Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.717
Filtrar
1.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957181

RESUMEN

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Asunto(s)
Gelatina , Glucósidos , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Nanofibras , Neovascularización Fisiológica , Osteogénesis , Fenantrenos , Fenoles , Poliésteres , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Animales , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucósidos/química , Glucósidos/farmacología , Fenoles/química , Fenoles/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Masculino , Regeneración Ósea/efectos de los fármacos , Membranas Artificiales , Técnicas de Cocultivo , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
2.
PLoS One ; 19(7): e0305343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968273

RESUMEN

BACKGROUND: Salidroside (SAL), the main component of Rhodiola rosea extract, is a flavonoid with biological activities, such as antioxidative stress, anti-inflammatory, and hypolipidemic. In this study, the potential therapeutic targets and mechanisms of SAL against oxidative stress in retinal ganglion cells (RGCs) were investigated on the basis of in-vitro experiments, network pharmacology, and molecular docking techniques. METHODS: RGC oxidative stress models were constructed, and cell activity, reactive oxygen species (ROS), and apoptosis levels were examined for differences. The genes corresponding to rhodopsin, RGCs, and oxidative stress were screened from GeneCards, TCMSP database, and an analysis platform. The intersection of the three was taken, and a Venn diagram was drawn. Protein interactions, GO functional enrichment, and KEGG pathway enrichment data were analyzed by STRING database, Cytohubba plugin, and Metascape database. The key factors in the screening pathway were validated using qRT-PCR. Finally, molecular docking prediction was performed using MOE 2019 software, molecular dynamic simulations was performed using Gromacs 2018 software. RESULTS: In the RGC oxidative stress model in vitro, the cell activity was enhanced, ROS was reduced, and apoptosis was decreased after SAL treatment. A total of 16 potential targets of oxidative stress in SAL RGCs were obtained, and the top 10 core targets were screened by network topology analysis. GO analysis showed that SAL retinal oxidative stress treatment mainly involved cellular response to stress, transcriptional regulatory complexes, and DNA-binding transcription factor binding. KEGG analysis showed that most genes were mainly enriched in multiple cancer pathways and signaling pathways in diabetic complications, nonalcoholic fatty liver, and lipid and atherosclerosis. Validation by PCR, molecular docking and molecular dynamic simulations revealed that SAL may attenuate oxidative stress and reduce apoptosis in RGCs by regulating SIRT1, NRF2, and NOS3. CONCLUSION: This study initially revealed the antioxidant therapeutic effects and molecular mechanisms of SAL on RGCs, providing a theoretical basis for subsequent studies.


Asunto(s)
Apoptosis , Glucósidos , Simulación del Acoplamiento Molecular , Farmacología en Red , Estrés Oxidativo , Fenoles , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Glucósidos/farmacología , Glucósidos/química , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratas , Simulación de Dinámica Molecular , Antioxidantes/farmacología
3.
J Sep Sci ; 47(12): e2400118, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031866

RESUMEN

Tubers of Gymnadenia conopsea (L.) R. Br. (Orchidaceae), a traditional medicine and food homologous plant, has a broad application and development prospect in the food and drug industries. Benzylester glucosides, the main effective active components in this plant, are difficult to separate due to their similar structures and high polarity. In this study, linear gradient counter-current chromatography was used to separate benzylester glucosides and derivatives, combined with elution-extrusion mode. The main separation parameters were optimized, including the ratio of mobile phase and sample loading. Finally, seven compounds were successfully separated, including 4-hydroxybenzyl alcohol (1), 4-hydroxybenzaldehyde (2), dactylorhin B (3), loroglossin (4), dactylorhin A (5), 4-(ethoxymethyl) phenol (6), and militarine (7). The structures were analyzed by mass spectrometry and nuclear magnetic resonance spectrometry. According to our findings, the established method was an efficient approach to separate benzylester glucosides and derivatives from tubers of G. conopsea. The established strategy could be applied to purify other similar high-polarity compounds from complex natural products.


Asunto(s)
Distribución en Contracorriente , Glucósidos , Orchidaceae , Tubérculos de la Planta , Tubérculos de la Planta/química , Orchidaceae/química , Glucósidos/aislamiento & purificación , Glucósidos/química , Estructura Molecular , Ésteres/química , Ésteres/aislamiento & purificación
4.
Anal Chim Acta ; 1317: 342915, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029997

RESUMEN

Acteoside (ACT) was the main bioactive components in phenylethanoid glycosides of Cistanche tubulosa. Currently, the development of an efficient method for selectively separating ACT was crucial. Consequently, yolk-shell magnetic mesoporous carbon (YSMMC) was synthesized as a nanofiller to prepare molecularly imprinted membranes (ACT-MIMs) with instant noodles-like structure for selectively separating ACT. The numerous YSMMC were moved to the upper surface of ACT-MIMs by magnetic guidance and constructed the instant noodles-like structure in ACT-MIMs. The instant noodle-like structure increased the surface roughness of ACT-MIMs, which was conducive to improving the effective imprinted interface, increasing the selectivity of ACT-MIMs. In addition, the instant noodle-like structure had dendritic interleaved pathways in ACT-MIMs. The dendritic interleaved pathways can intercept ACT through ACT-MIMs, enhancing the permselectivity of ACT-MIMs. The prepared YSMMC possessed the dendritic shell and interlayer cavity structure can provide a great accommodation space, improving the rebinding capacities of ACT-MIMs. The high permselectivity (14.49), remarkable selectivity (7.52), and excellent rebinding capacity (120.48 mg/g) were achieved for the prepared ACT-MIMs. Thus, the design of ACT-MIMs with the instant noodles-like structure were valuable for selectively separating of bioactive components.


Asunto(s)
Glucósidos , Fenoles , Fenoles/química , Fenoles/análisis , Glucósidos/química , Glucósidos/análisis , Membranas Artificiales , Impresión Molecular , Porosidad , Propiedades de Superficie , Carbono/química , Polifenoles
5.
J Agric Food Chem ; 72(29): 16438-16448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981019

RESUMEN

Steviol glycosides (SGs) are a natural sweetener widely used in the food and beverage industry, but the low solubility and stability of SG aqueous solutions greatly limit their application performance, especially in liquid formulations. In this work, we explore the solubility behavior of rebaudioside A (Reb A) in water, a major component of SGs, with the aim of clarifying the underlying mechanisms of the solubility and stability constraints of SGs, as well as the impact on their multifunctional properties. We demonstrate for the first time that Reb A exhibits hierarchical self-assembly in solutions, forming spherical micelles first when the concentration exceeds its critical micelle concentration (5.071 mg/mL), which then further assemble into large rod-like aggregates. The formation of such large Reb A aggregates is mainly dominated by hydrogen bonding and short-range Coulomb interaction energy, thus leading to the low solubility and precipitation of Reb A solutions. Surprisingly, aggregated Reb A structures display significantly improved organoleptic properties, revealing that self-aggregation can be developed as a simple, efficient, and green strategy for improving the taste profile of SGs. Additionally, the self-aggregation of Reb A at high concentrations impairs active encapsulation and also affects its interfacial and emulsifying properties.


Asunto(s)
Diterpenos de Tipo Kaurano , Glicósidos , Solubilidad , Edulcorantes , Diterpenos de Tipo Kaurano/química , Edulcorantes/química , Glicósidos/química , Agua/química , Micelas , Enlace de Hidrógeno , Gusto , Glucósidos/química , Stevia/química , Soluciones/química
6.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999032

RESUMEN

Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.


Asunto(s)
Carotenoides , Crocus , Extractos Vegetales , Temperatura , Agua , Crocus/química , Agua/química , Carotenoides/análisis , Carotenoides/química , Extractos Vegetales/química , Glucósidos/análisis , Glucósidos/química , Espectrometría de Masas en Tándem/métodos , Terpenos/análisis , Terpenos/química , Flavonoides/análisis , Flavonoides/química , Ciclohexenos/análisis , Fitoquímicos/química , Fitoquímicos/análisis , Quempferoles/análisis , Quempferoles/química , Cromatografía Liquida/métodos
7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3229-3241, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041084

RESUMEN

Reyanning Mixture is one of the superior Chinese patent medicine varieties of "Qin medicine". Based on the idea of quality by design(QbD), the extraction process of the Reyanning Mixture was optimized. The caffeic acid, polydatin, resveratrol, and emodin were used as critical quality attributes(CQAs). The material-liquid ratio, extraction temperature, and extraction time were taken as critical process parameters(CPPs) by the Plackett-Burman test. The mathematical model was established by the star design-effect surface method, and the design space was constructed and verified. The optimal extraction process of the Reyanning Mixture was obtained as follows: material-liquid ratio of 11.84 g·mL~(-1), extraction temperature at 81 ℃, and two extractions. A partial least-square(PLS) quantitative model for CQAs was established by using near-infrared spectroscopy(NIRS) combined with high-performance liquid chromatography(HPLC) under the optimal extraction process. The results showed that the correlation coefficients of the correction set(R_c) and validation set(R_p) of the quantitative models of four CQAs were more than 0.9. The root mean square error of the correction set(RMSEC) were 0.744, 6.71, 3.95, and 1.53 µg·mL~(-1), respectively, and the root mean square error of the validation set(RMSEP) were 0.709, 5.88, 2.92, and 1.59 µg·mL~(-1), respectively. Therefore, the optimized extraction process of the Reyanning Mixture is reasonable, feasible, stable, and reliable. The NIRS quantitative model has a good prediction, which can be used for the rapid content determination of CQAs during extraction. They can provide an experimental basis for the process research and quality control of Reyanning Mixture.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Medicamentos Herbarios Chinos/análisis , Cromatografía Líquida de Alta Presión , Control de Calidad , Espectroscopía Infrarroja Corta/métodos , Temperatura , Glucósidos/análisis , Glucósidos/química , Ácidos Cafeicos
8.
Artículo en Inglés | MEDLINE | ID: mdl-39068869

RESUMEN

In this study, high-performance liquid chromatography was used to determine four components of Shaoyao Gancao Decoction (SGD), and the effect of purification was evaluated using fingerprints, similarity analysis and cell experiments. An effective method for isolation and purification of SGD was established. The adsorption/desorption properties of SGD were evaluated using resin screening, isothermal analysis, adsorption kinetics, and dynamic adsorption-desorption experiments. It was shown that the Langmuir equation fitted the isotherm data well and that a pseudo-second-order model accurately described kinetic adsorption on AB-8 resin. Analysis of thermodynamic parameters showed that the adsorption process was exothermic. Under the optimal process conditions, the concentrations of albiflorin, paeoniflorin, liquiritin and ammonium glycyrrhizinate in the product were 73.05, 134.04, 45.04 and 75.00 mg/g, respectively. The yields of the four components were 71.89 %-86.19 %. Cell experiments showed that the purified SGD retained anti-inflammatory activity. This research lays the foundation for the separation and purification of SGD and subsequent preparation research.


Asunto(s)
Medicamentos Herbarios Chinos , Glucósidos , Monoterpenos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Glucósidos/aislamiento & purificación , Glucósidos/química , Monoterpenos/aislamiento & purificación , Monoterpenos/química , Adsorción , Flavanonas/aislamiento & purificación , Flavanonas/química , Flavanonas/análisis , Animales , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/química , Ácido Glicirrínico/análisis , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/aislamiento & purificación , Ratones , Resinas Sintéticas/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Humanos , Células RAW 264.7
9.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997871

RESUMEN

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Asunto(s)
Agrobacterium tumefaciens , Antiinflamatorios , Catecoles , Alcoholes Grasos , Glucósidos , alfa-Glucosidasas , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Alcoholes Grasos/metabolismo , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Catecoles/química , Catecoles/farmacología , Catecoles/metabolismo , Glucósidos/química , Glucósidos/farmacología , Glucósidos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Solubilidad , Zingiber officinale/química
10.
J Agric Food Chem ; 72(30): 16790-16800, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39036896

RESUMEN

Anthocyanins are common natural pigments with a variety of physiological activities. Traditional perspectives attribute their molecular mechanism to noncovalent interactions influencing signaling pathways. However, this ignores the nature of its benzopyrylium skeleton, which readily reacts with the electron-rich groups of proteins. Here, we modified cyanidin-3-O-glucoside (C3G) via activity-based protein profiling technology by our previous synthesis route and prepared the covalent binding probe (C3G-Probe) and the noncovalent photoaffinity probe (C3G-Diazirine). The properties of C3G's covalent binding to proteins were also discovered by comparing the labeling of the two probes to the whole HepG2 cell proteome. We further explored its target proteins and enriched pathways in HepG2 and HeLa cells. Western blot analysis further confirmed the covalent binding of C3G to four target proteins: insulin-degrading enzyme, metal cation symporter ZIP14, spermatid perinuclear RNA-binding protein, and Cystatin-B. Pathway analysis showed that covalent targets of C3G were concentrated in metabolic pathways and several ribonucleoprotein complexes that were also coenriched. The results of this study provide new insights into the interaction of the naturally active molecule C3G with proteins.


Asunto(s)
Antocianinas , Glucósidos , Antocianinas/química , Antocianinas/metabolismo , Humanos , Glucósidos/química , Glucósidos/metabolismo , Células Hep G2 , Células HeLa , Unión Proteica , Proteínas/química , Proteínas/metabolismo
11.
J Food Sci ; 89(8): 4899-4913, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980988

RESUMEN

Nonenzymatic glycosylation of proteins can generate advanced glycosylation end products, which are closely associated with the pathogenesis of certain chronic physiological diseases and aging. In this study, we characterized the covalent binding of cyanidin-3-glucoside (C3G) to bovine serum albumin (BSA) and investigated the mechanism by which this covalent binding inhibits the nonenzymatic glycosylation of BSA. The results indicated that the covalent interaction between C3G and BSA stabilized the protein's secondary structure. Through liquid chromatography-electrospray ionization tandem mass spectrometry analysis, we identified the covalent binding sites of C3G on BSA as lysine, arginine, asparagine, glutamine, and cysteine residues. This covalent interaction significantly suppressed the nonenzymatic glycosylation of BSA, consequently reducing the formation of nonenzymatic glycosylation products. C3G competitively binds to nonenzymatic glycosylation sites (e.g., lysine and arginine) on BSA, thereby impeding the glycosylation process and preventing the misfolding and structural alterations of BSA induced by fructose. Furthermore, the covalent attachment of C3G to BSA preserves the secondary structure of BSA and hinders subsequent nonenzymatic glycosylation events.


Asunto(s)
Antocianinas , Glucósidos , Albúmina Sérica Bovina , Glicosilación , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Animales , Sitios de Unión , Bovinos , Estructura Secundaria de Proteína , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Unión Proteica , Espectrometría de Masas en Tándem , Espectrometría de Masa por Ionización de Electrospray
12.
Int J Biol Macromol ; 273(Pt 2): 133205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38885871

RESUMEN

Although myricetin (3,3',4',5,5',7-hexahydroxyflavone, MYR) has a high antioxidant capacity and health functions, its use as a functional food material is limited owing to its low stability and water solubility. Amylosucrase (ASase) is capable of biosynthesizing flavonol α-glycoside using flavonols as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus deserti (DdAS) efficiently biosynthesizes a novel MYR α-triglucoside (MYRαG3) using MYR as the acceptor molecule. Comparative homology analysis and computational simulation revealed that DdAS has a different active pocket for the transglycosylation reaction. DdAS produced MYRαG3 with a conversion efficiency of 67.4 % using 10 mM MYR and 50 mM sucrose as acceptor and donor molecules, respectively. The structure of MYRαG3 was identified as MYR 4'-O-4″,6″-tri-O-α-D-glucopyranoside using NMR and LC-MS. In silico analysis confirmed that DdAS has a distinct active pocket compared to other ASases. In addition, molecular docking simulations predicted the synthetic sequence of MYRαG3. Furthermore, MYRαG3 showed a similar DPPH radical scavenging activity of 49 %, comparable to MYR, but with significantly higher water solubility, which increased from 0.03 µg/mL to 511.5 mg/mL. In conclusion, this study demonstrated the efficient biosynthesis of a novel MYRαG3 using DdAS and highlighted the potential of MYRαG3 as a functional material.


Asunto(s)
Deinococcus , Flavonoides , Glucósidos , Glucosiltransferasas , Solubilidad , Deinococcus/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/biosíntesis , Glucósidos/química , Glucósidos/biosíntesis , Glucósidos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular
13.
Biomed Chromatogr ; 38(8): e5933, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38863152

RESUMEN

Liquiritin (LQ), a kind of flavonoid isolated from licorice, was proven to have great potential in treating heart failure. Pharmacokinetic evaluation is important for demonstrating clinical efficacy and mechanisms, and the prototype drug and its metabolite profiling are important for drug discovery and development. However, the metabolism of LQ in acute myocardial infarction (AMI) model rats still needs to be studied in depth. An information-dependent acquisition (IDA)-ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was applied to profile LQ metabolites in AMI model rat plasma. Protein precipitation and extraction were used for sample preparation. Chromatographic separation was achieved using an XSelect BEH C18 column (2.1 × 150 mm, 2.5 µm) using gradient elution method combining 0.1% formic acid and acetonitrile with a flow rate of 0.3 mL/min. Twelve metabolites were identified in IDA mode, sulfation, glucuronidation, methylation, methyl esterification, glutamine conjugation, and valine conjugation, and their composite reactions were presumed as the primary pathways of LQ metabolism. The variation in the peak areas showed that the time to reach the peak drug concentration of LQ and 12 metabolites was within 5 h. In summary, IDA-bridged UHPLC-MS/MS from characteristic fragment ions toward confidence-enhanced identification could effectively screen and profile metabolites.


Asunto(s)
Flavanonas , Glucósidos , Infarto del Miocardio , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Ratas , Infarto del Miocardio/metabolismo , Flavanonas/farmacocinética , Flavanonas/sangre , Flavanonas/química , Masculino , Glucósidos/farmacocinética , Glucósidos/sangre , Glucósidos/química , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados , Modelos Lineales
14.
J Ethnopharmacol ; 333: 118475, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38908496

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The pathophysiological mechanism of thromboinflammation involves the intricate interplay between the inflammatory responses and coagulation cascades. Rhubarb is frequently used in traditional Chinese medicine to treat thromboinflammatory diseases. The scorched rhubarb (prepared by stir-baking the dried raw rhubarb till it partly turns to charcoal) is believed to possess enhanced blood-cooling and stasis-removing functions compared to the raw rhubarb, thereby augmenting the therapeutic effects on thromboinflammation. AIM OF THE STUDY: This study aimed to explore the chemical and pharmacological foundations of the scorch processing of rhubarb in order to ensure and enhance the efficacy and safety of the scorched rhubarb for treating thromboinflammatory diseases. MATERIALS AND METHODS: The dried raw rhubarb pieces were subjected to stir-baking at 180 °C for 10∼80 min to obtain the rhubarbs with varying degrees of scorching. Typical ingredients present in rhubarb pieces and extracts were determined by high-performance liquid chromatography. The therapeutic effects of the raw and scorched rhubarb on thromboinflammation were evaluated using a rat model. Proteomics analysis was employed to screen potential biological pathways associated with thromboinflammation treatment by the raw and scorched rhubarb, which were further verified using a cell model. RESULTS: Morphological properties indicated that the rhubarb baked at 180 °C for 50 min in this research showed the optimal degree of scorching. Compared to the raw rhubarb, the properly scorched rhubarb exhibited lower levels of anthraquinone glucosides, higher levels of anthraquinone aglycones, superior anti-thromboinflammatory effects, and no purgative side effects. Proteomics analysis revealed that the complement and coagulation cascades pathway played a significant role in mediating the therapeutic effects of the raw and scorched rhubarb on thromboinflammation. Furthermore, it was found that anthraquinone aglycones were more effective than their glucoside counterparts in restoring the impaired vascular endothelial cells as well as regulating the complement and coagulation cascades pathway. CONCLUSIONS: Proper scorch processing may augment the therapeutic effects of rhubarb on thromboinflammation via relieving inflammation and oxidative stress, repairing vascular endothelial cells, restoring coagulation cascades and blood rheology, and regulating some other biological processes. This may be partly caused by the scorch-induced thermolysis of anthraquinone glucosides into their aglycone counterparts that seemed to perform better in regulating the complement and coagulation cascades pathway.


Asunto(s)
Antraquinonas , Coagulación Sanguínea , Glucósidos , Ratas Sprague-Dawley , Rheum , Animales , Rheum/química , Antraquinonas/farmacología , Coagulación Sanguínea/efectos de los fármacos , Masculino , Glucósidos/farmacología , Glucósidos/química , Ratas , Inflamación/tratamiento farmacológico , Trombosis/tratamiento farmacológico , Antiinflamatorios/farmacología , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/química
15.
Chem Biol Interact ; 397: 111087, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823536

RESUMEN

Xanthine oxidase (XO) plays a critical role in purine catabolism, catalyzing the conversion of hypoxanthine to xanthine and xanthine to uric acid, contributing to superoxide anion production. This process is implicated in various human diseases, particularly gout. Traditional XO inhibitors, such as allopurinol and febuxostat, while effective, may present side effects. Our study focuses on Asphodelus microcarpus, a plant renowned for traditional anti-inflammatory uses. Recent investigations into its phenolic-rich flowers, notably abundant in luteolin derivatives, reveal its potential as a natural source of XO inhibitors. In the present research, XO inhibition by an ethanolic flowers extract from A. microcarpus is reported. In silico docking studies have highlighted luteolin derivatives as potential XO inhibitors, and molecular dynamics support that luteolin 7-O-glucoside has the highest binding stability compared to other compounds and controls. In vitro studies confirm that luteolin 7-O-glucoside inhibits XO more effectively than the standard inhibitor allopurinol, with an IC50 value of 4.8 µg/mL compared to 11.5 µg/mL, respectively. These findings underscore the potential therapeutic significance of A. microcarpus in managing conditions related to XO activity. The research contributes valuable insights into the health-promoting properties of A. microcarpus and its potential application in natural medicine, presenting a promising avenue for further exploration in disease management.


Asunto(s)
Inhibidores Enzimáticos , Luteolina , Simulación del Acoplamiento Molecular , Xantina Oxidasa , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Luteolina/química , Luteolina/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Glucósidos/química , Glucósidos/farmacología , Simulación de Dinámica Molecular , Flores/química , Alopurinol/farmacología , Alopurinol/química , Humanos , Sitios de Unión
16.
Chem Biol Interact ; 398: 111110, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876248

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder that is linked to metabolic syndrome, mitochondrial dysfunction and impaired autophagy. Polydatin (PD), a natural polyphenol from Polygonum cuspidatum, exhibits various pharmacological effects and protects against NAFLD. The aim of this study was to reveal the molecular mechanisms and therapeutic potential of PD for NAFLD, with a focus on the role of mitochondrial autophagy mediated by sirtuin 3 (SIRT3), fork-head box O3 (FOXO3) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), and by PTEN-induced putative kinase 1 (PINK1) and parkin (PRKN). We combined network pharmacology analysis, animal models and cell culture experiments to show that PD could regulate the mitochondrial autophagy pathway by modulating several key genes related to mitochondrial function, and ameliorate the liver function, histopathology and mitochondrial biogenesis of NAFLD mice and hepatocytes by activating the SIRT3-FOXO3-BNIP3 axis and the PINK1-PRKN-dependent mechanism of mitochondrial autophagy. We also identified the core targets of PD, including SIRT3, FOXO3A, CASP3, PARKIN, EGFR, STAT3, MMP9 and PINK, and confirmed that silencing SIRT3 could significantly attenuate the beneficial effect of PD. This study provided novel theoretical and experimental support for PD as a promising candidate for NAFLD treatment, and also suggested new avenues and methods for investigating the role of mitochondrial autophagy in the pathogenesis and intervention of NAFLD.


Asunto(s)
Proteína Forkhead Box O3 , Glucósidos , Ratones Endogámicos C57BL , Mitocondrias , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas , Sirtuina 3 , Estilbenos , Ubiquitina-Proteína Ligasas , Animales , Proteína Forkhead Box O3/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , Glucósidos/farmacología , Glucósidos/uso terapéutico , Glucósidos/química , Estilbenos/farmacología , Estilbenos/uso terapéutico , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Quinasas/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Autofagia/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proteínas de la Membrana
17.
J Chromatogr A ; 1730: 465094, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889584

RESUMEN

In this study, the collision induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in rhubarb was wholly explored using 34 standards by UHPLC-QTOF-MS/MS in negative ion mode. In consequently, the diagnostic product ions for speedy screening and categorization of chemical components in rhubarb were ascertained based on their MS/MS splitting decomposition patterns and intensity analysis. According to these findings, a fresh two-step data mining strategy had set up. The initial key step involves the use of characteristic product ions and neutral loss to screen for different types of substituents and basic skeletons of compounds. The subsequent key step is to screen and classify different types of compounds based on their characteristic product ions. This method can be utilized for rapid research, classification, and identification of compounds in rhubarb. A total of 356 compounds were rapidly identified or tentatively characterized in three rhubarb species extracts, including 150 acylglucoside, 125 anthraquinone, 65 flavanols and 15 other compounds. This study manifests that the analytical strategy is feasible for the analysis of complex natural products in rhubarb.


Asunto(s)
Antraquinonas , Rheum , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Rheum/química , Espectrometría de Masas en Tándem/métodos , Antraquinonas/química , Antraquinonas/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Glucósidos/análisis , Glucósidos/química
18.
Carbohydr Res ; 542: 109174, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865798

RESUMEN

A series of derivatives of salidroside with mirror isomer glucose and different phenyl moieties were synthesized by Schmidt glycosylation in satisfactory yields, and their antioxidant and anti-inflammatory activities were evaluated by using LPS-induced RAW264.7 cells. One of the synthesized derivatives ʟ-Sal-4, bearing ʟ-glycosyl and -OMe modification at the phenyl ring, exhibited high activity in inhibiting the production of pro-inflammatory cytokines and oxidative stress biomarker MDA as well as in enhancing the activity of SOD enzyme, compared with the natural product and its corresponding ᴅ-enantiomer. Further proteomic analysis suggested that ʟ-Sal-4 exerted its anti-inflammatory activity through metabolic reprogramming. The in vitro activity showed that ʟ-Sal-4 is a potent antioxidant and anti-inflammatory agent. Our finding indicated that the ʟ-glucose-derived salidroside might be a promising lead compound in the development of salidroside derivatives as therapeutic agents.


Asunto(s)
Antiinflamatorios , Antioxidantes , Glucósidos , Fenoles , Fenoles/farmacología , Fenoles/química , Fenoles/síntesis química , Ratones , Animales , Glucósidos/farmacología , Glucósidos/síntesis química , Glucósidos/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Relación Estructura-Actividad , Estrés Oxidativo/efectos de los fármacos
19.
J Pharm Biomed Anal ; 248: 116266, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879950

RESUMEN

Gastrodiae Rhizoma was proven to have anti-inflammatory activity based on its main component of 4-hydroxybenzyl alcohol (4-HBA) and gastrodin (GAS). However, the anti-inflammatory activity of other phenols has been less reported. In this study, the n-BuOH extract was selected as the active anti-inflammatory part of Gastrodiae Rhizoma based on the LPS-induced inflammatory BV-2 cells. The spectral-effect relationship analysis of the n-BuOH extract showed the main effective components were GAS, 4-HBA, parishin A (PA), parishin B (PB), and parishin C (PC). Among them, PB could reduce LPS-induced expression of nitric oxide (NO), intracellular ROS, TNF-α, IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Molecular docking predicted that PB had a good binding capacity to AMPKα and SIRT1 proteins of -12.1 kJ/mol and -7.6 kJ/mol, respectively. The Western Blot results further demonstrated that PB could inhibit NF-κB pathway by activating AMPK/SIRT1 pathway, thus exerting anti-LPS-induced neuroinflammatory effects. This study provides a referable idea for solving the problem of unclear action of TCM with complex compositions and is of great significance for the development of innovative medicines of traditional Chinese medicine.


Asunto(s)
Antiinflamatorios , Gastrodia , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Rizoma , Gastrodia/química , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Rizoma/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/química , Línea Celular , Lipopolisacáridos/farmacología , Ciclooxigenasa 2/metabolismo , FN-kappa B/metabolismo , Glucósidos/farmacología , Glucósidos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
20.
J Agric Food Chem ; 72(26): 15005-15012, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888327

RESUMEN

The chemical synthesis of anthocyanins, especially delphinidin-3-O-glucoside and petunidin-3-O-glucoside, is preferable due to the challenges associated with their extraction and purification. However, the reported methods for the synthesis are scarce and intricate. Our research focused on exploring a one-step ester-to-ketone process and optimizing the ring formation reaction, simplifying and improving the overall synthesis strategy. Through these attempts, we were able to achieve higher production yields of delphinidin-3-O-glucoside and petunidin-3-O-glucoside. According to the results of DPPH, ABTS, and FRAP, the antioxidant activity of anthocyanins was increased with the number of B ring hydroxyl substituent. Additionally, both delphinidin-3-O-glucoside and petunidin-3-O-glucoside exhibited no cytotoxicity effects, highlighting their potential for safe application in various fields.


Asunto(s)
Antocianinas , Antioxidantes , Glucósidos , Antocianinas/química , Antocianinas/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/síntesis química , Glucósidos/química , Glucósidos/farmacología , Glucósidos/síntesis química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA