Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.517
Filtrar
1.
Food Res Int ; 195: 114976, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277213

RESUMEN

Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.


Asunto(s)
Lacticaseibacillus rhamnosus , Oligosacáridos , Prebióticos , Simbióticos , Lacticaseibacillus rhamnosus/metabolismo , Oligosacáridos/farmacología , Humanos , Hipolipemiantes/farmacología , Colesterol/metabolismo , Colesterol/sangre , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos , Glucuronatos
2.
Int J Biol Macromol ; 277(Pt 2): 134346, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094883

RESUMEN

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Glucuronatos , Intestinos , Oligosacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Oligosacáridos/farmacología , Glucuronatos/farmacología , Carpas/microbiología , Carpas/crecimiento & desarrollo , Intestinos/efectos de los fármacos , Intestinos/patología , Intestinos/microbiología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Alimentación Animal , Carbohidratos de la Dieta/farmacología , Carbohidratos de la Dieta/efectos adversos , Suplementos Dietéticos
3.
Forensic Sci Int ; 363: 112173, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111057

RESUMEN

This study details trends in direct alcohol biomarker concentrations from civil cases within the United Kingdom (UK). Our subject cohort in this study related to family law litigation, where an individual was subject to an alcohol monitoring order by the court. This monitoring was conducted by quantification of alcohol biomarkers Phosphatidlyethanol (PEth) in dried blood spots (DBS) and Ethyl Glucuronide (EtG) and Ethyl Palmitate (EtPa) from hair segments. In total 298 PEth cases predominantly from the South East of England during the period July 2022 to August 2023 were analysed for alcohol biomarkers in DBS and hair. Subjects alcohol intake was classified as abstinence/low alcohol consumption, moderate or excessive alcohol consumption, based on a combination of Society for Hair Testing and PEth Net guidelines. Our results indicate that 33 % of PEth concentrations were consistent with excessive alcohol use (>200 ng/mL DBS), with 36 % consistent with social or moderate alcohol use (20-200 ng/mL DBS). In relation to EtG and EtPa 23 % and 31 % of subjects were classified as excessive alcohol users respectively. This study indicates that DBS sampling of PEth is a more sensitive predictor of alcohol use, in particular, at differentiating between moderate and excessive alcohol use compared to EtG and EtPa testing in hair. The authors suggest that increased frequency in the sampling of PEth in DBS (multiple occasions per month) may provide a more accurate assessment and simplification of the interpretation criteria of alcohol patterns rather than the combined hair testing and DBS sampling that are typically requested by UK courts.


Asunto(s)
Consumo de Bebidas Alcohólicas , Biomarcadores , Glucuronatos , Glicerofosfolípidos , Cabello , Humanos , Glucuronatos/análisis , Cabello/química , Biomarcadores/sangre , Biomarcadores/análisis , Masculino , Femenino , Inglaterra , Adulto , Consumo de Bebidas Alcohólicas/legislación & jurisprudencia , Glicerofosfolípidos/sangre , Pruebas con Sangre Seca , Persona de Mediana Edad , Adulto Joven , Detección de Abuso de Sustancias/métodos , Adolescente , Ácidos Palmíticos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39186886

RESUMEN

Polydrug use is a serious health and social problem worldwide. Over the past several years, there has been an increasing tendency to combine narcotics, alcohol, sedatives, and/or stimulants. To the traditional drugs of abuse and alcohol, an increase of new abuse drugs such as synthetic opioids has been added. In the current study, the development and validation of an innovative and fast analytical procedure has been presented to determine drugs of abuse, ethyl glucuronide and synthetics opioids in 30 mg of human hair through a single digestion, purification and analysis in LC-MS/MS. A combine simple preparation of hair sample followed to a single chromatographic run of 10 min has been proposed. A full validation for 54 target analytes for the parameters of selectivity, linearity, limit of detection, limit of quantification, accuracy, precision, matrix effects, recovery, and dilution integrity was successful completed. The method was linear in different ranges with r values of at least 0.990; the value to the validated LLOQ values were in the range 0.1-100 pg/mg. The method offered satisfactory precisions (CV<15 % and accuracy ± 20 %). In conclusion, a significant reduction in the overall times of the analytical procedure and the reduction of consumables costs make this method extremely advantageous and undoubtedly useful in routine laboratory workflow analyses and open the way to the prospect of a further implementation which also includes other classes of xenobiotics.


Asunto(s)
Analgésicos Opioides , Glucuronatos , Cabello , Drogas Ilícitas , Límite de Detección , Detección de Abuso de Sustancias , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cabello/química , Glucuronatos/análisis , Reproducibilidad de los Resultados , Drogas Ilícitas/análisis , Cromatografía Liquida/métodos , Analgésicos Opioides/análisis , Modelos Lineales , Detección de Abuso de Sustancias/métodos , Cromatografía Líquida con Espectrometría de Masas
5.
Carbohydr Polym ; 342: 122411, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048203

RESUMEN

We propose a closed-loop pretreatment process, wherein volatiles produced during steam explosion pretreatment were recovered and reintroduced as acid catalysts into the pretreatment system. The volatiles were separated through a drastic decompression process followed by a steam explosion process and recovered as a liquified catalyst (LFC) through a heat exchanger. The LFC effectively served as an acid catalyst for hemicellulose hydrolysis, significantly decreasing residence time from 90 min to 30 min to achieve 80 % conversion yield at 170 °C. Hydrolysates with high content of lower molecular weight oligomeric sugars were obtained using LFC, and were considered advantageous for application as prebiotics. These results are attributed to the complementary features of acetic acid and furfural contained within the LFC. Computational simulation using Aspen Plus was used to investigate the effects of recycling on LFC, and it demonstrated the feasibility of the catalyst-recirculating system. A validation study was conducted based on simulation results to predict the actual performance of the proposed pretreatment system. Based on these results, the recirculating system was predicted to improve the conversion yield and low-molecular weight oligomers yield by 1.5-fold and 1.6-fold, respectively.


Asunto(s)
Avena , Glucuronatos , Oligosacáridos , Vapor , Catálisis , Hidrólisis , Oligosacáridos/química , Avena/química , Glucuronatos/química , Polisacáridos/química
6.
J Pharm Biomed Anal ; 248: 116325, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959755

RESUMEN

The high prevalence of cancer and detrimental side effects associated with many cancer treatments necessitate the search for effective alternative therapies. Natural products are increasingly being recognized and investigated for their potential therapeutic benefits. Scutellaria barbata D. Don (SBD), a plant with potent antitumor properties, has attracted significant interest from oncology researchers. Its primary flavonoid components-scutellarin and luteolin-which have limited oral bioavailability due to poor absorption. This hinders its application for cancer treatment. The gut microbiota, which is considered a metabolic organ, can modulate the biotransformation of compounds, thereby altering their bioavailability and efficacy. In this study, we employed liquid chromatography tandem mass spectrometry (LC-MS/MS 8060) and ion trap-time of flight (LC-MSn-IT-TOF) analysis to investigate the ex vivo metabolism of scutellarin and luteolin by the gut microbiota. Five metabolites and one potential metabolite were identified. We summarized previous studies on their antitumor effects and performed in vitro tumor cell line studies to prove their antitumor activities. The possible key pathway of gut microbiota metabolism in vitro was validated using molecular docking and pure enzyme metabolic experiments. In addition, we explored the antitumor mechanisms of the two components of SBD through network pharmacology, providing a basis for subsequent target identification. These findings expand our understanding of the antitumor mechanisms of SBD. Notably, this study contributes to the existing body of knowledge regarding flavonoid biotransformation by the gut microbiota, highlighting the therapeutic potential of SBD in cancer treatment. Moreover, our results provide a theoretical basis for future in vivo pharmacokinetic studies, aiming to optimize the clinical efficacy of SBD in oncological applications.


Asunto(s)
Apigenina , Microbioma Gastrointestinal , Glucuronatos , Luteolina , Scutellaria , Espectrometría de Masas en Tándem , Microbioma Gastrointestinal/efectos de los fármacos , Luteolina/farmacología , Luteolina/metabolismo , Luteolina/farmacocinética , Scutellaria/química , Apigenina/farmacología , Glucuronatos/metabolismo , Humanos , Espectrometría de Masas en Tándem/métodos , Línea Celular Tumoral , Animales , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Cromatografía Liquida/métodos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/farmacocinética , Disponibilidad Biológica , Masculino , Biotransformación , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética
7.
Int Immunopharmacol ; 139: 112710, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029229

RESUMEN

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.


Asunto(s)
Apigenina , Glucuronatos , Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno , Apigenina/farmacología , Apigenina/uso terapéutico , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Animales , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Línea Celular , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Necroptosis/efectos de los fármacos , Masculino , Quinasas Quinasa Quinasa PAM/metabolismo , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Zearalenona/administración & dosificación , Lactonas , Resorcinoles
8.
Sci Rep ; 14(1): 17481, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080323

RESUMEN

Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.


Asunto(s)
Glándulas Suprarrenales , Aspergillus , Carbimazol , Enzimas Inmovilizadas , Oligosacáridos , Aspergillus/efectos de los fármacos , Oligosacáridos/farmacología , Oligosacáridos/química , Enzimas Inmovilizadas/metabolismo , Enzimas Inmovilizadas/química , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Animales , Glucuronatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Endo-1,4-beta Xilanasas/metabolismo , Masculino , Ratas , Obesidad/tratamiento farmacológico
9.
Int J Biol Macromol ; 277(Pt 3): 134014, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047995

RESUMEN

Over the last decade, xylooligosaccharides (XOS) have attracted great attentions because of their unique chemical properties and excellent prebiotic effects. Among the current strategies for XOS production, enzymatic hydrolysis is preferred due to its green and safe process, simplicity in equipment, and high control of the degrees of polymerization. This paper comprehensively summarizes various lignocellulosic biomass and marine biomass employed in enzymatic production of XOS. The importance and advantages of enzyme immobilization in XOS production are also discussed. Many novel immobilization techniques for xylanase are presented. In addition, bioinformatics techniques for the mining and designing of new xylanase are also described. Moreover, XOS has exhibited great potential applications in the food industry as diverse roles, such as a sugar replacer, a fat replacer, and cryoprotectant. This review systematically summarizes the current research progress on the applications of XOS in food sectors, including beverages, bakery products, dairy products, meat products, aquatic products, food packaging film, wall materials, and others. It is anticipated that this paper will act as a reference for the further development and application of XOS in food sectors and other fields.


Asunto(s)
Biomasa , Glucuronatos , Lignina , Oligosacáridos , Lignina/química , Lignina/metabolismo , Oligosacáridos/química , Glucuronatos/química , Glucuronatos/metabolismo , Hidrólisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Organismos Acuáticos , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Industria de Alimentos
10.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958951

RESUMEN

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Asunto(s)
Apigenina , Glucuronatos , Sistema de Señalización de MAP Quinasas , Macrófagos , Daño por Reperfusión , Animales , Masculino , Ratones , Apigenina/farmacología , Apoptosis/efectos de los fármacos , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Inflamación/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Células RAW 264.7 , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
11.
Drug Alcohol Depend ; 261: 111358, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38943713

RESUMEN

BACKGROUND: Nails accumulate the alcohol metabolite, ethyl glucuronide (ETG), and the cannabis metabolite, carboxy- delta-9-THC over 3-6 months. Few studies have examined nail toxicology testing's sensitivity and specificity and the agreement between nail testing and self-reported alcohol and marijuana use. METHODS: In an ongoing clinical trial, 1101 veterans completed initial telephone questionnaires and were then asked to mail nail clippings for substance use analysis. We examined sensitivity and specificity of ETG and carboxy- delta-9-THC in nails compared to self-report of alcohol use patterns (the AUDIT-C) and substance-related harms (alcohol and THC subscales of the ASSIST). We then examined factors associated with discordance between nails and self-report. RESULTS: Almost two-thirds (707/1101) of respondents mailed in nail clippings. Those with returned nails were disproportionately married, white race, older, and less depressed. At a threshold of 8pg/mg, sensitivity was only.50 to detect risky alcohol use and.49 to detect alcohol-related issues. Sensitivity for marijuana issues was only.61. Specificity was greater than.77 for all measures. Factors associated with positive nails/negative self-report (i.e. false positives) for risky alcohol use on the Audit-C included more pain and being unmarried; false positive nails for alcohol-related issues on the ASSIST were associated with being unmarried and non-Hispanic ethnicity. False positive nails for THC-related issues on the ASSIST were associated with being African American, Hispanic, and having had legal issues. CONCLUSIONS: At standard cut-offs, nail measures had low sensitivity and higher specificity. The groups who disproportionately submit positive nails/negative self-report could have substance use patterns not adequately captured by self-report, inaccurate self-report due to social pressures, or distinct drug metabolism.


Asunto(s)
Glucuronatos , Uñas , Autoinforme , Sensibilidad y Especificidad , Humanos , Uñas/química , Uñas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Glucuronatos/análisis , Adulto , Detección de Abuso de Sustancias/métodos , Consumo de Bebidas Alcohólicas , Dronabinol/análisis , Dronabinol/análogos & derivados , Veteranos , Encuestas y Cuestionarios , Anciano
12.
BMC Res Notes ; 17(1): 175, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915023

RESUMEN

OBJECTIVE: New characterized carbohydrate-active enzymes are needed for use as tools to discriminate complex carbohydrate structural features. Fungal glycoside hydrolase family 3 (GH3) ß-xylosidases have been shown to be useful for the structural elucidation of glucuronic acid (GlcA) and arabinofuranose (Araf) substituted oligoxylosides. A homolog of these GH3 fungal enzymes from the bacterium Segatella baroniae (basonym Prevotella bryantii), Xyl3C, has been previously characterized, but those studies did not address important functional specificity features. In an interest to utilize this enzyme for laboratory methods intended to discriminate the structure of the non-reducing terminus of substituted xylooligosaccharides, we have further characterized this GH3 xylosidase. RESULTS: In addition to verification of basic functional characteristics of this xylosidase we have determined its mode of action as it relates to non-reducing end xylose release from GlcA and Araf substituted oligoxylosides. Xyl3C cleaves xylose from the non-reducing terminus of ß-1,4-xylan until occurrence of a penultimate substituted xylose. If this substitution is O2 linked, then Xyl3C removes the non-reducing xylose to leave the substituted xylose as the new non-reducing terminus. However, if the substitution is O3 linked, Xyl3C does not hydrolyze, thus leaving the substitution one-xylose (penultimate) from the non-reducing terminus. Hence, Xyl3C enables discrimination between O2 and O3 linked substitutions on the xylose penultimate to the non-reducing end. These findings are contrasted using a homologous enzyme also from S. baroniae, Xyl3B, which is found to yield a penultimate substituted nonreducing terminus regardless of which GlcA or Araf substitution exists.


Asunto(s)
Xilanos , Xilosa , Xilosidasas , Xilosidasas/metabolismo , Xilosidasas/genética , Xilosidasas/química , Xilanos/metabolismo , Xilosa/metabolismo , Especificidad por Sustrato , Prevotella/enzimología , Prevotella/genética , Oligosacáridos/metabolismo , Oligosacáridos/química , Glucuronatos/metabolismo , Arabinosa/análogos & derivados
13.
Sci Rep ; 14(1): 13430, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862696

RESUMEN

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Asunto(s)
Apigenina , Apoptosis , Glucuronatos , Janus Quinasa 2 , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Apigenina/farmacología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Glucuronatos/farmacología , Células PC12 , Apoptosis/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Ratones , Caspasa 3/metabolismo , Glucosa/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Tirfostinos/farmacología
14.
Food Chem ; 455: 139761, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850975

RESUMEN

Xylooligosaccharides (XOs) have shown high potential as prebiotics with nutritional and health benefits. In this work, XOs were obtained from highly purified, carboxy-reduced glucuronoarabinoxylans by treatment with Driselase®. The mixtures were fractionated, and the structures were elucidated by methylation analysis and NMR spectroscopy. Antioxidant activity was determined by the methods of DPPH and ß-carotene/linoleic acid. It was found that the most active oligosaccharides (P3 and G3) comprised 4 or 5 xylose units, plus two arabinoses and one 4-O-methylglucose as side chains, their sequence of units was determined. The optimal concentration for their use as antioxidants was 2 mg/mL. The synthetic antioxidant butylated hydroxytoluene (BHT, 0.2 mg/mL) showed a percentage of inhibition 15% higher than P3. Although its concentration was ∼10 times higher, P3 is non-toxic, and could have great advantages as food additive. These results show that pure XOs exert significant antioxidant activity, only due to their carbohydrate nature.


Asunto(s)
Antioxidantes , Oligosacáridos , Antioxidantes/química , Antioxidantes/farmacología , Oligosacáridos/química , Xilanos/química , Glucuronatos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Brotes de la Planta/química
15.
Traffic Inj Prev ; 25(6): 774-780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832915

RESUMEN

OBJECTIVE: This study aimed to evaluate the alcohol consumption among professional truck and bus drivers using direct ethanol biomarkers, and to explore its relationship with anxiety, depression, and stress. METHODS: The assessment of potential harmful drinking was conducted through the measurement of direct biomarkers: phosphatidylethanol (PEth), ethyl glucuronide (EtG), and ethyl sulfate (EtS), using dried blood spots (DBS). Additionally, self-reported data from the Alcohol Use Disorders Identification Test (AUDIT-C) were used. Emotional states, including depression, anxiety, and stress, were evaluated using the Depression, Anxiety, and Stress Scale (DASS-21). RESULTS: A total of 97 drivers participated in the study, with the majority being male (96%) and identified as truck drivers (75.3%). Among them, 43.3% reported working more than 10 h daily. The majority of volunteers exhibited normal levels of stress (81.4%), anxiety (83%), and depression (86.6%). According to the AUDIT-C assessment, 30.9% were categorized as having a moderate risk, while 11.3% were deemed to be at high risk for harmful alcohol consumption behavior. Ethyl glucuronide (EtG) and ethyl sulfate (EtS) levels, indicating recent ethanol consumption, were detected in 14.4% of the drivers. In contrast, the long half-life metabolite PEth (16:0-18:1) was present in 88.7% of the volunteers. A moderate correlation (rs = 0.45, p < .01) was observed between PEth levels and AUDIT-C scores. The Receiver Operating Characteristic (ROC) curve, utilizing a PEth threshold of ≥ 59.0 ng ml-1, displayed 78% sensitivity and 73% specificity in effectively distinguishing high risk for alcohol intake. Notably, no significant associations were found between alcohol consumption and levels of stress, depression, and anxiety. CONCLUSIONS: The study findings indicate a noteworthy proportion of drivers engaging in regular alcohol consumption alongside a demanding workload. Notably, PEth measurements highlighted an underreporting within the AUDIT-C self-reports. These results lend robust support for the utilization of biomarkers in assessing alcohol consumption patterns among drivers.


Asunto(s)
Consumo de Bebidas Alcohólicas , Biomarcadores , Glucuronatos , Ésteres del Ácido Sulfúrico , Humanos , Masculino , Biomarcadores/sangre , Adulto , Femenino , Glucuronatos/sangre , Glucuronatos/análisis , Ésteres del Ácido Sulfúrico/sangre , Consumo de Bebidas Alcohólicas/sangre , Consumo de Bebidas Alcohólicas/epidemiología , Conducción de Automóvil/psicología , Depresión/epidemiología , Glicerofosfolípidos/sangre , Persona de Mediana Edad , Ansiedad/epidemiología , Distrés Psicológico , Adulto Joven , Conducir bajo la Influencia/estadística & datos numéricos , Conducir bajo la Influencia/psicología , Etanol/sangre , Estrés Psicológico/sangre , Autoinforme
16.
Int J Biol Macromol ; 274(Pt 2): 133443, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942405

RESUMEN

Lignocellulose is an abundant renewable bio-macromolecular complex, which can be used to produce biomethane and other high-value products. The lignin, presents in lignocellulose is typically regarded as an inhibitor of anaerobic digestion. Therefore, it is crucial to develop a novel selective separation strategy to achieve efficient biomethane production and all-component utilization of biomass. Hence, a combination of two-step pretreatment and solid-state anaerobic digestion was employed to enhance the production of biomethane and to generate valuable chemicals from poplar waste. Optimal conditions (4 % acetic acid, 170 °C, and 40 min) resulted in 70.85 % xylan removal, yielding 50.28 % xylo-oligosaccharides. The effect of a strong acid 4-CSA-based novel three-constituent DES on delignification was investigated from 80 °C to 100 °C; the cellulose content of DES pretreated poplar increased from 64.11 % to 80.92 %, and the delignification rate increased from 49.0 % to 90.4 %. However, high delignification of the pretreated poplar (DES-100 and DES-110) led to a rapid accumulation of volatile organic acids during the hydrolysis and acidogenesis stages, resulting in methanogenesis inhibition. The highest biomethane yield of 208 L/kg VS was achieved with DES-80 (49.0 % delignification), representing a 148 % improvement compared over untreated poplar. This approach demonstrates the potential for comprehensive utilization of all components of biomass waste.


Asunto(s)
Lignina , Metano , Populus , Lignina/química , Populus/química , Populus/metabolismo , Metano/química , Metano/metabolismo , Anaerobiosis , Hidrólisis , Oligosacáridos/química , Biomasa , Glucuronatos/química , Residuos
17.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823916

RESUMEN

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Asunto(s)
Bifidobacterium longum , Celulosa , Endo-1,4-beta Xilanasas , Glucuronatos , Glicósido Hidrolasas , Oligosacáridos , Saccharum , Xilanos , Oligosacáridos/química , Oligosacáridos/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Glucuronatos/metabolismo , Glucuronatos/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Xilanos/metabolismo , Xilanos/química , Saccharum/química , Saccharum/metabolismo , Celulosa/química , Celulosa/metabolismo , Bifidobacterium longum/enzimología , Bifidobacterium longum/metabolismo , Hidrólisis , Especificidad por Sustrato , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Disacáridos
18.
Bioresour Technol ; 405: 130932, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838831

RESUMEN

The first comparative pre-treatment study of Miscanthus (Mxg) and sugarcane bagasse (SCB) using steam explosion (SE) and pressurised disc refining (PDR) pretreatment to optimise xylose and xylo-oligosaccharide release is described. The current investigation aimed to 1) Develop optimised batch-wise steam explosion parameters for Mxg and SCB, 2) Scale from static batch steam explosion to dynamic continuous pressurised disc refining, 3) Identify, understand, and circumvent scale-up production hurdles. Optimised SE parameters released 82% (Mxg) and 100% (SCB) of the available xylan. Scaling to PDR, Miscanthus yielded 85% xylan, highlighting how robust scouting assessments for boundary process parameters can result in successful technical transfer. In contrast, SCB technical transfer was not straightforward, with significant differences observed between the two processes, 100% (SE) and 58% (PDR). This report underlines the importance of feedstock-specific pretreatment strategies to underpin process development, scale-up, and optimisation of carbohydrate release from biomass.


Asunto(s)
Celulosa , Oligosacáridos , Poaceae , Saccharum , Vapor , Xilosa , Saccharum/química , Celulosa/química , Proyectos Piloto , Biotecnología/métodos , Xilanos , Glucuronatos
19.
Int J Biol Macromol ; 269(Pt 1): 132134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719013

RESUMEN

Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.


Asunto(s)
Apigenina , Ciclodextrinas , Portadores de Fármacos , Glucuronatos , Peróxido de Hidrógeno , Silicio , Animales , Humanos , Ciclodextrinas/química , Ratones , Peróxido de Hidrógeno/química , Apigenina/química , Apigenina/farmacología , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Glucuronatos/química , Glucuronatos/farmacología , Silicio/química , Porosidad , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Celulosa
20.
Int J Biol Macromol ; 270(Pt 2): 132211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723833

RESUMEN

Prebiotics are non-digestible compounds that promote intestinal microbiota growth and/or activity. Xylooligosaccharides (XOS) are new prebiotics derived from the hemicellulose fraction of lignocellulosic materials. Challenges in using those materials as sources for prebiotic compounds lie in the hemicellulose extraction efficiency and the safety of those ingredients. In this sense, this work aims to optimize hemicellulose extraction and XOS production through direct enzymatic hydrolysis of alkali pre-treated wheat straw without undesired byproducts. By increasing the temperature of the enzymatic step from 40 °C to 65 °C we achieved an improvement in the extraction yield from 55 % to 80 %. Products with different degrees of polymerization were also noticed: while XOS ≤ X6 where the main products at 40 °C, a mixture of long arabinoxylan derived polymers (ADPo) and XOS ≤ X6 was obtained at 65 °C, irrespective of the extraction yield. Thus, a modulatory effect of temperature on the product profile is suggested here. Among the XOS ≤ X6 produced, X2-X3 were the main products, and X4 was the minor one. At the end of the hydrolysis, 146.7 mg XOS per gram of pre-treated wheat straw were obtained.


Asunto(s)
Endo-1,4-beta Xilanasas , Oligosacáridos , Polisacáridos , Temperatura , Triticum , Triticum/química , Hidrólisis , Polisacáridos/química , Endo-1,4-beta Xilanasas/metabolismo , Oligosacáridos/química , Glucuronatos/química , Xilanos/química , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA