Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
2.
Cells ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786073

RESUMEN

In this study of the alterations of Glypicans 1 to 6 (GPCs) and Notum in plasma, bone marrow mesenchymal stromal cells (BM-MSCs) and osteoblasts in Osteoarthritis (OA), the levels of GPCs and Notum in the plasma of 25 patients and 24 healthy subjects were measured. In addition, BM-MSCs from eight OA patients and eight healthy donors were cultured over a period of 21 days using both a culture medium and an osteogenic medium. Protein and gene expression levels of GPCs and Notum were determined using ELISA and qPCR at 0, 7, 14 and 21 days. GPC5 and Notum levels decreased in the plasma of OA patients, while the BM-MSCs of OA patients showed downexpression of GPC6 and upregulation of Notum. A decrease in GPC5 and Notum proteins and an increase in GPC3 were found. During osteogenic differentiation, elevated GPCs 2, 4, 5, 6 and Notum mRNA levels and decreased GPC3 were observed in patients with OA. Furthermore, the protein levels of GPC2, GPC5 and Notum decreased, while the levels of GPC3 increased. Glypicans and Notum were altered in BM-MSCs and during osteogenic differentiation from patients with OA. The alterations found point to GPC5 and Notum as new candidate biomarkers of OA pathology.


Asunto(s)
Glipicanos , Células Madre Mesenquimatosas , Osteoartritis , Osteoblastos , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/sangre , Osteoartritis/patología , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Masculino , Femenino , Glipicanos/metabolismo , Glipicanos/sangre , Glipicanos/genética , Persona de Mediana Edad , Diferenciación Celular , Osteogénesis/genética , Anciano , Estudios de Casos y Controles , Células Cultivadas , Células de la Médula Ósea/metabolismo
3.
Matrix Biol ; 131: 1-16, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750698

RESUMEN

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Glipicanos , Corazón , Proteolisis , Versicanos , Animales , Ratones , Versicanos/metabolismo , Versicanos/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Glipicanos/metabolismo , Glipicanos/genética , Corazón/crecimiento & desarrollo , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología
4.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 688-696, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38584523

RESUMEN

20(S)-Ginsenoside Rh2 has significant anti-tumor effects in various types of cancers, including human hepatocellular carcinoma (HCC). However, its molecular targets and mechanisms of action remain largely unknown. Here, we aim to elucidate the potential mechanisms by which Rh2 suppresses HCC growth. We first demonstrate the role of Rh2 in inhibiting angiogenesis. We observe that Rh2 effectively suppresses cell proliferation and induces apoptosis in HUVECs. Furthermore, Rh2 significantly inhibits HepG2-stimulated HUVEC proliferation, migration and tube formation, accompanied by the downregulation of VEGF and MMP-2 expressions. We also reveal that Rh2 inhibits HCC growth through the downregulation of glypican-3-mediated activation of the Wnt/ß-catenin pathway. We observe a dose-dependent inhibition of proliferation and induction of apoptosis in HepG2 cells upon Rh2 treatment, which is mediated by the inhibition of glypican-3/Wnt/ß-catenin signaling. Moreover, downregulation of glypican-3 expression enhances the effects of Rh2 on the glypican-3/Wnt/ß-catenin signaling pathway, resulting in greater suppression of tumor growth in HepG2 cells. Collectively, our findings shed light on the molecular mechanisms through which Rh2 modulates HCC growth, which involve the regulation of angiogenesis and the glypican-3/Wnt/ß-catenin pathway. These insights may pave the way for the development of novel therapeutic strategies targeting these pathways for the treatment of HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proliferación Celular , Ginsenósidos , Glipicanos , Células Endoteliales de la Vena Umbilical Humana , Neoplasias Hepáticas , Neovascularización Patológica , Vía de Señalización Wnt , Humanos , Ginsenósidos/farmacología , Glipicanos/metabolismo , Glipicanos/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/irrigación sanguínea , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Vía de Señalización Wnt/efectos de los fármacos , Células Hep G2 , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Animales , beta Catenina/metabolismo , beta Catenina/genética , Angiogénesis
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612755

RESUMEN

Glypicans are linked to various aspects of neoplastic behavior, and their therapeutic value has been proposed in different cancers. Here, we have systematically assessed the impact of GPC4 on cancer progression through functional genomics and transcriptomic analyses across a broad range of cancers. Survival analysis using TCGA cancer patient data reveals divergent effects of GPC4 expression across various cancer types, revealing elevated GPC4 expression levels to be associated with both poor and favorable prognoses in a cancer-dependent manner. Detailed investigation of the role of GPC4 in glioblastoma and non-small cell lung adenocarcinoma by genetic perturbation studies displays opposing effects on these cancers, where the knockout of GPC4 with CRISPR/Cas9 attenuated proliferation of glioblastoma and augmented proliferation of lung adenocarcinoma cells and the overexpression of GPC4 exhibited a significant and opposite effect. Further, the overexpression of GPC4 in GPC4-knocked-down glioblastoma cells restored the proliferation, indicating its mitogenic effect in this cancer type. Additionally, a survival analysis of TCGA patient data substantiated these findings, revealing an association between elevated levels of GPC4 and a poor prognosis in glioblastoma, while indicating a favorable outcome in lung carcinoma patients. Finally, through transcriptomic analysis, we attempted to assign mechanisms of action to GPC4, as we find it implicated in cell cycle control and survival core pathways. The analysis revealed upregulation of oncogenes, including FGF5, TGF-ß superfamily members, and ITGA-5 in glioblastoma, which were downregulated in lung adenocarcinoma patients. Our findings illuminate the pleiotropic effect of GPC4 in cancer, underscoring its potential as a putative prognostic biomarker and indicating its therapeutic implications in a cancer type dependent manner.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Glioblastoma , Neoplasias Pulmonares , Humanos , Glipicanos/genética , Glioblastoma/genética , Oncogenes , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética
6.
BMJ Case Rep ; 17(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38442972

RESUMEN

A newborn baby born at 34 weeks and 5 days gestation was admitted for prematurity, dysmorphic features and congenital heart defects. Antenatal scan at 21 weeks showed a large-for-gestational-age foetus with a large abdominal circumference and liver, ventricular septal defect, right prominent renal pelvis and echogenic bowel. Antenatal genetic tests for overgrowth syndromes were negative. The mother had early onset pre-eclampsia. After birth, an overgrowth syndrome was still suspected despite the baby having normal birth parameters. Raw data of the trio whole exome sequencing from the amniocentesis sample were manually inspected. Hemizygous exon 7 deletion in the GPC3 gene was found, and a postnatal diagnosis of Simpson-Golabi-Behmel syndrome, a rare overgrowth syndrome, was made. This case report discusses the significance of antenatal findings, an atypical presentation of a rare syndrome and the obstacles of diagnostic genetic testing.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Gigantismo , Cardiopatías Congénitas , Discapacidad Intelectual , Femenino , Humanos , Recién Nacido , Embarazo , Arritmias Cardíacas , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Gigantismo/diagnóstico , Gigantismo/genética , Glipicanos/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética
7.
Anal Chim Acta ; 1297: 342385, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38438232

RESUMEN

BACKGROUND: Glypican-3 (GPC3) is a heparan sulfate proteoglycan (HSPG) that binds to the cell membrane via glycosylphosphatidylinositol (GPI). It is not found in healthy adult liver but is overexpressed in human hepatocellular carcinoma (HCC). The protein marker GPC3 on extracellular vesicles (GPC3+ EVs) is also useful for HCC detection. Nevertheless, the absence of practical and dependable quantitative techniques to evaluate EVs proteins prevents their clinical implementation. RESULTS: Here, using an immuno-recombinase polymerase amplification (immuno-RPA) process and dual amplification of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13a, we firstly create an extraction-free one-pot immuno-RPA-CRISPR (opiCRISPR) for the direct and extremely sensitive detection of EVs proteins. The EVs protein-targeted detection probe is amplified by RPA to generate a long repetitive sequence containing multiple CRISPR RNA (crRNA) targeting barcodes, and the signal is further amplified by the CRISPR-Cas13a side-chain cleavage activity to generate a fluorescent signal. The results show that circulating extracellular vesicle GPC3 (eGPC3) levels are a reliable marker for GPC3 expression in tumor, opening up new avenues for tumor diagnosis. SIGNIFICANCE AND NOVELTY: We created an eGPC3 assay based on the CRISPR-Cas13a system, and successfully study the significance of extracellular vesicle GPC3 markers in hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Adulto , Humanos , Recombinasas , Carcinoma Hepatocelular/diagnóstico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Glipicanos/genética , Neoplasias Hepáticas/diagnóstico
8.
Arab J Gastroenterol ; 25(1): 51-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38220478

RESUMEN

BACKGROUND AND STUDY AIMS: Glypican 2 (GPC2) is a member of the glypican gene family and is expressed in multiple kinds of cancer. However, the function and mechanism of GPC2 in colorectal cancer remains unclear. In this study, we aimed to identify the role of GPC2 on tumor cell proliferation and survival in colorectal cancer. PATIENTS AND METHODS: Ten pairs of colon cancer and matched normal colon tissues were collected in this research. GEPIA was used to analysis the GPC2 gene expression profile in TGCA data base. RT-qPCR and western blot assay were performed to determine the mRNA and protein expressions. CCK-8, Flow cytometry and colon formation assay were applied to evaluate cell viability. IHC staining was performed to evaluate the protein expression in tissues. The function of GPC2 in vivo was verified by an animal model of colon cancer. RESULTS: Through the bioinformatics analysis and qRT-PCR validation, we found that GPC2 was upregulated in the colon cancer tissues and cells. GPC2 knockdown suppressed cell proliferation in vitro and in vivo was confirmed by the results of CCK-8, colony formation assays, and tumor xenograft models. Moreover, by the analysis of flow cytometry assay and gain-or-loss function experiments, we discovered that CEP164 was highly associated with the expression state of GPC2, and mediated G2/M-phase arrest in GPC2-downregulated tumor cells. CONCLUSION: GPC2 might be a novel oncogenic gene in colorectal cancer, suggesting that it could be a considerable marker for the diagnosis and prognosis of colorectal cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Glipicanos/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Pronóstico , Sincalida/genética , Sincalida/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica
9.
Adv Sci (Weinh) ; 11(11): e2306373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38204202

RESUMEN

Detecting pancreatic duct adenocarcinoma (PDAC) in its early stages and predicting late-stage patient prognosis undergoing chemotherapy is challenging. This work shows that the activation of specific oncogenes leads to elevated expression of mRNAs and their corresponding proteins in extracellular vesicles (EVs) circulating in blood. Utilizing an immune lipoplex nanoparticle (ILN) biochip assay, these findings demonstrate that glypican 1 (GPC1) mRNA expression in the exosomes-rich (Exo) EV subpopulation and GPC1 membrane protein (mProtein) expression in the microvesicles-rich (MV) EV subpopulation, particularly the tumor associated microvesicles (tMV), served as a viable biomarker for PDAC. A combined analysis effectively discriminated early-stage PDAC patients from benign pancreatic diseases and healthy donors in sizable clinical from multiple hospitals. Furthermore, among late-stage PDAC patients undergoing chemotherapy, lower GPC1 tMV-mProtein and Exo-mRNA expression before treatment correlated significantly with prolonged overall survival. These findings underscore the potential of vesicular GPC1 expression for early PDAC screenings and chemotherapy prognosis.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Vesículas Extracelulares/metabolismo , Glipicanos/genética , Glipicanos/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Gene ; 897: 147991, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972697

RESUMEN

Hepatoblastoma (HB) is an uncommon malignant liver cancer primarily affecting infants and children, characterized by the presence of tissue that resembling fetal hepatocytes, mature liver cells or bile duct cells. The primary symptom in affected children is abdominal lumps. HB constitutes approximately 28% of all liver tumors and two-thirds of liver malignancies in the pediatric and adolescent population. Despite its high prevalence, the underlying mechanism of HB pathogenesis remain largely unknown. To reveal the genetic alternations associated with HB, we conducted a comprehensive genomic study using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques on five HB patients. We aimed to use WGS to identify somatic variant loci associated with HB, including single nucleotide polymorphisms (SNPs), insertions and deletions (Indels), and copy number variations (CNVs). Notably, we found deleterious mutation in CTNNB1, AXIN2 and PARP1, previously implicated in HB. In addition, we discovered multiple novel genes potentially associated with HB, including BRCA2 and GPC3 which require further functional validation to reveal their contributions to HB development. Furthermore, the American College of Medical Genetics and Genomics (ACMG) analysis identified the ABCC2 gene was the pathogenic gene as a potential risk gene linked with HB. To study the gene expression patterns in HB, we performed RNA-seq analysis and qPCR validation to reveal differential expression of four candidate genes (IGF1R, METTL1, AXIN2 and TP53) in tumors compared to nonneoplastic liver tissue in HB patients (P-Val < 0.01). These findings shed lights on the molecular mechanisms underlying HB development and facilitate to advance future personalized diagnosis and therapeutic interventions of HB.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Lactante , Adolescente , Humanos , Niño , Hepatoblastoma/genética , Variaciones en el Número de Copia de ADN , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Secuenciación Completa del Genoma , Análisis de Secuencia de ARN , Glipicanos/genética
11.
Cell Signal ; 114: 111007, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38081444

RESUMEN

OBJECTIVE: To explore the expression and secretion mechanism of glypican-3 (GPC3) in hepatocellular carcinoma (HCC) cells under hypoxic conditions, and its role in tumor progression. METHODS: Huh7 cells with and without the knockdown of hypoxia-inducible factor 1-alpha (HIF-1α) were cultured under 1% O2 for varying durations to induce hypoxia. The expression levels of GPC3, HSP70, CD63, STX11 and SYT7 in the cytoplasm and exosomes of Huh7 cells were evaluated by western blotting and immunofluorescence. GPC3 protein expression was further measured in cells treated with GW4869 under hypoxic conditions. Huh7 cells and human umbilical vein endothelial cells (HUVECs) were cultured with the exosomes extracted from the control and GPC3-knockdown cells, the cell proliferation, migration, epithelial-mesenchymal transition (EMT), invasion, and in vitro angiogenesis were analyzed. Tumor xenografts were established to assess the role of GPC3-deficient exosomes in tumor growth. RESULTS: Hypoxic culture conditions downregulated GPC3, STX11 and SYT7 protein levels in the Huh7 cells and upregulated GPC3 mRNA, and also increased GPC3 protein expression in the exosomes. HIF-1α knockdown, as well as treatment with GW4869, upregulated GPC3 protein in the Huh7 cells grown under 1% O2, but downregulated exosomal GPC3. Furthermore, exosomes derived from the GPC3-knockdown cells inhibited the proliferation and migration of Huh7 cells, decreased the expression of N-cadherin, vimentin, ß-catenin, c-Myc and cyclin D1, and increased that of E-cadherin. Likewise, the GPC3-deficient exosomes also suppressed the invasion and tube formation ability of the HUVECs compared to that of control cells. Consistent with the in vitro results, the GPC3-deficient exosomes also repressed tumor growth in vivo. CONCLUSION: Hypoxia promoted secretion of exosomal GPC3 through the activation of HIF-1α. GPC3-deficient exosomes inhibited the proliferation, migration and EMT of HCC cells via the Wnt/ß-catenin signaling pathway, and suppressed the angiogenic potential of HUVECs. This provided a novel understanding of the role of exosomal GPC3 in HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Glipicanos/genética , Glipicanos/metabolismo , Proliferación Celular/genética , Hipoxia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
12.
J Biol Chem ; 300(1): 105544, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072044

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Glipicanos , Heparitina Sulfato , Animales , Proteínas de Drosophila/metabolismo , Glipicanos/genética , Glipicanos/química , Glipicanos/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
13.
Virchows Arch ; 484(4): 709-713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141134

RESUMEN

In the post-chemotherapy setting, germ cell tumors of the testis (GCTT) that resemble non-specific sarcomas and co-express cytokeratins and glypican-3 (GPC3) are diagnosed as "sarcomatoid yolk sac tumor postpubertal-type (YSTpt)". The diagnosis of sarcomatoid YSTpt is clinically relevant but challenging due to its rarity, non-specific histology, and negative α-fetoprotein (AFP) staining. Recently, FOXA2 has emerged as a key-gene in the reprogramming of GCTT (activating the transcription of several genes, among which GATA3), and immunohistochemical studies showed that GATA3 and FOXA2 have a higher sensitivity for non-sarcomatoid YSTpt than GPC3 and AFP. We found that sarcomatoid YSTpt did not express FOXA2 [0: 14/14 (100%)] and showed focal expression of GATA3 [0: 12/14 (85.7%), 1 + : 2/14 (14.3%)], thus suggesting that these markers are not useful in diagnosing this tumor. Furthermore, we proposed a potential mechanism of sarcomatoid transformation in the post-chemotherapy setting of GCTT, mediated by the downregulation of FOXA2 and GATA3.


Asunto(s)
Biomarcadores de Tumor , Regulación hacia Abajo , Tumor del Seno Endodérmico , Factor de Transcripción GATA3 , Factor Nuclear 3-beta del Hepatocito , Fenotipo , Neoplasias Testiculares , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Humanos , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Masculino , Neoplasias Testiculares/patología , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Tumor del Seno Endodérmico/patología , Tumor del Seno Endodérmico/genética , Tumor del Seno Endodérmico/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inmunohistoquímica , Glipicanos/genética , Glipicanos/metabolismo , Adulto , Sarcoma/genética , Sarcoma/patología , Sarcoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Adulto Joven , Adolescente
14.
J Immunol Res ; 2023: 5532617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965271

RESUMEN

Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted agents. GPC3 is upregulated in LUSC. Our study aimed to explore the roles of GPC3 in LUSC and the antitumor effects of HLA-A2-restricted GPC3 antigenic peptide-sensitized dendritic cell (DC)-induced cytotoxic T lymphocytes (CTLs) on LUSC. LUSC cells with GPC3 knockdown and overexpression were built using lentivirus packaging, and cell viability, clone formation, apoptosis, cycle, migration, and invasion were determined. Western blotting was used to detect the expression of cell cycle-related proteins and PI3K-AKT pathway-associated proteins. Subsequently, HLA-A2-restricted GPC3 antigenic peptides were predicted and synthesized by bioinformatic databases, and DCs were induced and cultured in vitro. Finally, HLA-A2-restricted GPC3 antigenic peptide-modified DCs were co-cultured with T cells to generate specific CTLs, and the killing effects of different CTLs on LUSC cells were studied. A series of cell function experiments showed that GPC3 overexpression promoted the proliferation, migration, and invasion of LUSC cells, inhibited their apoptosis, increased the number of cells in S phase, and reduced the cells in G2/M phase. GPC3 knockdown downregulated cyclin A, c-Myc, and PI3K, upregulated E2F1, and decreased the pAKT/AKT level. Three HLA-A2-restricted GPC3 antigenic peptides were synthesized, with GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-modified DCs inducing CTL production, and exhibiting strong targeted killing ability in LUSC cells at 80 : 1 multiplicity of infection. GPC3 may advance the onset and progression of LUSC, and GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-loaded DC-induced CTLs have a superior killing ability against LUSC cells.


Asunto(s)
Carcinoma de Células Escamosas , Linfocitos T Citotóxicos , Humanos , Antígeno HLA-A2/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Péptidos , Células Dendríticas , Pulmón , Glipicanos/genética
15.
Medicine (Baltimore) ; 102(45): e35347, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960765

RESUMEN

Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, has long been found to be dysregulated in human lung adenocarcinomas (LUADs). Nevertheless, the function, mutational profile, epigenetic regulation, co-expression profile, and clinicopathological significance of the GPC3 gene in LUAD progression are not well understood. In this study, we analyzed cancer microarray datasets from publicly available databases using bioinformatics tools to elucidate the above parameters. We observed significant downregulation of GPC3 in LUAD tissues compared to their normal counterparts, and this downregulation was associated with shorter overall survival (OS) and relapse-free survival (RFS). Nevertheless, no significant differences in the methylation pattern of GPC3 were observed between LUAD and normal tissues, although lower promoter methylation was observed in male patients. GPC3 expression was also found to correlate significantly with infiltration of B cells, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAD. In addition, a total of 11 missense mutations were identified in LUAD patients, and ~1.4% to 2.2% of LUAD patients had copy number amplifications in GPC3. Seventeen genes, mainly involved in dopamine receptor-mediated signaling pathways, were frequently co-expressed with GPC3. We also found 11 TFs and 7 miRNAs interacting with GPC3 and contributing to disease progression. Finally, we identified 3 potential inhibitors of GPC3 in human LUAD, namely heparitin, gemcitabine and arbutin. In conclusion, GPC3 may play an important role in the development of LUAD and could serve as a promising biomarker in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Masculino , Glipicanos/genética , Glipicanos/metabolismo , Relevancia Clínica , Epigénesis Genética , Recurrencia Local de Neoplasia/genética , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Pronóstico
16.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834029

RESUMEN

The endothelial glycocalyx is a dynamic signaling surface layer that is involved in the maintenance of cellular homeostasis. The glycocalyx has a very diverse composition, with glycoproteins, proteoglycans, and glycosaminoglycans interacting with each other to form a mesh-like structure. Due to its highly interactive nature, little is known about the relative contribution of each glycocalyx constituent to its overall function. Investigating the individual roles of the glycocalyx components to cellular functions and system physiology is challenging, as the genetic manipulation of animals that target specific glycocalyx components may result in the development of a modified glycocalyx. Thus, it is crucial that genetically modified animal models for glycocalyx components are characterized and validated before the development of mechanistic studies. Among the glycocalyx components, glypican 1, which acts through eNOS-dependent mechanisms, has recently emerged as a player in cardiovascular diseases. Whether glypican 1 regulates eNOS in physiological conditions is unclear. Herein, we assessed how the deletion of glypican 1 affects the development of the pulmonary endothelial glycocalyx and the impact on eNOS activity and endothelial function. Male and female 5-9-week-old wild-type and glypican 1 knockout mice were used. Transmission electron microscopy, immunofluorescence, and immunoblotting assessed the glycocalyx structure and composition. eNOS activation and content were assessed by immunoblotting; nitric oxide production was assessed by the Griess reaction. The pulmonary phenotype was evaluated by histological signs of lung injury, in vivo measurement of lung mechanics, and pulmonary ventilation. Glypican 1 knockout mice showed a modified glycocalyx with increased glycocalyx thickness and heparan sulfate content and decreased expression of syndecan 4. These alterations were associated with decreased phosphorylation of eNOS at S1177. The production of nitric oxides was not affected by the deletion of glypican 1, and the endothelial barrier was preserved in glypican 1 knockout mice. Pulmonary compliance was decreased, and pulmonary ventilation was unaltered in glypican 1 knockout mice. Collectively, these data indicate that the deletion of glypican 1 may result in the modification of the glycocalyx without affecting basal lung endothelial function, validating this mouse model as a tool for mechanistic studies that investigate the role of glypican 1 in lung endothelial function.


Asunto(s)
Glicocálix , Glipicanos , Ratones , Animales , Masculino , Femenino , Glipicanos/genética , Glipicanos/metabolismo , Glicocálix/metabolismo , Ratones Noqueados , Células Endoteliales/metabolismo , Pulmón/metabolismo
17.
Zh Nevrol Psikhiatr Im S S Korsakova ; 123(7. Vyp. 2): 34-42, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37560832

RESUMEN

OBJECTIVE: Identification of a complex of genetic predictors of multiple sclerosis (MS) based on previously obtained results in genome-wide association studies of disease markers (GWAS markers) in a population of MS patients and healthy individuals of the Republic of Bashkortostan (Russian Federation) using polygenic detection. MATERIAL AND METHODS: The total study group consisted of 2048 people (641 patients with MS and 1407 healthy individuals) who permanently resided in the Republic of Bashkortostan and belonged to the Bashkir (n=325), Russian (n=772) or Tatar (n=951) nationalities. The analysis of association between MS and polymorphisms previously associated with the disease according to GWAS data was performed. Of the 641 MS patients, 247 were the subject of a 20-year prospective clinical follow-up. RESULTS: The C6orf10 rs3129934*T allele was most significantly associated with MS in Russians (OR=2.00, P=5.85·10-5) and Tatars (OR=2.38, P=8.61·10-7). An increased MS risk in Russians was also associated with the EOMES rs11129295*T (OR=1.56, P=0.007) and IL7R rs1494558*I (OR=1.61, P=0.003) alleles. Meta-analysis confirmed the association of the C6orf10 rs3129934*T, EOMES rs11129295*T and IL7R rs1494558*I alleles with MS in the total group, as well as revealed associations of the INAVA rs7522462*G, IL7R rs10624573*I, CD6 rs17824933*G, GPC5 rs9523762*A and GPR65 rs2119704*C alleles with the disease. Using polygenic analysis, we identified a complex predictor C6orf10 rs3129934*C + INAVA rs7522462*G + CD6 rs17824933*C with a pronounced protective effect against MS in the total group (OR=0.34, PFDR=2.65·10-7). CONCLUSION: We reproduced the association of eight polymorphisms (C6orf10 rs3129934, INAVA rs7522462, IL7R rs10624573, EOMES rs11129295, GPR65 rs2119704, GPC5 rs9523762, CD6 rs17824933 and CD58 rs2300747) with MS, previously identified in GWAS in European populations. Whole exome or genome sequencing may help to reveal the mechanisms underlying the pathogenesis of MS in populations of the Russian Federation.


Asunto(s)
Esclerosis Múltiple , Humanos , Baskiria/epidemiología , Estudios de Seguimiento , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Estudio de Asociación del Genoma Completo , Estudios Prospectivos , Alelos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Glipicanos/genética
18.
Hum Genomics ; 17(1): 66, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461096

RESUMEN

BACKGROUND: Cancer predisposition is most often studied in the context of single cancers. However, inherited cancer predispositions can also give rise to multiple primary cancers. Yet, there is a paucity of studies on genetic predisposition in multiple primary cancers, especially those outside of well-defined cancer predisposition syndromes. This study aimed to identify germline variants associated with dual primary cancers of the breast and lung. METHODS: Exome sequencing was performed on germline DNA from 55 Singapore patients (52 [95%] never-smokers) with dual primaries in the breast and lung, confirmed by histopathology. Using two large control cohorts: the local SG10K_Health (n = 9770) and gnomAD non-cancer East Asians (n = 9626); and two additional local case cohorts of early-onset or familial breast cancer (n = 290), and lung cancer (n = 209), variants were assessed for pathogenicity in accordance with ACMG/AMP guidelines. In particular, comparisons were made with known pathogenic or likely pathogenic variants in the ClinVar database, pathogenicity predictions were obtained from in silico prediction software, and case-control association analyses were performed. RESULTS: Altogether, we identified 19 pathogenic or likely pathogenic variants from 16 genes, detected in 17 of 55 (31%) patients. Six of the 19 variants were identified using ClinVar, while 13 variants were classified pathogenic or likely pathogenic using ACMG/AMP guidelines. The 16 genes include well-known cancer predisposition genes such as BRCA2, TP53, and RAD51D; but also lesser known cancer genes EXT2, WWOX, GATA2, and GPC3. Most of these genes are involved in DNA damage repair, reaffirming the role of impaired DNA repair mechanisms in the development of multiple malignancies. These variants warrant further investigations in additional populations. CONCLUSIONS: We have identified both known and novel variants significantly enriched in patients with primary breast and lung malignancies, expanding the body of known cancer predisposition variants for both breast and lung cancer. These variants are mostly from genes involved in DNA repair, affirming the role of impaired DNA repair in the predisposition and development of multiple cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Neoplasias Primarias Múltiples , Humanos , Femenino , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Neoplasias Primarias Múltiples/genética , Neoplasias Pulmonares/genética , Células Germinativas , Glipicanos/genética
19.
Cancer Epidemiol Biomarkers Prev ; 32(9): 1190-1197, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37410084

RESUMEN

BACKGROUND: Cervical cancer oncogenesis starts with human papillomavirus (HPV) cell entry after binding to host cell surface receptors; however, the mechanism is not fully known. We examined polymorphisms in receptor genes hypothesized to be necessary for HPV cell entry and assessed their associations with clinical progression to precancer. METHODS: African American women (N = 1,728) from the MACS/WIHS Combined Cohort Study were included. Two case-control study designs were used-cases with histology-based precancer (CIN3+) and controls without; and cases with cytology-based precancer [high-grade squamous intraepithelial lesions (HSIL)] and controls without. SNPs in candidate genes (SDC1, SDC2, SDC3, SDC4, GPC1, GPC2, GPC3, GPC4, GPC5, GPC6, and ITGA6) were genotyped using an Illumina Omni2.5-quad beadchip. Logistic regression was used to assess the associations in all participants and by HPV genotypes, after adjusting for age, human immunodeficiency virus serostatus, CD4 T cells, and three principal components for ancestry. RESULTS: Minor alleles in SNPs rs77122854 (SDC3), rs73971695, rs79336862 (ITGA6), rs57528020, rs201337456, rs11987725 (SDC2), rs115880588, rs115738853, and rs9301825 (GPC5) were associated with increased odds of both CIN3+ and HSIL, whereas, rs35927186 (GPC5) was found to decrease the odds for both outcomes (P value ≤ 0.01). Among those infected with Alpha-9 HPV types, rs722377 (SDC3), rs16860468, rs2356798 (ITGA6), rs11987725 (SDC2), and rs3848051 (GPC5) were associated with increased odds of both precancer outcomes. CONCLUSIONS: Polymorphisms in genes that encode binding receptors for HPV cell entry may play a role in cervical precancer progression. IMPACT: Our findings are hypothesis generating and support further exploration of mechanisms of HPV entry genes that may help prevent progression to cervical precancer.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Virus del Papiloma Humano , Estudios de Cohortes , Estudios de Casos y Controles , Papillomaviridae/genética , Polimorfismo de Nucleótido Simple , Glipicanos/genética
20.
Anticancer Res ; 43(8): 3411-3418, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37500147

RESUMEN

BACKGROUND/AIM: The primary mode of therapy for individuals with locally advanced esophageal adenocarcinoma (EAC) is neoadjuvant chemotherapy, commonly 5-Fluorouracil (5-FU). However, approximately 30% of these patients develop resistance to therapy. Glypican-1 (GPC-1) has been identified as one of the key drivers of chemoresistance in cancer; however, its role in EAC cells has not been explored. The objective of the present study was to evaluate the role of GPC-1 in chemoresistance to 5-FU in EAC cells. MATERIALS AND METHODS: Cell viability to 5-FU was measured with CCK-8 assay, and GPC-1 expression was validated using western blot. 5-FU resistant cell lines were generated. The effect of lentivirus-mediated GPC-1 knockdown on FLO-1 cell viability, cell cycle, and apoptosis was evaluated. RESULTS: 5-FU resistant EAC cells showed increased GPC-1 expression and knockdown of GPC-1 increased cell death and apoptosis. Importantly, the knockdown of GPC-1 enhanced the antitumor effects of 5-FU in vitro via down-regulating AKT/ERK/ß-catenin signaling. CONCLUSION: Silencing GPC-1 has the potential to augment the efficacy of 5-FU chemotherapy in resistant EAC tumors.


Asunto(s)
Adenocarcinoma , Fluorouracilo , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Glipicanos/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Apoptosis , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA