Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.098
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39308989

RESUMEN

Background: Deep brain stimulation for dystonia improves motor symptoms but variable and delayed responses challenge patient selection, targeting, and device programming. Case Report: Here we studied intracranial electrophysiology in a patient with primary dystonia and observed evoked resonant neural activity (ERNA) in the globus pallidus interna. These local stimulus-evoked potentials displayed refractory periods and paired-pulse facilitation at clinically relevant interstimulus intervals. Sensing from directional DBS contacts localized ERNA to an effective stimulation site in the ventral posterolateral portion of the pallidum. Discussion: To the best of our knowledge, this is the first observation of ERNA in the globus pallidus interna in a patient with primary dystonia. Stimulus-evoked activity could eventually guide both directional and adaptive stimulation for dystonia and other complex neuropsychiatric disorders.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Distónicos , Globo Pálido , Humanos , Globo Pálido/fisiopatología , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/fisiopatología , Trastornos Distónicos/terapia , Masculino , Femenino , Potenciales Evocados/fisiología , Persona de Mediana Edad , Adulto
2.
Elife ; 122024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190604

RESUMEN

Background: The dichotomy between the hypo- versus hyperkinetic nature of Parkinson's disease (PD) and dystonia, respectively, is thought to be reflected in the underlying basal ganglia pathophysiology. In this study, we investigated differences in globus pallidus internus (GPi) neuronal activity, and short- and long-term plasticity of direct pathway projections. Methods: Using microelectrode recording data collected from the GPi during deep brain stimulation surgery, we compared neuronal spiketrain features between people with PD and those with dystonia, as well as correlated neuronal features with respective clinical scores. Additionally, we characterized and compared readouts of short- and long-term synaptic plasticity using measures of inhibitory evoked field potentials. Results: GPi neurons were slower, bustier, and less regular in dystonia. In PD, symptom severity positively correlated with the power of low-beta frequency spiketrain oscillations. In dystonia, symptom severity negatively correlated with firing rate and positively correlated with neuronal variability and the power of theta frequency spiketrain oscillations. Dystonia was moreover associated with less long-term plasticity and slower synaptic depression. Conclusions: We substantiated claims of hyper- versus hypofunctional GPi output in PD versus dystonia, and provided cellular-level validation of the pathological nature of theta and low-beta oscillations in respective disorders. Such circuit changes may be underlain by disease-related differences in plasticity of striato-pallidal synapses. Funding: This project was made possible with the financial support of Health Canada through the Canada Brain Research Fund, an innovative partnership between the Government of Canada (through Health Canada) and Brain Canada, and of the Azrieli Foundation (LM), as well as a grant from the Banting Research Foundation in partnership with the Dystonia Medical Research Foundation (LM).


Asunto(s)
Ganglios Basales , Distonía , Globo Pálido , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/fisiopatología , Distonía/fisiopatología , Masculino , Persona de Mediana Edad , Femenino , Ganglios Basales/fisiopatología , Globo Pálido/fisiopatología , Anciano , Estimulación Encefálica Profunda , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Adulto
3.
J Neurophysiol ; 132(3): 953-967, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39110516

RESUMEN

Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) can markedly reduce muscle rigidity in people with Parkinson's disease (PD); however, the mechanisms mediating this effect are poorly understood. Computational modeling of DBS provides a method to estimate the relative contributions of neural pathway activations to changes in outcomes. In this study, we generated subject-specific biophysical models of GPi DBS (derived from individual 7-T MRI), including pallidal efferent, putamenal efferent, and internal capsule pathways, to investigate how activation of neural pathways contributed to changes in forearm rigidity in PD. Ten individuals (17 arms) were tested off medication under four conditions: off stimulation, on clinically optimized stimulation, and on stimulation specifically targeting the dorsal GPi or ventral GPi. Quantitative measures of forearm rigidity, with and without a contralateral activation maneuver, were obtained with a robotic manipulandum. Clinically optimized GPi DBS settings significantly reduced forearm rigidity (P < 0.001), which aligned with GPi efferent fiber activation. The model demonstrated that GPi efferent axons could be activated at any location along the GPi dorsal-ventral axis. These results provide evidence that rigidity reduction produced by GPi DBS is mediated by preferential activation of GPi efferents to the thalamus, likely leading to a reduction in excitability of the muscle stretch reflex via overdriving pallidofugal output.NEW & NOTEWORTHY Subject-specific computational models of pallidal deep brain stimulation, in conjunction with quantitative measures of forearm rigidity, were used to examine the neural pathways mediating stimulation-induced changes in rigidity in people with Parkinson's disease. The model uniquely included internal, efferent and adjacent pathways of the basal ganglia. The results demonstrate that reductions in rigidity evoked by deep brain stimulation were principally mediated by the activation of globus pallidus internus efferent pathways.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Rigidez Muscular , Enfermedad de Parkinson , Humanos , Globo Pálido/fisiopatología , Globo Pálido/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Rigidez Muscular/fisiopatología , Rigidez Muscular/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología , Modelos Neurológicos
4.
J Affect Disord ; 363: 192-197, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029692

RESUMEN

BACKGROUND: Having multiple previous generations with depression in the family increases offspring risk for psychopathology. Parental depression has been associated with smaller subcortical brain volumes in their children, but whether two prior generations with depression is associated with further decreases is unclear. METHODS: Using two independent cohorts, 1) a Three-Generation Study (TGS, N = 65) with direct clinical interviews of adults and children across all three generations, and 2) the Adolescent Brain Cognitive Development Study (ABCD, N = 10,626) of 9-10 year-old children with family history assessed by a caregiver, we tested whether having more generations of depression in the family was associated with smaller subcortical volumes (using structural MRI). RESULTS: In TGS, caudate, pallidum and putamen showed decreasing volumes with higher familial risk for depression. Having a parent and a grandparent with depression was associated with decreased volume compared to having no familial depression in these regions. Putamen volume was associated with depression at eight-year follow-up. In ABCD, smaller pallidum and putamen were associated with family history, which was driven by parental depression, regardless of grandparental depression. LIMITATIONS: Discrepancies between cohorts could be due to interview type (clinical or self-report) and informant (individual or common informant), sample size or age. Future analyses of follow-up ABCD waves will be able to assess whether effects of grandparental depression on brain markers become more apparent as the children enter young adulthood. CONCLUSIONS: Basal ganglia regional volumes are significantly smaller in offspring with a family history of depression in two independent cohorts.


Asunto(s)
Imagen por Resonancia Magnética , Putamen , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/fisiopatología , Estudios de Cohortes , Depresión/epidemiología , Depresión/fisiopatología , Trastorno Depresivo/epidemiología , Trastorno Depresivo/fisiopatología , Familia Extendida , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Abuelos/psicología , Tamaño de los Órganos , Padres/psicología , Putamen/diagnóstico por imagen , Putamen/fisiopatología
5.
J Psychiatry Neurosci ; 49(4): E218-E232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960625

RESUMEN

BACKGROUND: Childhood trauma plays a crucial role in the dysfunctional reward circuitry in major depressive disorder (MDD). We sought to explore the effect of abnormalities in the globus pallidus (GP)-centric reward circuitry on the relationship between childhood trauma and MDD. METHODS: We conducted seed-based dynamic functional connectivity (dFC) analysis among people with or without MDD and with or without childhood trauma. We explored the relationship between abnormal reward circuitry, childhood trauma, and MDD. RESULTS: We included 48 people with MDD and childhood trauma, 30 people with MDD without childhood trauma, 57 controls with childhood trauma, and 46 controls without childhood trauma. We found that GP subregions exhibited abnormal dFC with several regions, including the inferior parietal lobe, thalamus, superior frontal gyrus (SFG), and precuneus. Abnormal dFC in these GP subregions showed a significant correlation with childhood trauma. Moderation analysis revealed that the dFC between the anterior GP and SFG, as well as between the anterior GP and the precentral gyrus, modulated the relationship between childhood abuse and MDD severity. We observed a negative correlation between childhood trauma and MDD severity among patients with lower dFC between the anterior GP and SFG, as well as higher dFC between the anterior GP and precentral gyrus. This suggests that reduced dFC between the anterior GP and SFG, along with increased dFC between the anterior GP and precentral gyrus, may attenuate the effect of childhood trauma on MDD severity. LIMITATIONS: Cross-sectional designs cannot be used to infer causality. CONCLUSION: Our findings underscore the pivotal role of reward circuitry abnormalities in MDD with childhood trauma. These abnormalities involve various brain regions, including the postcentral gyrus, precentral gyrus, inferior parietal lobe, precuneus, superior frontal gyrus, thalamus, and middle frontal gyrus. CLINICAL TRIAL REGISTRATION: ChiCTR2300078193.


Asunto(s)
Experiencias Adversas de la Infancia , Trastorno Depresivo Mayor , Globo Pálido , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Conectoma , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Recompensa
6.
Neurobiol Dis ; 199: 106581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936434

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE: We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS: Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS: The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS: Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Globo Pálido , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Globo Pálido/fisiología , Núcleo Subtalámico/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Distonía/terapia , Distonía/fisiopatología , Índice de Severidad de la Enfermedad , Anciano , Adulto Joven , Resultado del Tratamiento
7.
Cell Rep Med ; 5(6): 101566, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38759649

RESUMEN

Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.


Asunto(s)
Discinesia Inducida por Medicamentos , Globo Pálido , Levodopa , Levodopa/efectos adversos , Globo Pálido/efectos de los fármacos , Globo Pálido/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Discinesia Inducida por Medicamentos/patología , Animales , Neuronas/efectos de los fármacos , Masculino , Optogenética , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Núcleo Subtalámico/efectos de los fármacos , Núcleo Subtalámico/fisiopatología
8.
Nat Commun ; 15(1): 4602, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816390

RESUMEN

Circadian rhythms have been shown in the subthalamic nucleus (STN) in Parkinson's disease (PD), but only a few studies have focused on the globus pallidus internus (GPi). This retrospective study investigates GPi circadian rhythms in a large cohort of subjects with PD (130 recordings from 93 subjects) with GPi activity chronically recorded in their home environment. We found a significant change in GPi activity between daytime and nighttime in most subjects (82.4%), with a reduction in GPi activity at nighttime in 56.2% of recordings and an increase in activity in 26.2%. GPi activity in higher frequency bands ( > 20 Hz) was more likely to decrease at night and in patients taking extended-release levodopa medication. Our results suggest that circadian fluctuations in the GPi vary across individuals and that increased power at night might be due to the reemergence of pathological neural activity. These findings should be considered to ensure successful implementation of adaptive neurostimulation paradigms in the real-world.


Asunto(s)
Ritmo Circadiano , Estimulación Encefálica Profunda , Globo Pálido , Levodopa , Enfermedad de Parkinson , Humanos , Globo Pálido/fisiopatología , Enfermedad de Parkinson/fisiopatología , Ritmo Circadiano/fisiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Levodopa/uso terapéutico , Núcleo Subtalámico/fisiopatología
9.
J Neurol Neurosurg Psychiatry ; 95(10): 947-955, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641368

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.


Asunto(s)
Ganglios Basales , Enfermedad de Parkinson , Polisomnografía , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Trastorno de la Conducta del Sueño REM/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Ganglios Basales/fisiopatología , Electromiografía , Núcleo Subtalámico/fisiopatología , Globo Pálido/fisiopatología , Sueño REM/fisiología , Distonía/fisiopatología
10.
Mult Scler Relat Disord ; 86: 105576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579567

RESUMEN

OBJECTIVES: To explore structural and functional alterations of external (GPe) and internal (GPi) globus pallidus in people with multiple sclerosis (pwMS) compared to healthy controls (HC) and analyze their relationship with measures of clinical disability, motor and cognitive impairment. METHODS: Sixty pwMS and 30 HC comparable for age and sex underwent 3.0T MRI, including conventional, diffusion tensor MRI and resting state (RS) functional MRI. Expanded Disability Status Scale (EDSS) scores were rated and timed 25-foot walk (T25FW) test, nine-hole peg test (9HPT), and paced auditory serial addition test (PASAT) were administered. Two operators segmented the GP into GPe and GPi. Volumes, T1/T2 ratio, diffusivity indices and seed-based RS functional connectivity (FC) of the GP and its components were assessed. RESULTS: PwMS had no atrophy or altered diffusivity measures of the GP. Compared to HC, pwMS had higher T1/T2 ratio in both GP regions, which correlated with EDSS score (r = 0.26-0.39, p = 0.01-0.05). RS FC analysis highlighted component-specific functional alterations in pwMS: the GPe had decreased RS FC with fronto-parietal cortices, whereas the GPi had decreased intra-GP RS FC and increased RS FC with the thalamus. Worse EDSS, 9HPT, T25FW and PASAT scores were associated with GP RS FC modifications (r=-0.51‒0.51, p < 0.001). CONCLUSIONS: Structural GP involvement in MS was homogeneous across its portions. Increased T1/T2 ratio values, possibly representing iron accumulation, were related to more severe disability. RS FC alterations of the GPe and GPi were consistent with their roles within the basal ganglia network and correlated with worse functional status, suggesting less efficient communication between structures.


Asunto(s)
Globo Pálido , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Evaluación de la Discapacidad
11.
Clin Neurophysiol ; 162: 31-40, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555665

RESUMEN

OBJECTIVE: Low-frequency 4-12 Hz pallidal oscillations are being considered as potential physiomarkers for dystonia. We suggest investigating the multifractal properties of pallidal activity as an additional marker. METHODS: We employed local field potentials (LFP) recordings from 23 patients with dystonia who were undergoing deep brain stimulation (DBS) surgery to explore the connection between disease severity and the multifractal characteristics of pallidal activity. Furthermore, we performed an analysis of LFP recordings from four patients, following the externalization of DBS lead electrodes, to investigate the impact of DBS and neck muscle vibration on multifractal parameters. RESULTS: Greater dystonia severity exhibited a correlation with a narrower multifractal spectrum width but higher multifractal spectral asymmetry. Both GPi DBS and muscle vibration in dystonia patients expanded the multifractal spectrum width while restoring multifractal spectral symmetry. Notably, the threshold peak intensities for an increase in multifractal spectrum width substantially overlapped with the optimal volume of tissue activated. A broader multifractal spectrum during DBS corresponded to more favorable clinical outcomes. CONCLUSIONS: Multifractal properties of pallidal neuronal activity serve as indicators of neural dysfunction in dystonia. SIGNIFICANCE: These findings suggest the potential of utilizing multifractal characteristics as predictive factors for the DBS outcome in dystonia.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Globo Pálido , Humanos , Masculino , Femenino , Distonía/fisiopatología , Distonía/terapia , Adulto , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Persona de Mediana Edad , Fractales , Adulto Joven , Anciano
12.
Mov Disord ; 39(5): 768-777, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415321

RESUMEN

BACKGROUND: One of the characteristics of parkinsonian tremor is that its amplitude decreases with movement. Current models suggest an interaction between basal ganglia (BG) and cerebello-thalamo-cortical circuits in parkinsonian tremor pathophysiology. OBJECTIVE: We aimed to correlate central oscillation in the BG with electromyographic activity during re-emergent tremor in order to detect changes in BG oscillatory activity when tremor is attenuated by movement. METHODS: We performed a prospective, observational study on consecutive parkinsonian patients who underwent deep brain stimulation surgery and presented re-emergent tremor. Coherence analysis between subthalamic nucleus/globus pallidus internus (STN/GPi) tremorous activity measured by microrecording (MER) and electromyogram (EMG) from flexor and extensor wrist muscles during rest, posture, and re-emergent tremor pause was performed during surgery. The statistical significance level of the MER-EMG coherence was determined using surrogate data analysis, and the directionality of information transfer between BG and muscle was performed using entropy transfer analysis. RESULTS: We analyzed 148 MERs with tremor-like activity from 6 patients which were evaluated against the simultaneous EMGs, resulting in 296 correlations. Of these, 26 presented a significant level of coherence at tremor frequency, throughout rest and posture, with a complete EMG stop in between. During the pause, all recordings showed sustained MER peaks at tremor frequency (±1.5 Hz). Information flows preferentially from BG to muscle during rest and posture, with a loss of directionality during the pause. CONCLUSIONS: Our results suggest that oscillatory activity in STN/GPi functionally linked to tremor sustains firing frequency during re-emergent tremor pause, thus suggesting no direct role of the BG circuit on tremor attenuation due to voluntary movements. © 2024 International Parkinson and Movement Disorder Society.


Asunto(s)
Ganglios Basales , Estimulación Encefálica Profunda , Electromiografía , Movimiento , Enfermedad de Parkinson , Núcleo Subtalámico , Temblor , Humanos , Temblor/fisiopatología , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Ganglios Basales/fisiopatología , Persona de Mediana Edad , Anciano , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiopatología , Movimiento/fisiología , Estudios Prospectivos , Músculo Esquelético/fisiopatología , Globo Pálido/fisiopatología
13.
Sci Rep ; 13(1): 6349, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072448

RESUMEN

Although the identification of late adolescents with subthreshold depression (StD) may provide a basis for developing effective interventions that could lead to a reduction in the prevalence of StD and prevent the development of major depressive disorder, knowledge about the neural basis of StD remains limited. The purpose of this study was to develop a generalizable classifier for StD and to shed light on the underlying neural mechanisms of StD in late adolescents. Resting-state functional magnetic resonance imaging data of 91 individuals (30 StD subjects, 61 healthy controls) were included to build an StD classifier, and eight functional connections were selected by using the combination of two machine learning algorithms. We applied this biomarker to an independent cohort (n = 43) and confirmed that it showed generalization performance (area under the curve = 0.84/0.75 for the training/test datasets). Moreover, the most important functional connection was between the left and right pallidum, which may be related to clinically important dysfunctions in subjects with StD such as anhedonia and hyposensitivity to rewards. Investigation of whether modulation of the identified functional connections can be an effective treatment for StD may be an important topic of future research.


Asunto(s)
Depresión , Globo Pálido , Adolescente , Humanos , Biomarcadores , Mapeo Encefálico , Depresión/diagnóstico por imagen , Depresión/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/prevención & control , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Imagen por Resonancia Magnética/métodos
14.
PLoS One ; 16(12): e0259862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34905546

RESUMEN

Parkinson's disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.


Asunto(s)
Adaptación Fisiológica , Estimulación Encefálica Profunda/métodos , Cifosis/terapia , Enfermedad de Parkinson/terapia , Equilibrio Postural/fisiología , Anciano , Articulación del Tobillo/fisiología , Estudios de Casos y Controles , Femenino , Globo Pálido/fisiopatología , Cabeza/fisiología , Articulación de la Cadera/fisiología , Humanos , Articulación de la Rodilla/fisiología , Cifosis/etiología , Cifosis/fisiopatología , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Postura/fisiología , Articulación del Hombro/fisiología , Núcleo Subtalámico/fisiopatología
15.
Science ; 374(6564): 201-206, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618556

RESUMEN

Symptoms of neurological diseases emerge through the dysfunction of neural circuits whose diffuse and intertwined architectures pose serious challenges for delivering therapies. Deep brain stimulation (DBS) improves Parkinson's disease symptoms acutely but does not differentiate between neuronal circuits, and its effects decay rapidly if stimulation is discontinued. Recent findings suggest that optogenetic manipulation of distinct neuronal subpopulations in the external globus pallidus (GPe) provides long-lasting therapeutic effects in dopamine-depleted (DD) mice. We used synaptic differences to excite parvalbumin-expressing GPe neurons and inhibit lim-homeobox-6­expressing GPe neurons simultaneously using brief bursts of electrical stimulation. In DD mice, circuit-inspired DBS provided long-lasting therapeutic benefits that far exceeded those induced by conventional DBS, extending several hours after stimulation. These results establish the feasibility of transforming knowledge of circuit architecture into translatable therapeutic approaches.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Dopamina/deficiencia , Globo Pálido/fisiopatología , Neuronas/fisiología , Enfermedad de Parkinson/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Animales , Modelos Animales de Enfermedad , Dopamina/genética , Femenino , Globo Pálido/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Enfermedad de Parkinson/fisiopatología , Núcleo Subtalámico/citología , Núcleo Subtalámico/fisiopatología , Sinapsis/fisiología
16.
Clin Neurophysiol ; 132(12): 3190-3196, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34627682

RESUMEN

OBJECTIVE: In patients with cervical dystonia we sought for the differences in neuronal behavior of pallidal regions where deep brain stimulation resulted in favorable therapeutic response compared to those where the response was absent. METHODS: We compared single-unit activity of 564 neurons recorded from deep brain stimulation sensitive and non-sensitive regions in 17 cervical dystonia patients. RESULTS: Globus pallidus internus regions responsive to the deep brain stimulation had lower firing rates and bursting compared to non-responsive areas. The differences were robust in locations where neuronal responses correlated with neck movements. Per the effects of deep brain stimulation, the pallidal regions were classified in weak, intermediate, and excellent responsive. Pallidal regions with weak response to deep brain stimulation had fewer burst neurons and higher firing rate compared to neurons in areas with excellent response. The burst index was significantly decreased in excellent response regions. There was a significant decrease in the alpha band oscillation score but a substantial increase in the gamma band in excellent response neurons. CONCLUSION: The pallidal region that would be responsive to deep brain stimulation has distinct physiology compared to the non-responsive region. SIGNIFICANCE: These results provide novel insights into globus pallidus interna neurons' physiology in cervical dystonia.


Asunto(s)
Potenciales de Acción/fisiología , Globo Pálido/fisiopatología , Neuronas/fisiología , Tortícolis/terapia , Adulto , Estimulación Encefálica Profunda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tortícolis/fisiopatología , Adulto Joven
17.
Nat Commun ; 12(1): 5185, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465771

RESUMEN

Parkinson's disease (PD) is characterised by the emergence of beta frequency oscillatory synchronisation across the cortico-basal-ganglia circuit. The relationship between the anatomy of this circuit and oscillatory synchronisation within it remains unclear. We address this by combining recordings from human subthalamic nucleus (STN) and internal globus pallidus (GPi) with magnetoencephalography, tractography and computational modelling. Coherence between supplementary motor area and STN within the high (21-30 Hz) but not low (13-21 Hz) beta frequency range correlated with 'hyperdirect pathway' fibre densities between these structures. Furthermore, supplementary motor area activity drove STN activity selectively at high beta frequencies suggesting that high beta frequencies propagate from the cortex to the basal ganglia via the hyperdirect pathway. Computational modelling revealed that exaggerated high beta hyperdirect pathway activity can provoke the generation of widespread pathological synchrony at lower beta frequencies. These findings suggest a spectral signature and a pathophysiological role for the hyperdirect pathway in PD.


Asunto(s)
Vías Nerviosas , Enfermedad de Parkinson/fisiopatología , Estudios de Cohortes , Globo Pálido/química , Globo Pálido/fisiopatología , Humanos , Magnetoencefalografía , Corteza Motora/química , Corteza Motora/fisiopatología , Núcleo Subtalámico/química , Núcleo Subtalámico/fisiopatología
18.
J Parkinsons Dis ; 11(4): 1881-1885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34420982

RESUMEN

Deep brain stimulation (DBS) is an effective neuromodulatory therapy for Parkinson's disease (PD). Early studies using globus pallidus internus (GPi) DBS for PD profiled the nucleus as having two functional zones. This concept disseminated throughout the neuromodulation community as the "GPi triangle". Although our understanding of the pallidum has greatly evolved over the past 20 years, we continue to reference the triangle in our clinical decision-making process. We propose a new direction, termed the spatial boundary hypothesis, to build upon the 2-dimensional outlook on GPi DBS. We believe an updated 3-D GPi model can produce more consistent, positive patient outcomes.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Enfermedad de Parkinson , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiopatología , Humanos , Imagenología Tridimensional , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
19.
Ann Neurol ; 90(4): 670-682, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390280

RESUMEN

OBJECTIVE: The subthalamic nucleus (STN) and internal globus pallidus (GPi) are the most effective targets in deep brain stimulation (DBS) for Parkinson's disease (PD). However, the common and specific effects on brain connectivity of stimulating the 2 nuclei remain unclear. METHODS: Patients with PD receiving STN-DBS (n = 27, 6 women, mean age 64.8 years) or GPi-DBS (n = 28, 13 women, mean age 64.6 years) were recruited for resting-state functional magnetic resonance imaging to assess the effects of STN-DBS and GPi-DBS on brain functional dynamics. RESULTS: The functional connectivity both between the somatosensory-motor cortices and thalamus, and between the somatosensory-motor cortices and cerebellum decreased in the DBS-on state compared with the off state (p < 0.05). The changes in thalamocortical connectivity correlated with DBS-induced motor improvement (p < 0.05) and were negatively correlated with the normalized intersection volume of tissues activated at both DBS targets (p < 0.05). STN-DBS modulated functional connectivity among a wider range of brain areas than GPi-DBS (p = 0.009). Notably, only STN-DBS affected connectivity between the postcentral gyrus and cerebellar vermis (p < 0.001) and between the somatomotor and visual networks (p < 0.001). INTERPRETATION: Our findings highlight common alterations in the motor pathway and its relationship with the motor improvement induced by both STN- and GPi-DBS. The effects on cortico-cerebellar and somatomotor-visual functional connectivity differed between groups, suggesting differentiated neural modulation of the 2 target sites. Our results provide mechanistic insight and yield the potential to refine target selection strategies for focal brain stimulation in PD. ANN NEUROL 2021;90:670-682.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Cerebelo/fisiopatología , Estimulación Encefálica Profunda/métodos , Femenino , Globo Pálido/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Núcleo Subtalámico/cirugía , Tálamo/fisiopatología
20.
Brain ; 144(12): 3589-3596, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34293093

RESUMEN

Cervical dystonia is a non-degenerative movement disorder characterized by dysfunction of both motor and sensory cortico-basal ganglia networks. Deep brain stimulation targeted to the internal pallidum is an established treatment, but its specific mechanisms remain elusive, and response to therapy is highly variable. Modulation of key dysfunctional networks via axonal connections is likely important. Fifteen patients underwent preoperative diffusion-MRI acquisitions and then progressed to bilateral deep brain stimulation targeting the posterior internal pallidum. Severity of disease was assessed preoperatively and later at follow-up. Scans were used to generate tractography-derived connectivity estimates between the bilateral regions of stimulation and relevant structures. Connectivity to the putamen correlated with clinical improvement, and a series of cortical connectivity-based putaminal parcellations identified the primary motor putamen as the key node (r = 0.70, P = 0.004). A regression model with this connectivity and electrode coordinates explained 68% of the variance in outcomes (r = 0.83, P = 0.001), with both as significant explanatory variables. We conclude that modulation of the primary motor putamen-posterior internal pallidum limb of the cortico-basal ganglia loop is characteristic of successful deep brain stimulation treatment of cervical dystonia. Preoperative diffusion imaging contains additional information that predicts outcomes, implying utility for patient selection and/or individualized targeting.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Vías Nerviosas/fisiopatología , Putamen/fisiopatología , Tortícolis/fisiopatología , Tortícolis/terapia , Adulto , Anciano , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Globo Pálido/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Neuroimagen/métodos , Putamen/diagnóstico por imagen , Tortícolis/diagnóstico por imagen , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA