Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.240
Filtrar
1.
Mikrochim Acta ; 191(10): 585, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251503

RESUMEN

A new method of reducing the amount of reagent and sample for determination of thrombomodulin (TM) was developed based on competitive immunoreaction using a portable glucometer (PGM). Two types of nanocomposites, TM protein-modified magnetic nanoparticles (MNPs-TM) and TM antibody-/glucose oxidase-modified gold nanoparticles (Ab-GNPs-GOx), were prepared. Their binding product, MNPs-TM-Ab-GNPs-GOx, in the microvolumetric solution was used to catalyze the oxidation of glucose, leading to a decline of the glucose content. The TM-involved competitive immunoreaction had a negative effect on the generation of MNPs-/GNPs-based nanocomposites and inhibited the catalytic oxidation of glucose. The glucose content difference in the microvolumetric solution, which was revealed by a PGM, was in proportion to the logarithm of the TM concentration from 25 ng mL-1 to 2.5 µg mL-1. The limit of detection was 5.7 ng mL-1. Microvolumetric solution and a PGM were used in the measurement, which overcame some deficiencies of classical methods in chemo/biosensing, for example, special instrument, complicated measurement procedure, and high cost.


Asunto(s)
Glucosa Oxidasa , Oro , Límite de Detección , Trombomodulina , Oro/química , Humanos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Automonitorización de la Glucosa Sanguínea/instrumentación , Inmunoensayo/métodos , Nanopartículas de Magnetita/química , Nanocompuestos/química
2.
Langmuir ; 40(37): 19766-19774, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235374

RESUMEN

High blood glucose and insufficient angiogenesis in diabetic wounds prevent healing, often leading to amputation or death. To address this, a multifunctional emulsion loaded with simvastatin and stabilized by enzymes was synthesized using ultrasound-assisted emulsification. This emulsion promotes angiogenesis and reduces blood glucose levels. Glucose oxidase and catalase at the emulsion interface catalyze a glucose cascading response, lowering the glucose concentration at the diabetic wound site and improving the wound microenvironment. Simvastatin in the emulsion further promotes angiogenesis. The emulsion significantly accelerated wound healing in diabetic rats, offering a promising approach to diabetic wound management.


Asunto(s)
Diabetes Mellitus Experimental , Emulsiones , Glucosa Oxidasa , Cicatrización de Heridas , Animales , Emulsiones/química , Cicatrización de Heridas/efectos de los fármacos , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Simvastatina/química , Simvastatina/farmacología , Catalasa/química , Catalasa/metabolismo , Oxígeno/química , Glucemia/efectos de los fármacos , Ratas Sprague-Dawley
3.
ACS Appl Mater Interfaces ; 16(37): 49083-49091, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39228328

RESUMEN

Photothermal therapy (PTT) and photodynamic therapy (PDT) provide targeted approaches to cancer treatment, but each therapy has inherent limitations such as insufficient tissue penetration, uneven heat distribution, extreme hypoxia, and overexpressed HSP90 in tumor cells. To address these issues, herein, by encapsulating the IR780 dye and glucose oxidase (GOx) enzyme within ZIF-8 nanoparticles, we created a versatile system capable of combining photodynamic and enhanced photothermal therapy. The integration of the IR780 dye facilitated the generation of reactive oxygen species and hyperthermia upon light activation, enabling dual-mode cancer cell ablation. Moreover, GOx catalyzes the decomposition of glucose into gluconic acid and hydrogen peroxide, leading to the inhibition of ATP production and downregulation of heat shock protein 90 (HSP90) expression, sensitizing cancer cells to heat-induced cytotoxicity. This synergistic combination resulted in significantly improved therapeutic outcomes. Both in vitro and in vivo results validated that the nanoplatform demonstrated superior specificity and favorable therapeutic responses. Our innovative approach represents a promising strategy for overcoming current limitations in cancer treatments and offers the potential for clinical translation in the future.


Asunto(s)
Glucosa Oxidasa , Estructuras Metalorgánicas , Fotoquimioterapia , Terapia Fototérmica , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Humanos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/síntesis química , Concentración de Iones de Hidrógeno , Indoles/química , Indoles/farmacología , Línea Celular Tumoral , Nanopartículas/química , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Ratones Desnudos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Imidazoles
4.
Biomed Pharmacother ; 179: 117402, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243428

RESUMEN

In recent years, the integration of radiotherapy and nanocatalytic medicine has gained widespread attention in the treatment of breast cancer. Herein, the glucose oxidase (GOx) and MnO2 nanoparticles co-modified multifunctional liposome of GOx-MnO2@Lip was constructed for enhanced radiotherapy. Introduction of GOx would not only elevate the glucose consumption to starve the cancer cells, but also increased the endogenous H2O2 level. Meanwhile, high intracellular GSH concentration facilitated the release of Mn2+ to amplify the cytotoxic ·OH through cascade catalytic reactions within the tumor microenvironment, resulting in a favorable tumor suppression rate of 74.45 %. Furthermore, the blood biochemical and blood routine demonstrated that GOx-MnO2@Lip had no obvious toxic side effects. Therefore, this work provided a potential vehicle for synergistic cancer starving therapy, chemodynamic therapy and radiotherapy for improving therapeutic efficacy of breast cancer.


Asunto(s)
Neoplasias de la Mama , Glucosa Oxidasa , Liposomas , Compuestos de Manganeso , Óxidos , Fármacos Sensibilizantes a Radiaciones , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Glucosa Oxidasa/metabolismo , Femenino , Óxidos/química , Óxidos/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Humanos , Línea Celular Tumoral , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos BALB C , Catálisis , Ratones , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos
5.
Anal Chim Acta ; 1324: 343116, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218569

RESUMEN

BACKGROUND: Salmonella Typhimurium poses a serious threat to human health worldwide, necessitating the development of a rapid, sensitive, and convenient method for S. Typhimurium detection. Nanozymes are considered ideal signal report elements, which are extensively used for developing colorimetric methods. However, single-component nanozymes display low catalytic activity, and colorimetric methods are susceptible to environmental interference, reducing the sensitivity and accuracy of detection results. To address these drawbacks, this study constructed a dual-mode composite nanozyme-based cascade colorimetric-fluorescence aptasensor for S. Typhimurium detection in food. RESULTS: In this study, the composite Fe3O4@MIL-100(Fe) nanozymes were successful synthesized and demonstrated substantial peroxide-like activity, with 4.76-fold higher specificity activity (SA) than that of Fe3O4 nanozymes. Then, a glucose oxidase (GOx)-Fe3O4@MIL-100(Fe) cascade reaction was developed for colorimetric detection via an aptamer to facilitate the formation of Fe3O4@MIL-100(Fe)/S. Typhimurium/carboxylated g-C3N4 (CCN)-GOx sandwich complexes. Meanwhile, the fluorescence mode was achieved by measuring the fluorescence intensity of the sandwich complexes. In optimum conditions, the dual-mode detection limits (LOD) were 1.8 CFU/mL (colorimetric mode) and 1.2 CFU/mL (fluorescence mode), respectively, with the S. Typhimurium concentration ranging from 10 CFU/mL to 107 CFU/mL. Finally, the feasibility of the dual-mode colorimetric-fluorescence method was validated via three actual samples, yielding recovery rates of 77.32 % to91.17 % and 82.17 % to 103.7 %, respectively. SIGNIFICANCE AND NOVELTY: This study successfully develops a composite nanozyme-based cascade colorimetric and fluorescence dual-mode aptasensor for S. Typhimurium detection. It presents several distinct benefits, such as a broader linear range (10-107 CFU/mL), a lower LOD value (1.2 CFU/mL), and more accurate results. More importantly, the proposed dual-mode method displays a low LOD in colorimetric mode, demonstrating considerable potential for S. Typhimurium on-site detection in food.


Asunto(s)
Aptámeros de Nucleótidos , Colorimetría , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Colorimetría/métodos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección , Fluorescencia , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Estructuras Metalorgánicas/química , Espectrometría de Fluorescencia
6.
Anal Chim Acta ; 1324: 343103, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218582

RESUMEN

BACKGROUND: Recently, various techniques have been developed to accurately and sensitively detect tumor biomarkers for the early diagnosis and effective therapy of cancer. The electrochemiluminescence (ECL) method holding outstanding features including high sensitivity, ease of operation, and spatiotemporal controllability exhibited great potential for DNA/RNA detection, immunoassay, cancer cell detection, and environmental analysis. However, a glaring problem of ECL approaches is that the layer-by-layer modification on the electrode leads to poor stability and sensitivity of the sensors. Therefore, new simple and efficient methods for electrode modification which can effectively improve the ECL signal have attracted more and more research interests. RESULTS: Based on the dual amplification strategy of target-induced CHA and nanocomposite probes leading to self-generated co-reactant (H2O2), we proposed a highly sensitive miRNA-ECL detection system. The introduction of the target miRNA-21 triggers the CHA cycle amplification of DNA1 and biotin-modified DNA2, releasing the target miRNA-21 sequence for the target cycle reaction. After the reaction, the newly introduced DNA2 was combined with Au NPs modified with SA and Glucose oxidase (GOD). In the presence of oxygen, glucose was decomposed by GOD to produce H2O2, and then H2O2 was immediately catalyzed by the Hemin/G-quadruplex at the double-stranded end of the CHA product to produce a large amount of O2-•. As a co-reactant of luminol, the ECL signal was significantly enhanced, thereby achieving highly sensitive detection of miRNA-21 content and obtaining a low detection limit of 0.65 fM. The high specificity of the ECL biosensor was also proved by base mismatch. SIGNIFICANCE: Compared with other current detection methods, this sensor can achieve quantitative analysis of other target analytes by flexibly changing the probe DNA sequence, and provide a new feasible solution for the detection of tumor-associated markers. Benefiting from the improved sensitivity and selectivity, the proposed biosensing platform is expected to provide a new strategy for biomarkers analysis and outstanding prospect for further clinical application.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Glucosa Oxidasa , Peróxido de Hidrógeno , MicroARNs , MicroARNs/análisis , Humanos , Peróxido de Hidrógeno/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Mediciones Luminiscentes , Límite de Detección , Oro/química , Nanopartículas del Metal/química , Catálisis , ADN/química
7.
ACS Appl Mater Interfaces ; 16(38): 50295-50304, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265065

RESUMEN

Cascade-enzyme reaction systems have emerged as promising tools for treating malignant tumors by efficiently converting nutrients into toxic substances. However, the challenges of poor localized retention capacity and utilization of highly active enzymes often result in extratumoral toxicity and reduced therapeutic efficacy. In this study, we introduced a cell membrane-DNA nanoanchor (DNANA) with a spatially confined cascade enzyme for in vivo tumor therapy. The DNANAs are constructed using a polyvalent cholesterol-labeled DNA triangular prism, ensuring high stability in cell membrane attachment. Glucose oxidase (GOx) and horseradish peroxidase (HRP), both modified with streptavidin, are precisely confined to biotin-labeled DNANAs. Upon intratumoral injection, DNANA enzymes efficiently colonize the tumor site through cellular membrane engineering strategies, significantly reducing off-target enzyme leakage and the associated risks of extratumoral toxicity. Furthermore, DNANA enzymes demonstrated effective cancer therapy in vitro and in vivo by depleting glucose and producing highly cytotoxic hydroxyl radicals in the vicinity of tumor cells. This membrane-engineered cascade-enzyme reaction system presents a conceptual approach to tumor treatment.


Asunto(s)
ADN , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Animales , Humanos , ADN/química , ADN/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacología , Membrana Celular/metabolismo , Colesterol/química
8.
Anal Chem ; 96(36): 14508-14515, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177401

RESUMEN

An ultrasensitive self-powered biosensor is constructed for miRNA-21 detection based on Au nanoparticles @ Pd nanorings (Au NPs@Pd NRs) and catalytic hairpin assembly (CHA). The Au NPs@Pd NRs possess excellent electrical conductivity to improve the electron transfer rate and show good elimination of byproduct H2O2 to assist glucose oxidase (GOD) to catalyze glucose; CHA is used as an amplification strategy to effectively enhance the sensitivity of the biosensor. To further amplify the output signal, a capacitor is integrated into the self-powered biosensor. With multiple signal amplification strategies, the self-powered biosensor possesses a linear range of 0.1-10-4 fM and a lower limit of detection (LOD) of 0.032 fM (S/N = 3). In addition, the as-prepared self-powered biosensor displays potential applicability in the assay toward miRNA-21 in human serum samples.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , Oro , Nanopartículas del Metal , MicroARNs , Paladio , MicroARNs/análisis , MicroARNs/sangre , Técnicas Biosensibles/métodos , Oro/química , Nanopartículas del Metal/química , Humanos , Catálisis , Paladio/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Límite de Detección , Técnicas Electroquímicas , Glucosa/análisis , Peróxido de Hidrógeno/química
9.
Anal Chem ; 96(36): 14464-14470, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186685

RESUMEN

A triple signal amplification strategy was integrated with a built-in double electrode and external energy storage device to fabricate a novel self-powered biosensor for ultrasensitive detection of miRNA-21. Specifically, DNA tetrahedra and haripin2-glucose oxidase are modified on the surface of the biocathode and bioanode by catalytic hairpin assembly (CHA) to achieve dual signal amplification. Moreover, triple signal amplification is realized by including an external capacitor. Consequently, the as-constructed self-powered biosensor demonstrates a low detection limit of 0.06 fM toward the miRNA-21 assay within the range of 0.1 fM to 10 pM. This study presents a practical and sensitive approach to timely cancer detection.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa , MicroARNs , MicroARNs/análisis , Técnicas Biosensibles/métodos , Humanos , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , ADN/química , ADN/genética , Técnicas de Amplificación de Ácido Nucleico
10.
Langmuir ; 40(36): 18906-18916, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189920

RESUMEN

Although cellular transport machinery is mostly ATP-driven and ATPase-dependent, there has been a recent surge in understanding colloidal transport processes relying on a nonspecific physical interaction with biologically significant small molecules. Herein, we probe the phoretic behavior of a biocolloid [composed of a Zn(II)-coordinated metallomicelle and enzymes horseradish peroxidase (HRP) and glucose oxidase (GOx)] when exposed to a concentration gradient of ATP under microfluidic conditions. Simultaneously, we demonstrate that an ATP-independent oxidative biocatalytic product formation zone can be modulated in the presence of a (glucose + ATP) gradient. We report that both directionality and extent of transport can be tuned by changing the concentration of the ATP gradient. This diffusiophoretic mobility of a submicrometer biocolloidal object for the spatial transposition of a biocatalytic zone signifies the ATP-mediated functional transportation without the involvement of ATPase. Additionally, the ability to analyze colloidal transport in microfluidic channels using an enzymatic fluorescent product-forming reaction could be a new nanobiotechnological tool for understanding transport and spatial catalytic patterning processes. We believe that this result will inspire further studies for the realization of elusive biological transport processes and target-specific delivery vehicles, considering the omnipresence of the ATP-gradient across the cell.


Asunto(s)
Adenosina Trifosfato , Biocatálisis , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Zinc , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Zinc/química , Zinc/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Oxidación-Reducción , Coloides/química
11.
Anal Chem ; 96(35): 14283-14290, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39176473

RESUMEN

Innovative signal amplification and transduction play pivotal roles in bioanalysis. Herein, cascading CRISPR/Cas and the nanozyme are integrated with electronic amplification in an organic photoelectrochemical transistor (OPECT) to enable triple signal amplification, which is exemplified by the miRNA-triggered CRISPR/Cas13a system and polyoxometalate nanozyme for OPECT detection of miRNA-21. The CRISPR/Cas13a-enabled release of glucose oxidase could synergize with peroxidase-like SiW12 to induce catalytic precipitation on the photogate, inhibiting the interfacial mass transfer and thus the significant suppression of the channel current. The as-developed OPECT sensor demonstrates good sensitivity and selectivity for miRNA-21 detection, with a linear range from 1 fM to 10 nM and an ultralow detection limit of 0.53 fM. This study features the integration of bio- and nanoenzyme cascade and electronic triple signal amplification for OPECT detection.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas Electroquímicas , Glucosa Oxidasa , MicroARNs , Transistores Electrónicos , MicroARNs/análisis , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Técnicas Biosensibles , Humanos , Procesos Fotoquímicos , Límite de Detección
12.
Biomacromolecules ; 25(9): 6072-6081, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39150387

RESUMEN

In nature, enzymatic pathways often involve compartmentalization effects that can modify the intrinsic activity and specificity of the different enzymes involved. Consequently, extensive research has focused on replicating and studying the compartmentalization effects on individual enzymes and on multistep enzyme "cascade" reactions. This study explores the influence of compartmentalization achieved using molecular crowding on the glucose oxidase/horseradish peroxidase (GOx/HRP) cascade reaction. The crowder tested is methoxy poly(ethylene glycol) (mPEG) that can, depending on conditions, promote GOx and HRP coassociation at the nanoscale and extend their contact time. Low-molecular-weight mPEG (0.35 kDa), but not mPEG of higher molecular weights (5 or 20 kDa), significantly enhanced the cascade reaction where up to a 20-fold increase in the rate of the cascade reaction was observed under some conditions. The combined analyses emphasize the particularity of low-molecular-weight mPEG and point toward mPEG-induced coassociation of HRP and GOx, producing nearest crowded neighbor effects of HRP on GOx, and vice versa. These altered the nanoscale environments of these enzymes, which influenced substrate affinity. Using mPEG to promote protein coassociation is simple and does not chemically modify the proteins studied. This approach could be of interest for more broadly characterizing nearest crowded neighbor effects (i.e., protein-protein interactions) for multiprotein systems (i.e., more than just two), thus making it an interesting tool for studying very complex systems, such as those found in nature.


Asunto(s)
Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Polietilenglicoles , Agua , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Polietilenglicoles/química , Agua/química , Agua/metabolismo
13.
Mikrochim Acta ; 191(9): 558, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177820

RESUMEN

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanotubos de Carbono , Bases de Schiff , Nanotubos de Carbono/química , Bases de Schiff/química , Técnicas Biosensibles/métodos , Ácidos Borónicos/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa/análisis , Electrodos , Límite de Detección , Técnicas Electroquímicas/métodos , Glucemia/análisis
14.
Lab Chip ; 24(17): 4172-4181, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39099534

RESUMEN

Effective continuous glucose monitoring solutions require consistent sensor performance over the lifetime of the device, a manageable variance between devices, and the capability of high volume, low cost production. Here we present a novel and microfabrication-compatible method of depositing and stabilizing enzyme layers on top of planar electrodes that can aid in the mass production of sensors while also improving their consistency. This work is focused on the fragile biorecognition layer as that has been a critical difficulty in the development of microfabricated sensors. We test this approach with glucose oxidase (GOx) and evaluate the sensor performance with amperometric measurements of in vitro glucose concentrations. Spincoating was used to deposit a uniform enzyme layer across a wafer, which was subsequently immobilized via glutaraldehyde vapor crosslinking and patterned via liftoff. This yielded an approximately 300 nm thick sensing layer which was applied to arrays of microfabricated platinum electrodes built on blank wafers. Taking advantage of their planar array format, measurements were then performed in high-throughput parallel instrumentation. Due to their thin structure, the coated electrodes exhibited subsecond stabilization times after the bias potential was applied. The deposited enzyme layers were measured to provide a sensitivity of 2.3 ± 0.2 µA mM-1 mm-2 with suitable saturation behavior and minimal performance shift observed over extended use. The same methodology was then demonstrated directly on top of wireless CMOS potentiostats to build a monolithic sensor with similar measured performance. This work demonstrates the effectiveness of the combination of spincoating and vapor stabilization processes for wafer scale enzymatic sensor functionalization and the potential for scalable fabrication of monolithic sensor-on-CMOS devices.


Asunto(s)
Técnicas Biosensibles , Electrodos , Enzimas Inmovilizadas , Glucosa Oxidasa , Glucosa , Glutaral , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Glutaral/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Biosensibles/instrumentación , Glucosa/análisis , Glucosa/química , Reactivos de Enlaces Cruzados/química , Volatilización
15.
Int J Biol Macromol ; 277(Pt 3): 134408, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097056

RESUMEN

Skin interstitial fluid (ISF) has emerged as a significant reservoir of biomarkers for disease diagnosis and prevention. Microneedle (MN) patches are regarded as an optimal platform for ISF extraction from the skin due to their non-invasive nature. However, challenges such as prolonged sampling durations and complex detection procedures impede timely metabolic analysis. In this investigation, we amalgamated MN technology with immobilized enzyme technology to fabricate a dual-layer MN patch integrating sampling and detection functionalities, thereby enabling in-situ colorimetric detection of hyperglycemia. The tip layer of the patch, comprising polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) MN, was synthesized utilizing a chemical crosslinking approach for the first time, with glucose oxidase (GOx) being incorporated. The hydrophilicity of CMCS expedited the extraction process, facilitating the retrieval of approximately 10 mg of ISF within 10 min. The backing layer consisted of an immobilized polyvinyl alcohol-chitosan-horseradish peroxidase (PVA-CS-HRP) hydrogel film loaded with 3,3', 5,5'-tetramethylbenzidine (TMB). Incorporating macromolecular polymer PVA and CS for HRP immobilization addressed the issue of poor stability associated with traditional natural enzymes, thereby enhancing the sensitivity of the reaction system. The in-situ colorimetric sensor facilitated minimally invasive ISF extraction and swift conversion of glucose levels into detectable color changes.


Asunto(s)
Quitosano , Colorimetría , Glucosa Oxidasa , Glucosa , Hidrogeles , Alcohol Polivinílico , Quitosano/química , Quitosano/análogos & derivados , Alcohol Polivinílico/química , Colorimetría/métodos , Glucosa/análisis , Hidrogeles/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Agujas , Enzimas Inmovilizadas/química , Técnicas Biosensibles/métodos , Humanos , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
16.
Anal Chem ; 96(37): 14944-14952, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39208160

RESUMEN

The long-term operation feature of enzymatic biofuel cell-based self-powered biosensor (EBFC-SPB) endows them with the potential to execute dual-signal biosensing without having to integrate an extra signal acquisition device. Herein, cobalt and manganese codoped CeO2 nanospheres (CoMn-CeO2 NSs) with glucose-oxidase-like and peroxidase-like activities have been developed as substrate-switched dual-channel signal transduction components in EBFC-SPB for a dual-signal assay of aflatoxin B1 (AFB1). The CoMn-CeO2 NSs modified with aptamer are anchored to a complementary DNA-attached bioanode of EBFC-SPB by base complementary pairing, which catalyze the glucose oxidation together with the glucose oxidase (GOx) on the bioanode. Once the AFB1 appears, CoMn-CeO2 NSs will be released from the bioanode due to the binding specificity of the aptamer, resulting in a decreased catalytic efficiency and the first declining stage of EBFC-SPB. Accompanied by the introduction of H2O2, the residual CoMn-CeO2 NSs on the bioanode switch to peroxidase-like activity and mediate the production of benzo-4-chlorohexadienone (4-CD) precipitate, which increases the steric hindrance and yields another declining stage of EBFC-SPB. By assessing the variation amplitudes during these two declining stages, the dual-signal assay of AFB1 has been realized with satisfying results. This work not only breaks ground in dual-signal bioassays but also deepens the application of nanozymes in EBFC-SPB.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Cerio , Técnicas Electroquímicas , Nanosferas , Aflatoxina B1/análisis , Aflatoxina B1/metabolismo , Nanosferas/química , Técnicas Biosensibles/métodos , Cerio/química , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Cobalto/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Manganeso/química
17.
Colloids Surf B Biointerfaces ; 244: 114142, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39116603

RESUMEN

Hyperglycemia provides a favorable breeding ground for bacteria, resulting in repeated and persistent inflammation of wounds and prolonged healing processes. In this study, platinum (Pt) nanoparticles (NPs) and glucose oxidase (GOx) were decorated on the surface of camelina lipid droplets (OB) linked with hFGF2, forming PGOB through in situ reduction of Pt ions and electrostatic adsorption, respectively. PGOB exhibits cascade enzyme catalytic activity, which can be activated by glucose in diabetic wound tissues. Specifically, GOx on PGOB catalyzes glucose into hydrogen peroxide, which can further decompose into hydroxyl radicals that have higher toxicity for bacterial inactivation. Additionally, glucose decomposition creates a low pH microenvironment, facilitating the cascade catalytic activity that ensures better bacterial suppression within the wound tissues. Furthermore, hFGF2 promotes the proliferation and migration of fibroblasts. Both in vitro and in vivo experiments confirm that PGOB effectively accelerates wound healing processes through bacteria inactivation and tissue regeneration. This study has developed an alternative strategy for glucose-triggered synergistic cascade therapy for diabetic wounds.


Asunto(s)
Glucosa Oxidasa , Glucosa , Platino (Metal) , Cicatrización de Heridas , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/farmacología , Platino (Metal)/química , Platino (Metal)/farmacología , Glucosa/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Nanopartículas del Metal/química , Proliferación Celular/efectos de los fármacos , Lípidos/química , Humanos , Tamaño de la Partícula , Masculino , Propiedades de Superficie
18.
Bioelectrochemistry ; 160: 108788, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39106731

RESUMEN

Herein, a comparative study between novel water-soluble phthalocyanine-based biosensors was performed for the application of glucose sensing. For this purpose, two different copper (II) and manganese (III) phthalocyanines and their water-soluble derivatives were synthesized, and then their role as a supporting material for enzyme immobilization was evaluated by comparing their sensor performances. Two different phthalocyanine (AP-OH2-MnQ (MnPc) and AP-OH2-CuQ (CuPc)) were tested using electrochemical biosensor with immobilized glucose oxidase (GOx). To the best of our knowledge, the related water-soluble phthalocyanine-based glucose biosensors were attempted for the first time, and the developed approach resulted in improved biosensor characteristics. The constructed biosensors GE/MnPc/GOx and GE/CuPc/GOx showed good linearity between 0.003-1.0 mM and 0.05-0.4 mM, respectively. The limit of detection was estimated at 0.0026 mM for the GE/MnPc/GOx and 0.019 mM for the GE/CuPc/GOx. KMapp and sensitivity values were also calculated as 0.026 mM and 175.043 µAmM-1 cm-2 for the GE/MnPc/GOx biosensor and 0.178 mM and 117.478 µAmM-1 cm-2 for the GE/CuPc/GOx biosensor. Moreover, the fabricated biosensors were successfully tested to detect glucose levels in beverages with high recovery results. The present study shows that the proposed water-soluble phthalocyanines could be a good alternative for quick and cheap glucose sensing with improved analytical characteristics.


Asunto(s)
Técnicas Biosensibles , Enzimas Inmovilizadas , Glucosa Oxidasa , Glucosa , Indoles , Isoindoles , Solubilidad , Agua , Técnicas Biosensibles/métodos , Indoles/química , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Agua/química , Glucosa/análisis , Técnicas Electroquímicas/métodos , Límite de Detección
19.
Anal Methods ; 16(34): 5883-5895, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39157883

RESUMEN

To develop an amperometric flow-biosensor for glucose, the stabilizing effect of methylene blue (MB) toward adsorbed glucose oxidase (GOx) on carbon felt (CF) was successfully applied to prepare the GOx-modified CF-based enzyme reactor combined with a horseradish peroxidase (HRP)-modified CF-based H2O2 detector. Upon mixing MB in the GOx-adsorption solution, the O2-dependent GOx-activity was significantly increased with increasing concentration of MB in the GOx-adsorption solution. The GOx-immobilization protocol on CF is very straightforward [i.e., adsorption of the GOx/MB mixed aqueous solution for 5 min under ultrasound (US)-irradiation]. Under the optimized operational conditions (i.e., applied potential, 0 vs. Ag/AgCl; carrier pH, 5.0; carrier flow rate, 4.0 mL min-1), the resulting GOx/MB-CF-reactor and HRP/TN-CF-detector combined amperometric flow-biosensor exhibited sensitive, selective, reproducible and stable cathodic peak current responses to glucose with the following analytical performances: sensitivity, 6.22 µA mM-1; linear range, 0.01 to 1 mM; limit of detection, 9.6 µM (S/N = 3, noise level, 20 nA); sample throughput, 46-96 samples per h for 10-0.1 mM glucose. The developed amperometric flow-biosensor allowed the determination of glucose in beverages and liquors, and the analytical results by the sensor were in fairly good agreement with those by conventional spectrophotometry.


Asunto(s)
Técnicas Biosensibles , Carbono , Glucosa Oxidasa , Glucosa , Peroxidasa de Rábano Silvestre , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Técnicas Biosensibles/métodos , Glucosa/química , Glucosa/análisis , Carbono/química , Fenotiazinas/química , Enzimas Inmovilizadas/química , Adsorción , Técnicas Electroquímicas/métodos , Colorantes/química , Límite de Detección , Azul de Metileno/química , Peróxido de Hidrógeno/química
20.
ACS Appl Mater Interfaces ; 16(33): 43661-43669, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106182

RESUMEN

This study reports the development of a textile-based colaminar flow hybrid microbial-enzymatic biofuel cell. Shewanella MR-1 was used as a biocatalyst on the anode, and bienzymatic system catalysts based on glucose oxidase and horseradish peroxidase were applied on an air-breathing cathode to address the overpotential loss in a body-friendly way. A single-layer Y-shaped channel configuration with a double-inlet was adopted. Microchannels of biofuel cells were patterned by silk screen printing with Ecoflex to maintain the flexibility of textile substrates without harm to the human body. The electrodes were fabricated with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and a mixture of multiwalled carbon nanotubes and single-walled carbon nanotubes by screen printing. The effects of electrode materials, catalyst type, catalyst concentration, and glucose concentration in the catholyte were investigated to optimize the fuel cell performance. The peak power density (44.9 µW cm-2) and maximum current density (388.9 µA cm-2) of the optimized hybrid biofuel cell were better than those of previously reported textile- or paper-substrate microscale single microbial fuel cells. The developed biofuel cell will be a useful platform as a microscale power source that is harmless to the environment and living organisms.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Glucosa Oxidasa , Nanotubos de Carbono , Shewanella , Textiles , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Nanotubos de Carbono/química , Shewanella/enzimología , Shewanella/metabolismo , Glucosa/química , Glucosa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA