Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819479

RESUMEN

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Asunto(s)
Diferenciación Celular , Glicosilfosfatidilinositoles , Placentación , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citología , Femenino , Embarazo , Animales , Humanos , Ratones , Placentación/genética , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Placenta/metabolismo , Placenta/citología , Vía de Señalización Wnt , Preeclampsia/metabolismo , Preeclampsia/genética , Preeclampsia/patología , Retículo Endoplásmico/metabolismo , Vías Biosintéticas/genética , Respuesta de Proteína Desplegada , Sistemas CRISPR-Cas
2.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052883

RESUMEN

GPI anchoring is an essential post-translational modification in eukaryotes that links proteins to the plasma membrane. In this issue, Liu et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202208159) suggest, for the first time, a regulation on demand of the GPI glycolipid precursor biosynthesis.


Asunto(s)
Glicosilfosfatidilinositoles , Procesamiento Proteico-Postraduccional , Membrana Celular , Glucolípidos/biosíntesis , Glucolípidos/química , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/química
3.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828365

RESUMEN

We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas Ligadas a GPI , Glicosilfosfatidilinositoles , Glicosilfosfatidilinositoles/biosíntesis , Proteínas Ligadas a GPI/metabolismo , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína
4.
Commun Biol ; 4(1): 777, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162996

RESUMEN

Over 100 kinds of proteins are expressed as glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) on the cell surface in mammalian cells. GPI-APs possess unique properties in terms of their intracellular trafficking and association with lipid rafts. Although it is clear that GPI-APs play critical roles in various biological phenomena, it is poorly understood how the GPI moiety contributes to these mechanisms. More than 30 genes are involved in the correct biosynthesis of GPI-APs. We here constructed a cell library in which 32 genes involved in GPI biosynthesis were knocked out in human embryonic kidney 293 cells. Using the cell library, the surface expression and sensitivity to phosphatidylinositol-specific phospholipase C of GPI-APs were analyzed. Furthermore, we identified structural motifs of GPIs that are recognized by a GPI-binding toxin, aerolysin. The cell-based GPI-knockout library could be applied not only to basic researches, but also to applications and methodologies related to GPI-APs.


Asunto(s)
Proteínas Ligadas a GPI/fisiología , Glicosilfosfatidilinositoles/biosíntesis , Toxinas Bacterianas/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Manosiltransferasas/genética , Manosiltransferasas/fisiología , Proteínas Citotóxicas Formadoras de Poros/metabolismo
5.
PLoS One ; 16(3): e0244699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735232

RESUMEN

The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1-6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1-6 GlcNAc-transferase complex.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Proteómica , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , Electroforesis en Gel de Poliacrilamida Nativa , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
6.
J Biosci Bioeng ; 131(3): 225-233, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33158753

RESUMEN

Most biopharmaceutical proteins are produced in mammalian cells because they have the advantageous capacity for protein folding, assembly, and posttranslational modifications. To satisfy the increasing demand for these proteins for clinical purposes and studies, traditional methods to improve protein productivity have included gene amplification, host cell engineering, medium optimization, and screening methods. However, screening and selection of high-producing cell lines remain complex and time consuming. In this study, we established a glycosylphosphatidylinositol (GPI)-anchored protein with a selenocysteine (GPS) system to select cells producing high levels of target secretory proteins. Recombinant lysosomal acid lipase (LIPA) and α-galactosidase A (GALA) were fused with a GPI attachment signal sequence and a selenocysteine insertion sequence after an in-frame UGA codon. Under these conditions, most of the recombinant proteins were secreted into the culture medium, but some were found to be GPI-anchored proteins on the cell surface. When sodium selenite was supplied into the culture medium, the amount of GPI-anchored LIPA and GALA was increased. High-expressing cells were selected by detecting surface GPI-anchored LIPA. The GPI-anchored protein was then eliminated by knocking out the GPI biosynthesis gene PIGK, in these cells, all LIPA was in secreted form. Our system provides a promising method of isolating cells that highly express recombinant proteins from large cell populations.


Asunto(s)
Proteínas Ligadas a GPI/genética , Proteínas Recombinantes/genética , Selenocisteína , Animales , Línea Celular , Membrana Celular/metabolismo , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/genética , Humanos , Lipasa/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-33198937

RESUMEN

Recent studies support the assumption that mutation of the X-linked Pig-a gene is most likely responsible for the mutant phenotype of the cells deficient in glycosylphosphatidylinositol (GPI)-anchored proteins quantified in the rodent Pig-a gene mutation assay. In humans, however, mutations in both alleles of one of the 30 other genes involved in GPI-anchor synthesis, e.g., PIG-L and PIG-O, cause reduced expression of surface GPI-anchored proteins. Here, we investigated the possibility that the loss of the GPI-anchor detected by the rat Pig-a assay also could be caused by mutation in other GPI-biosynthesis genes. 31 samples were obtained from 8 inbred and outbred rat strains commonly used for genetic toxicology assays. In order to investigate possible sources of variation in the Pig-a assay, variant DNA sequences were evaluated in Cd59 and 24 GPI-biosynthesis genes. In some genes, such as Pig-n and Pig-u, homozygous variations occurred in all animals, suggesting that these variations are due to deviations in the reference genome. Heterozygous Pig-s, Pig-w, Pig-o, Pig-c, Pgap1, Pgap2, Pig-k and Pig-t variations were found, however, indicating that these genes could serve as targets for mutation in the assay. Protein alignment for these altered genes was conducted with possible human, mouse and rat phenotypic mutants from the literature; this analysis demonstrated that many of the variations that we detected were in non-conserved sequences and that no phenotypes for any of these variants could be inferred from known mutants from the literature. All heterozygous variants were in outbred rats. Overall, the findings of this study cannot totally rule out the possibility that mutations in GPI-biosynthesis genes other than Pig-a are detected in the Pig-a assay, but suggest that if it occurs, it must occur only rarely and therefore mutations in genes other than Pig-a have little impact on rat-based experiments.


Asunto(s)
Vías Biosintéticas/genética , Glicosilfosfatidilinositoles/biosíntesis , Proteínas de la Membrana/genética , Mutación , Secuencia de Aminoácidos , Animales , Antígenos CD59/genética , Antígenos CD59/metabolismo , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas Endogámicas F344 , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Homología de Secuencia de Aminoácido , Especificidad de la Especie
8.
Nat Commun ; 11(1): 3387, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636417

RESUMEN

Biosynthesis of glycosylphosphatidylinositol (GPI) is required for anchoring proteins to the plasma membrane, and is essential for the integrity of the fungal cell wall. Here, we use a reporter gene-based screen in Saccharomyces cerevisiae for the discovery of antifungal inhibitors of GPI-anchoring of proteins, and identify the oligocyclopropyl-containing natural product jawsamycin (FR-900848) as a potent hit. The compound targets the catalytic subunit Spt14 (also referred to as Gpi3) of the fungal UDP-glycosyltransferase, the first step in GPI biosynthesis, with good selectivity over the human functional homolog PIG-A. Jawsamycin displays antifungal activity in vitro against several pathogenic fungi including Mucorales, and in vivo in a mouse model of invasive pulmonary mucormycosis due to Rhyzopus delemar infection. Our results provide a starting point for the development of Spt14 inhibitors for treatment of invasive fungal infections.


Asunto(s)
Antifúngicos/farmacología , Glicosiltransferasas/antagonistas & inhibidores , Policétidos/farmacología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Fermentación , Genes Reporteros , Glicosilfosfatidilinositoles/biosíntesis , Células HCT116 , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Células K562 , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos ICR , Mucorales , Familia de Multigenes , Rhizopus , Saccharomyces cerevisiae
9.
Org Lett ; 22(15): 5876-5879, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32663020

RESUMEN

Through genome mining for fungal macrolide natural products, we discovered a characteristic family of putative macrolide biosynthetic gene clusters that contain a glycosylphosphatidylinositol-ethanolamine phosphate transferase (GPI-EPT) homologue. Through the heterologous expression of two clusters from Aspergillus kawachii and Colletotrichum incanum, new macrolides, including those with phosphoethanolamine or phosphocholine moieties, were formed. This study is the first demonstration of the tailoring steps catalyzed by GPI-EPT homologues in natural product biosynthesis, and it uncovers a new gene resource for phospholipid-resembling fungal macrolides.


Asunto(s)
Aspergillus/química , Colletotrichum/química , Etanolaminas/química , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Macrólidos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosilfosfatidilinositoles/química , Macrólidos/química , Estructura Molecular , Familia de Multigenes , Biosíntesis de Proteínas
10.
Clin Neurol Neurosurg ; 196: 106033, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32585529

RESUMEN

Vertical nystagmus is a known clinical feature, is however rarely observed in a specific neurodevelopmental disorder. Based on our experience with Polish patients with glycosylphosphatidylinositol biosynthesis defects (GPIBD) due to PIGN variants, supported by literature review, we have verified the clinical significance of this feature in PIGN-related disorder. We hope to underline the clinical implication of vertical nystagmus in the evaluation of patients with developmental encephalopathy with epilepsy, which may accelerate the neurological diagnosis process by orientating it towards PIGN-GPIBD.


Asunto(s)
Encefalopatías Metabólicas/genética , Nistagmo Patológico/genética , Fosfotransferasas/genética , Niño , Preescolar , Epilepsia/genética , Femenino , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/genética , Humanos , Masculino , Mutación
11.
Biochem Soc Trans ; 48(3): 1129-1138, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32573677

RESUMEN

Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/enzimología , Glicosilfosfatidilinositoles/biosíntesis , Aparato de Golgi/enzimología , Animales , Humanos , Masculino , Microdominios de Membrana/enzimología , Proteínas de la Membrana/metabolismo , Neurogénesis , Dominios Proteicos , Pliegue de Proteína , Transporte de Proteínas , Espermatogénesis
12.
Neurogenetics ; 21(4): 259-267, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32462292

RESUMEN

Deficiency of the endoplasmic reticulum transmembrane protein ARV1 leads to epileptic encephalopathy in humans and in mice. ARV1 is highly conserved, but its function in human cells is unknown. Studies of yeast arv1 null mutants indicate that it is involved in a number of biochemical processes including the synthesis of sphingolipids and glycosylphosphatidylinositol (GPI), a glycolipid anchor that is attached to the C-termini of many membrane bound proteins. GPI anchors are post-translational modifications, enabling proteins to travel from the endoplasmic reticulum (ER) through the Golgi and to attach to plasma membranes. We identified a homozygous pathogenic mutation in ARV1, p.Gly189Arg, in two brothers with infantile encephalopathy, and characterized the biochemical defect caused by this mutation. In addition to reduced expression of ARV1 transcript and protein in patients' fibroblasts, complementation tests in yeast showed that the ARV1 p.Gly189Arg mutation leads to deficient maturation of Gas1, a GPI-anchored protein, but does not affect sphingolipid synthesis. Our results suggest, that similar to mutations in other proteins in the GPI-anchoring pathway, including PIGM, PIGA, and PIGQ, ARV1 p.Gly189Arg causes a GPI anchoring defect and leads to early onset epileptic encephalopathy.


Asunto(s)
Encefalopatías/genética , Proteínas Portadoras/genética , Glicosilfosfatidilinositoles/biosíntesis , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Convulsiones/genética , Adolescente , Niño , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Prueba de Complementación Genética , Aparato de Golgi/metabolismo , Homocigoto , Humanos , Lípidos/química , Masculino , Manosiltransferasas/genética , Mutación , Linaje , Dominios Proteicos , Temperatura
13.
Mol Genet Metab ; 130(1): 49-57, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32165008

RESUMEN

BACKGROUND: Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS: Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS: Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION: Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glicosilfosfatidilinositoles/deficiencia , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Anomalías Múltiples/fisiopatología , Adolescente , Empalme Alternativo/genética , Preescolar , Discapacidades del Desarrollo/fisiopatología , Epilepsia/fisiopatología , Femenino , Fibroblastos/metabolismo , Proteínas Ligadas a GPI/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Neutrófilos/metabolismo , Linaje , Secuenciación del Exoma
14.
Am J Med Genet A ; 182(6): 1477-1482, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32198969

RESUMEN

Inherited glycosylphosphatidylinositol (GPI) deficiencies are a group of clinically and genetically heterogeneous conditions belonging to the congenital disorders of glycosylation. PIGW is involved in GPI biosynthesis and modification, and biallelic pathogenic variants in this gene cause autosomal recessive GPI biosynthesis defect 11. Only five patients and two fetuses have been reported in the literature thus far. Here we describe a new patient with a novel homozygous missense variant in PIGW, who presented with hypotonia, severe intellectual disability, early-onset epileptic seizures, brain abnormalities, nystagmus, hand stereotypies, recurrent respiratory infections, distinctive facial features, and hyperphosphatasia. Our report expands the phenotype of GPI biosynthesis defect 11 to include stereotypies and recurrent respiratory infections. A detailed and long-term analysis of the electroclinical characteristics and review of the literature suggest that early-onset epileptic seizures are a key manifestation of GPI biosynthesis defect 11. West syndrome and focal-onset epileptic seizures are the most common seizure types, and the fronto-temporal regions may be the most frequently involved areas in these patients.


Asunto(s)
Aciltransferasas/genética , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Convulsiones/genética , Encéfalo/anomalías , Encéfalo/patología , Niño , Preescolar , Femenino , Glicosilfosfatidilinositoles/biosíntesis , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/complicaciones , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación Missense/genética , Convulsiones/complicaciones , Convulsiones/patología , Convulsiones/fisiopatología
15.
Nat Commun ; 11(1): 860, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054864

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids interact with each other in the mammalian plasma membranes, forming dynamic microdomains. How their interaction starts in the cells has been unclear. Here, based on a genome-wide CRISPR-Cas9 genetic screen for genes required for GPI side-chain modification by galactose in the Golgi apparatus, we report that ß1,3-galactosyltransferase 4 (B3GALT4), the previously characterized GM1 ganglioside synthase, additionally functions in transferring galactose to the N-acetylgalactosamine side-chain of GPI. Furthermore, B3GALT4 requires lactosylceramide for the efficient GPI side-chain galactosylation. Thus, our work demonstrates previously unexpected functional relationships between GPI-anchored proteins and glycosphingolipids in the Golgi. Through the same screening, we also show that GPI biosynthesis in the endoplasmic reticulum (ER) is severely suppressed by ER-associated degradation to prevent GPI accumulation when the transfer of synthesized GPI to proteins is defective. Our data demonstrates cross-talks of GPI biosynthesis with glycosphingolipid biosynthesis and the ER quality control system.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Glicoesfingolípidos/biosíntesis , Glicosilfosfatidilinositoles/biosíntesis , Aciltransferasas/deficiencia , Aciltransferasas/genética , Aciltransferasas/metabolismo , Sistemas CRISPR-Cas , Degradación Asociada con el Retículo Endoplásmico/genética , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Técnicas de Inactivación de Genes , Glicoesfingolípidos/genética , Glicosilfosfatidilinositoles/genética , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
Yeast ; 37(1): 63-72, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31845370

RESUMEN

ScGpi12 is a 304 amino residue long endoplasmic reticulum membrane protein, which participates in the de-N-acetylation of N-acetylglucosaminyl phosphatidylinositol to produce glucosaminyl phosphatidylinositol in the second step of GPI anchor biosynthesis pathway in Saccharomyces cerevisiae. ScGpi12 was cloned in a pMAL-c2x vector and expressed heterologously in Rosetta-gami (DE3) strain of E. coli. Affinity purification of the protein yielded low amounts of the MBP-tagged enzyme, which was active. To the best of our knowledge, this is the first successful purification of full-length Gpi12 enzyme, without the accompanying GroEL that was seen in other studies. The presence of the tag did not greatly alter the activity of the enzyme. ScGpi12 was optimally active in the pH range of 6.5-8.5 and at 30 °C. It was not sensitive to treatment with EDTA but was stimulated by multiple divalent cations. The divalent cation did not alter the pH profile of the enzyme, suggesting no role of the divalent metal in creating a nucleophile for catalysis. Divalent cations did, however, enhance the turnover number of the enzyme for its substrate, suggesting that they are probably required for the production of a catalytically competent active site by bringing the active site residues within optimum distance of the substrate for catalysis.


Asunto(s)
Acetilesterasa/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Acetilesterasa/genética , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Vías Biosintéticas , Catálisis , Clonación Molecular , Retículo Endoplásmico/enzimología , Escherichia coli/genética , Cinética , Fosfatidilinositoles/metabolismo , Especificidad por Sustrato
17.
Artículo en Inglés | MEDLINE | ID: mdl-31611349

RESUMEN

Manogepix (MGX) targets the conserved fungal Gwt1 enzyme required for acylation of inositol early in the glycosylphosphatidylinositol biosynthesis pathway. The prodrug fosmanogepix is currently in clinical development for the treatment of invasive fungal infections. We determined that the median frequencies of spontaneous mutations conferring reduced susceptibility to MGX in Candida albicans, C. glabrata, and C. parapsilosis ranged from 3 × 10-8 to <1.85 × 10-8 Serial passage on agar identified mutants of C. albicans and C. parapsilosis with reduced susceptibility to MGX; however, this methodology did not result in C. glabrata mutants with reduced susceptibility. Similarly, serial passage in broth resulted in ≤2-fold changes in population MIC values for C. tropicalis, C. auris, and C. glabrata A spontaneous V163A mutation in the Gwt1 protein of C. glabrata and a corresponding C. albicans heterozygous V162A mutant were obtained. A C. glabrata V163A Gwt1 mutant generated using CRISPR, along with V162A and V168A mutants expressed in C. albicans and Saccharomyces cerevisiae Gwt1, respectively, all demonstrated reduced susceptibility to MGX versus control strains, suggesting the importance of this valine residue to MGX binding across different species. Cross-resistance to the three major classes of antifungals was evaluated, but no changes in susceptibility to amphotericin B or caspofungin were observed in any mutant. No change was observed in fluconazole susceptibility, with the exception of a single non-Gwt1 mutant, where a 4-fold increase in the fluconazole MIC was observed. MGX demonstrated a relatively low potential for resistance development, consistent with other approved antifungal agents and those in clinical development.


Asunto(s)
Aminopiridinas/farmacología , Antifúngicos/farmacología , Candida/efectos de los fármacos , Isoxazoles/farmacología , Aciltransferasas/química , Aciltransferasas/genética , Secuencia de Aminoácidos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Candida/genética , Candida/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/química , Glicosilfosfatidilinositoles/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie
18.
Biochem Biophys Res Commun ; 517(4): 755-761, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31402117

RESUMEN

Ras proteins are highly conserved small GTPases in eukaryotes. GTP-bound Ras binds to effectors to trigger signaling cascades. In order to understand how extensive is the functional homology between the highly homologous proteins, S. cerevisiae Ras2 and C. albicans Ras1, we examined whether ScRas2 could functionally complement CaRas1 in activating hyphal morphogenesis as well as GPI anchor biosynthesis. We show that ScRas2 functionally complements CaRas1 in rescuing growth as well as activating hyphal growth, a process that involves plasma membrane localized Ras activating cAMP/PKA signaling via Cyr1. However, ScRas2 is unable to activate the GPI-N-acetylglucosaminyl transferase (GPI-GnT) which catalyzes the first step of GPI biosynthesis. That CaRas1 alone activates GPI-GnT and not ScRas2 suggests that this process is cAMP independent. Interestingly, CaRas1 transcriptionally activates CaGPI2, encoding a GPI-GnT subunit that has been shown to interact with CaRas1 physically. In turn, CaGPI2 downregulates CaGPI19, encoding another GPI-GnT subunit. This has direct consequences for expression of CaERG11, encoding the target of azole antifungals. This effect too is specific to CaRas1 and ScRas2 is unable to replicate it.


Asunto(s)
Candida albicans/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo , Secuencia de Aminoácidos , AMP Cíclico/biosíntesis , Ergosterol/biosíntesis , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Proteínas ras/química
19.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31256876

RESUMEN

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Asunto(s)
Anomalías Craneofaciales/etiología , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/deficiencia , Deformidades Congénitas de la Mano/etiología , Pérdida Auditiva Sensorineural/etiología , Discapacidad Intelectual/etiología , Manosiltransferasas/genética , Enfermedades Metabólicas/etiología , Mutación , Uñas Malformadas/etiología , Enfermedades del Sistema Nervioso Periférico/etiología , Convulsiones/patología , Adulto , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Glicosilfosfatidilinositoles/genética , Deformidades Congénitas de la Mano/patología , Pérdida Auditiva Sensorineural/patología , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Enfermedades Metabólicas/patología , Uñas Malformadas/patología , Linaje , Enfermedades del Sistema Nervioso Periférico/patología , Convulsiones/genética , Índice de Severidad de la Enfermedad , Adulto Joven
20.
Am J Hum Genet ; 105(2): 395-402, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353022

RESUMEN

The glycosylphosphatidylinositol (GPI) anchor links over 150 proteins to the cell surface and is present on every cell type. Many of these proteins play crucial roles in neuronal development and function. Mutations in 18 of the 29 genes implicated in the biosynthesis of the GPI anchor have been identified as the cause of GPI biosynthesis deficiencies (GPIBDs) in humans. GPIBDs are associated with intellectual disability and seizures as their cardinal features. An essential component of the GPI transamidase complex is PIGU, along with PIGK, PIGS, PIGT, and GPAA1, all of which link GPI-anchored proteins (GPI-APs) onto the GPI anchor in the endoplasmic reticulum (ER). Here, we report two homozygous missense mutations (c.209T>A [p.Ile70Lys] and c.1149C>A [p.Asn383Lys]) in five individuals from three unrelated families. All individuals presented with global developmental delay, severe-to-profound intellectual disability, muscular hypotonia, seizures, brain anomalies, scoliosis, and mild facial dysmorphism. Using multicolor flow cytometry, we determined a characteristic profile for GPI transamidase deficiency. On granulocytes this profile consisted of reduced cell-surface expression of fluorescein-labeled proaerolysin (FLAER), CD16, and CD24, but not of CD55 and CD59; additionally, B cells showed an increased expression of free GPI anchors determined by T5 antibody. Moreover, computer-assisted facial analysis of different GPIBDs revealed a characteristic facial gestalt shared among individuals with mutations in PIGU and GPAA1. Our findings improve our understanding of the role of the GPI transamidase complex in the development of nervous and skeletal systems and expand the clinical spectrum of disorders belonging to the group of inherited GPI-anchor deficiencies.


Asunto(s)
Aciltransferasas/genética , Encefalopatías/etiología , Epilepsia/etiología , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/deficiencia , Discapacidad Intelectual/etiología , Mutación , Convulsiones/patología , Adolescente , Adulto , Secuencia de Aminoácidos , Encefalopatías/patología , Niño , Preescolar , Epilepsia/patología , Femenino , Glicosilfosfatidilinositoles/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Linaje , Convulsiones/genética , Homología de Secuencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA