR% decreased by 26.65%, 38.78%, 11.67% and 20.29% with the addition of albumin, globulin, gliadin and glutenin, respectively. Moreover, the relative crystallinity (RC) and the double helix structures were inhibited with the HBPs' incorporation. Meanwhile, the HBPs also could inhibit water migration and improve the structure of HBS gels. In summary, HBPs could inhibit the retrogradation behavior of HBS, which provides new theoretical insights for the production studies of highland barley foods.


Asunto(s)
Globulinas , Hordeum , Almidón/química , Gliadina/química , Albúminas
9.
J Sci Food Agric ; 104(10): 6127-6138, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38442023

RESUMEN

BACKGROUND: Wheat proteins can be divided into water/salt-soluble protein (albumin/globulin) and water/salt-insoluble protein (gliadins and glutenins (Glu)) according to solubility. Gliadins (Glia) are one of the major allergens in wheat. The inhibition of Glia antigenicity by conventional processing techniques was not satisfactory. RESULTS: In this study, free radical oxidation was used to induce covalent reactions. The effects of covalent reactions by high-intensity ultrasound (HIU) of different powers was compared. The enhancement of covalent grafting effectiveness between gliadin and (-)-epigallo-catechin 3-gallate (EGCG) was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry and Folin-Ciocalteu tests. HIU caused protein deconvolution and disrupted the intrastrand disulfide bonds that maintain the tertiary structure, causing a shift in the side chain structure, as proved by Fourier, fluorescence and Raman spectroscopic analysis. Comparatively, the antigenic response of the conjugates formed in the sonication environment was significantly weaker, while these conjugates were more readily hydrolyzed and less antigenic during simulated gastrointestinal fluid digestion. CONCLUSION: HIU-enhanced free radical oxidation caused further transformation of the spatial structure of Glia, which hid or destroyed the antigenic epitope, effectively inhibiting protein antigenicity. This study widened the application of polyphenol modification in the inhibition of wheat allergens. © 2024 Society of Chemical Industry.


Asunto(s)
Gliadina , Triticum , Gliadina/química , Gliadina/inmunología , Triticum/química , Triticum/inmunología , Oxidación-Reducción , Humanos , Alérgenos/química , Alérgenos/inmunología , Ultrasonido
10.
Angew Chem Int Ed Engl ; 63(21): e202317552, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38497459

RESUMEN

Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor ß-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.


Asunto(s)
Enfermedad Celíaca , Enterocitos , Gliadina , Humanos , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Células CACO-2 , Gliadina/química , Gliadina/metabolismo , Enterocitos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Permeabilidad
11.
Food Chem ; 445: 138648, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354639

RESUMEN

This research investigates the formation of amyloid fibrils using enzymatically hydrolyzed peptides from gluten, including its components glutenin and gliadin. After completing the fibrillation incubation, the gluten group demonstrated the most significant average particle size (908.67 nm) and conversion ratio (57.64 %), with a 19.21 % increase in thioflavin T fluorescence intensity due to self-assembly. The results indicated increased levels of ß-sheet structures after fibrillation. The gliadin group exhibited the highest zeta potential (∼13 mV) and surface hydrophobicity (H0 = 809.70). Around 71.15 % of predicted amyloidogenic regions within gliadin peptides showed heightened hydrophobicity. These findings emphasize the collaborative influence of both glutenin and gliadin in the formation of gluten fibrils, influenced by hydrogen bonding, hydrophobic, and electrostatic interactions. They also highlight the crucial role played by gliadin with amyloidogenic fragments such as ILQQIL and SLVLQTL, aiming to provide a theoretical basis for understanding the utilization of gluten proteins.


Asunto(s)
Amiloide , Gliadina , Amiloide/metabolismo , Gliadina/química , Péptidos/química , Glútenes/química , Conformación Proteica en Lámina beta , Fragmentos de Péptidos/química
12.
Food Res Int ; 180: 114081, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395578

RESUMEN

The development of stable nanocomplexes based on gliadin and other biopolymers shows potential applications as delivery vehicles in the food industry. However, there is limited study specifically targeting the gliadin-lysozyme system, and their underlying interaction mechanism remains poorly understood. Therefore, the objective of this study was to investigate the binding mechanism between gliadin and lysozyme using a combination of multispectroscopic methods and molecular dynamic simulations. Stable gliadin-lysozyme complex nanoparticles were prepared using an anti-solvent precipitation method with a gliadin-to-lysozyme mass ratio of 2:1 and pH 4.0. The characteristic changes in the UV-visible spectrum of gliadin induced by lysozyme confirmed the complex formation. The analyses of fluorescence, FT-IR spectra, and dissociation tests demonstrated the indispensability of hydrophobic, electrostatic, and hydrogen bonding interactions in the preparation of the composites. Scanning electron microscopy revealed that the surface morphology of the nanoparticles changed from smooth and spherical to rough and irregular with the addition of lysozyme. Furthermore, molecular dynamic simulations suggested that lysozyme bound to the hydrophobic region of gliadin and hydrogen bonding was crucial for the stability of the complex. These findings contribute to the advancement of gliadin-lysozyme complex nanoparticles as an efficient delivery system for encapsulating bioactive compounds in food industry.


Asunto(s)
Gliadina , Muramidasa , Muramidasa/química , Gliadina/química , Simulación de Dinámica Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Rastreo
13.
Food Res Int ; 178: 114008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309890

RESUMEN

Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Gliadina/química , Triticum/química , Antocianinas , Fitomejoramiento , Péptidos/química , Espectrometría de Masas , Carotenoides
14.
J Sci Food Agric ; 104(4): 1971-1983, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897157

RESUMEN

BACKGROUND: Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS: Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS: The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.


Asunto(s)
Gliadina , Nanopartículas , Emulsiones/química , Gliadina/química , Tamaño de la Partícula , Nanopartículas/química , Suplementos Dietéticos , Agua/química , Concentración de Iones de Hidrógeno
15.
Molecules ; 28(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067520

RESUMEN

The changes in the secondary structure of individual gluten protein fractions (gliadin and glutenin) caused by the supplementation of model dough with eight phenolic acids were analysed. Gliadins and glutenins were extracted from gluten samples obtained from overmixed dough. The changes in the gliadin secondary structure depended on the amount of phenolic acid added to the dough. Higher acid concentrations (0.1% and 0.2%) led to a significant reduction in the amount of α-helices and to the formation of aggregates, non-ordered secondary structures, and antiparallel ß-sheets. After the addition of acids at a lower concentration (0.05%), the disaggregation of pseudo-ß-sheet structures and the formation of ß-turns, hydrogen-bonded ß-turns, and antiparallel ß-sheets were detected. In the case of glutenin, most of the phenolic acids induced the formation of intermolecular hydrogen bonds between the polypeptide chains, leading to glutenin aggregation. When phenolic acids were added at a concentration of 0.05%, the process of protein folding and regular secondary structure formation was also observed. In this system, antiparallel ß-sheets and ß-turns were created at the expense of pseudo-ß-sheets.


Asunto(s)
Gliadina , Glútenes , Gliadina/química , Glútenes/química , Hidroxibenzoatos
16.
Molecules ; 28(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959768

RESUMEN

Biopolymers based on plant and animal proteins are interesting alternatives in the development of films with future prospects as food packaging. Considering that in recent years there has been an increasing interest in the valorization of agro-industrial residues and by-products and that the blending of polymers can lead to materials with improved properties, in this work, keratin-rich feather fibers and gliadins were blended at different ratios in order to develop sustainable and biodegradable films. Control gliadin G100, feather F100 films, and their blends at 3:1 (G75F25), 2:2 (G50F50), and 1:3 (G25F75) ratios were successfully developed through thermoprocessing. The physical properties were differentiated as a function of the concentration of both polymeric matrices. Although gliadins showed higher hydrophilicity as confirmed by their highest swelling degree, films with high gliadin ratios exhibited lower water vapor permeability values at low and medium relative humidities. On the other hand, the feather fiber-based films displayed the highest Young's modulus values and provided an oxygen barrier to the blends, principally at the highest relative humidity. In conclusion, the blend of these protein-based polymers at different ratio resulted in interesting composites whose physical properties could be adjusted.


Asunto(s)
Gliadina , Queratinas , Animales , Gliadina/química , Plumas , Biopolímeros , Polímeros/química
17.
Food Res Int ; 174(Pt 1): 113520, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986424

RESUMEN

Although wheat gluten has remarkable technological properties, it can induce adverse immune reactions in susceptible individuals, such as wheat allergy and celiac disease. Technological processing and some additives on bread formulation can modify gluten physicochemical structure, but the knowledge about the impacts on the digestibility and immunogenicity of gluten is limited. The present study aimed to study the effect of adding organic acids (acetic or ascorbic) on dough rheological properties and bread technological characteristics. In addition, breads were subjected to in vitro digestion and the digesta were analyzed by confocal microscopy, SDS-PAGE and ELISA immunoassay. Acetic acid resulted in a decrease in dough development time up to 44 % and a reduction in stability up to 20 %. Ascorbic acid, present in vinegar, on the other hand, increased elastic modulus (G') and resistance to extension of dough. After the in vitro digestion, SDS-PAGE indicated that protein degradation started in the gastric phase, with the generation of low molecular weight peptides. Accordingly, ELISA immunoassay suggested a great reduction in immunogenic gliadin content from oral to gastric phase. At the end of the intestinal phase, samples with ascorbic acid did not differ from the control, while vinegar addition indicated a reduction in gluten immunogenicity with a reduction of about 44 % in immunogenic gliadin content compared to the control. Results show a window of opportunity in the modulation of wheat bread formulation with reduced allergenicity, while maintaining the technofunctional properties.


Asunto(s)
Gliadina , Glútenes , Humanos , Glútenes/química , Gliadina/química , Pan/análisis , Ácido Acético , Ácido Ascórbico
18.
Food Res Int ; 173(Pt 1): 113317, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803626

RESUMEN

It has been increasingly demonstrated over the past few years that some proteolytically resistant gluten peptides may directly affect intestinal cell structure and functions by modulating pro-inflammatory gene expression and oxidative stress. The relationship between oxidative cell damage and Celiac Disease (CD) is supported by several studies on human intestinal epithelial cell lines, such as the Caco-2 cell model, already shown to be particularly sensitive to the pro-oxidative and pro-apoptotic properties of gluten protein digests. Through providing valuable evidence concerning some of the pathophysiological mechanisms that may be at play in gluten-related disorders, most of these in vitro studies have been employing simplified digestion schemes and intestinal cell systems that do not fully resemble mature enterocytes in terms of their characteristic tight junctions, microvilli and membrane transporters. Herein the peptide profile and pro-oxidative effect of two different gastrointestinal gliadin digestions was thoroughly characterized and comprehensively compared: one following the complete INFOGEST workflow and a second one by-passing gastric processing, to assess the dependence of gliadin-triggered downstream cell effects on pepsin activity. In both matrices, gluten-derived immunogenic peptide sequences were identified by non-targeted LC-MS/MS. Altogether, this study provides first-hand data concerning the still unexplored peptide composition, gastric-dependence and immunogenicity of physiologically representative gliadin protein digests as well as foundational clues stressing the need for more complex and integrated in vitro cell systems when modelling and exploiting gluten-induced perturbations in the nucleophilic tone and inflammatory status of intestinal epithelial cells.


Asunto(s)
Gliadina , Glútenes , Humanos , Glútenes/química , Gliadina/química , Células CACO-2 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/química , Células Epiteliales/metabolismo
19.
Int J Biol Macromol ; 253(Pt 6): 127384, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37838124

RESUMEN

Three enzymes promoted the development of the gluten network in triticale whole-wheat noodles (TWWN). To further understand the mechanism of gluten enhancement, the effects of three enzymes on the structure of gluten and its fractions (gliadin and glutenin) were evaluated. The results showed that glucose oxidase (GOD), xylanase (XYL), and laccase (LAC) decreased the content of sodium dodecyl sulfate (SDS) extractable proteins. The content of glutenin subunits was reduced by 17.25 %, 30.60 %, and 20.09 % with the addition of GOD, XYL, and LAC, respectively. Furthermore, GOD and LAC increased the content of glutenin macropolymer (GMP) by 2.64 % and 7.71 %, respectively, suggesting the promotion of glutenin aggregation. The addition of three enzymes decreased the weight loss and increased the degradation temperature of the gluten and its fractions. GOD and XYL decreased the fluorescence intensity of gluten and its fractions, except for XYL which increased the fluorescence intensity of glutenin by 10.50 %. Intermolecular interactions and surface hydrophobicity were enhanced by XYL in gluten and its fractions. GOD and LAC decreased the free sulfhydryl content and increased the ß-sheet content, suggesting that the covalent interaction between gluten fractions was enhanced. Therefore, this research can enrich the theoretical study of enzymatic cross-linking.


Asunto(s)
Gliadina , Triticale , Gliadina/química , Triticum/química , Harina , Glútenes/química , Glucosa Oxidasa/metabolismo , Lacasa/metabolismo
20.
Int J Biol Macromol ; 253(Pt 3): 126638, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673163

RESUMEN

In the present study, high purity gliadin was extracted from gluten by the marginally modified Osborne method and the effect of different pHs in the aqueous ethanol on the physicochemical properties of unloaded gliadin nanoparticles (UGNs) and lutein-loaded gliadin nanoparticles (LGNs) was investigated. The results revealed that the formation of UGNs and LGNs at diverse pHs was driven by a conjunction of hydrogen bonding, electrostatic interactions and hydrophobic effects, but their dominant roles varied at different pHs. pH also significantly impacted the surface hydrophobicity, secondary structure and aromatic amino acid microenvironment of UGNs and LGNs. LGNs at pH 5.0 and at pH 9.0 exhibited better loading capacity and could reach 9.7884 ± 0.0006 % and 9.7360 ± 0.0017 %, respectively. These two samples also had greater photostability and thermal stability. Half-lives of LGNs at pH 5.0 were 2.185 h and 54.579 h, respectively. Half-lives of LGNs at pH 9.0 were 2.937 h and 49.159 h, respectively. LGNs at pH 5.0 and LGNs at pH 9.0 also had higher bioaccessibility of lutein, with 15.98 ± 0.04 % and 15.27 ± 0.03 %, respectively. These findings yielded precious inspirations for designing innovative lutein delivery system.


Asunto(s)
Glútenes , Nanopartículas , Glútenes/química , Gliadina/química , Luteína/química , Estructura Secundaria de Proteína , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA