Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
FASEB J ; 38(13): e23769, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958951

RESUMEN

Renal ischemia-reperfusion injury (IRI) is an integral process in renal transplantation, which results in compromised graft survival. Macrophages play an important role in both the early inflammatory period and late fibrotic period in response to IRI. In this study, we investigated whether scutellarin (SCU) could protect against renal IRI by regulating macrophage polarization. Mice were given SCU (5-50 mg/kg) by gavage 1 h earlier, followed by a unilateral renal IRI. Renal function and pathological injury were assessed 24 h after reperfusion. The results showed that administration of 50 mg/kg SCU significantly improved renal function and renal pathology in IRI mice. In addition, SCU alleviated IRI-induced apoptosis. Meanwhile, it reduced macrophage infiltration and inhibited pro-inflammatory macrophage polarization. Moreover, in RAW 264.7 cells and primary bone marrow-derived macrophages (BMDMs) exposed to SCU, we found that 150 µM SCU inhibited these cells to polarize to an inflammatory phenotype induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ). However, SCU has no influence on anti-inflammatory macrophage polarization in vivo and in vitro induced by in interleukin-4 (IL-4). Finally, we explored the effect of SCU on the activation of the mitogen-activated protein kinase (MAPK) pathway both in vivo and in vitro. We found that SCU suppressed the activation of the MAPK pathway, including the extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38. Our results demonstrated that SCU protects the kidney against IRI by inhibiting macrophage infiltration and polarization toward pro-inflammatory phenotype via the MAPK pathway, suggesting that SCU may be therapeutically important in treatment of IRI.


Asunto(s)
Apigenina , Glucuronatos , Sistema de Señalización de MAP Quinasas , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Ratones , Apigenina/farmacología , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Inflamación/patología
2.
Sci Rep ; 14(1): 13430, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862696

RESUMEN

Previous studies have shown that scutellarin inhibits the excessive activation of microglia, reduces neuronal apoptosis, and exerts neuroprotective effects. However, whether scutellarin regulates activated microglia-mediated neuronal apoptosis and its mechanisms remains unclear. This study aimed to investigate whether scutellarin can attenuate PC12 cell apoptosis induced by activated microglia via the JAK2/STAT3 signalling pathway. Microglia were cultured in oxygen-glucose deprivation (OGD) medium, which acted as a conditioning medium (CM) to activate PC12 cells, to investigate the expression of apoptosis and JAK2/STAT3 signalling-related proteins. We observed that PC12 cells apoptosis in CM was significantly increased, the expression and fluorescence intensity of the pro-apoptotic protein Bax and apoptosis-related protein cleaved caspase-3 were increased, and expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) was decreased. Phosphorylation levels and fluorescence intensity of the JAK2/STAT3 signalling pathway-related proteins JAK2 and STAT3 decreased. After treatment with scutellarin, PC12 cells apoptosis as well as cleaved caspase-3 and Bax protein expression and fluorescence intensity decreased. The expression and fluorescence intensity of Bcl-2, phosphorylated JAK2, and STAT3 increased. AG490, a specific inhibitor of the JAK2/STAT3 signalling pathway, was used. Our findings suggest that AG490 attenuates the effects of scutellarin. Our study revealed that scutellarin inhibited OGD-activated microglia-mediated PC12 cells apoptosis which was regulated via the JAK2/STAT3 signalling pathway.


Asunto(s)
Apigenina , Apoptosis , Glucuronatos , Janus Quinasa 2 , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Apigenina/farmacología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Glucuronatos/farmacología , Células PC12 , Apoptosis/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Ratones , Caspasa 3/metabolismo , Glucosa/metabolismo , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Tirfostinos/farmacología
3.
Int J Biol Macromol ; 271(Pt 2): 132575, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788863

RESUMEN

Rice husks are rich in xylan, which can be hydrolyzed by xylanase to form xylooligosaccharides (XOS). XOS are a functional oligosaccharide such as improving gut microbiota and antioxidant properties. In this study, the structure and functional characteristics of XOS were studied. The optimal xylanase hydrolysis conditions through response surface methodology (RSM) were: xylanase dosage of 3000 U/g, hydrolysis time of 3 h, hydrolysis temperature of 50 °C. Under this condition, the yield of XOS was 150.9 mg/g. The TG-DTG curve showed that XOS began to decompose at around 200 °C. When the concentration of XOS reached 1.0 g/L, the clearance rate of DPPH reached 65.76 %, and the scavenging rate of OH reached 62.10 %, while the clearance rate of ABTS free radicals reached 97.70 %, which was equivalent to the clearance rate of VC. XOS had a proliferative effect on four probiotics: Lactobacillus plantarum, Lactobacillus brucelli, Lactobacillus acidophilus, and Lactobacillus rhamnosus. However, the further experiments are needed to explore the improvement effect of XOS on human gut microbiota, laying a foundation for the effective utilization of XOS. XOS have a wide range of sources, low price, and broad development prospects. The reasonable utilization of XOS can bring greater economic benefits.


Asunto(s)
Antioxidantes , Glucuronatos , Oligosacáridos , Oryza , Probióticos , Oligosacáridos/farmacología , Oligosacáridos/química , Oryza/química , Glucuronatos/farmacología , Glucuronatos/química , Antioxidantes/farmacología , Antioxidantes/química , Hidrólisis , Endo-1,4-beta Xilanasas/metabolismo , Lactobacillus
4.
Int J Biol Macromol ; 269(Pt 1): 132134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719013

RESUMEN

Stimulus-responsive nanomaterials, particularly with targeting capabilities, have garnered significant attention in the cancer therapy. However, the biological safety of these innovative materials in vivo remains unknown, posing a hurdle to their clinical application. Here, a pH/H2O2 dual-responsive and targeting nano carrier system (NCS) was developed using core shell structure of Fe3O4 mesoporous silicon (MSN@Fe3O4) as main body, scutellarin (SCU) as antitumor drug and polymer cyclodextrin (PCD) as molecular switch (denoted as PCD@SCU@MSN@Fe3O4, abbreviated as NCS). The NCS, with an average particle size of 100 nm, displayed exceptional SCU loading capacity, a result of its uniform radial channel structure. The in vitro investigation under condition of pH and H2O2 indicated that NCS performed excellent pH/H2O2-triggered SCU release behavior. The NCS displayed a higher cytotoxicity against tumor cells (Huh7 and HCT116) due to its pH/H2O2 dual-triggered responsiveness, while the PCD@MSN@Fe3O4 demonstrated lower cytotoxicity for both Huh7 and HCT116 cells. In vivo therapeutic evaluation of NCS indicates significant inhibition of tumor growth in mouse subcutaneous tumor models, with no apparent side-effects detected. The NCS not only enhances the bioavailability of SCU, but also utilizes magnetic targeting technology to deliver SCU accurately to tumor sites. These findings underscore the substantial clinical application potential of NCS.


Asunto(s)
Apigenina , Ciclodextrinas , Portadores de Fármacos , Glucuronatos , Peróxido de Hidrógeno , Silicio , Animales , Humanos , Ciclodextrinas/química , Ratones , Peróxido de Hidrógeno/química , Apigenina/química , Apigenina/farmacología , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Glucuronatos/química , Glucuronatos/farmacología , Silicio/química , Porosidad , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Celulosa
5.
Mar Drugs ; 22(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786584

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Oligosacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Oligosacáridos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Disbiosis/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Manosa/farmacología , Manosa/química , Manosa/análogos & derivados , Glucuronatos/farmacología
6.
J Asian Nat Prod Res ; 26(8): 867-882, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594834

RESUMEN

Phenolics produced during xylooligosaccharide production might inhibit xylanases and enhance the antioxidant and antimicrobial activities of XOS. The effects of phenolic compounds on xylanases may depend on the type and concentration of the compound, the plant biomass used, and the enzyme used. Understanding the effects of phenolic compounds on xylanases and their impact on XOS is critical for developing viable bioconversion of lignocellulosic biomass to XOS. Understanding the complex relationship between phenolic compounds and xylanases can lead to the development of strategies that improve the efficiency and cost-effectiveness of XOS manufacturing processes and optimise enzyme performance.


Asunto(s)
Glucuronatos , Oligosacáridos , Fenoles , Prebióticos , Oligosacáridos/química , Oligosacáridos/farmacología , Glucuronatos/farmacología , Glucuronatos/química , Fenoles/química , Fenoles/farmacología , Estructura Molecular , Antioxidantes/farmacología , Antioxidantes/química , Endo-1,4-beta Xilanasas/metabolismo
7.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581076

RESUMEN

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Espectroscopía de Resonancia Magnética , Metabolómica , Extractos Vegetales , Scutellaria , Scutellaria/química , Humanos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Apigenina/farmacología , Apigenina/química , Apigenina/aislamiento & purificación , Apigenina/análisis , Flavanonas/farmacología , Flavanonas/química , Flavanonas/aislamiento & purificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Glucuronatos/farmacología , Glucuronatos/aislamiento & purificación , Glucuronatos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
8.
Adv Biol (Weinh) ; 8(7): e2400123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38684459

RESUMEN

Scutellarin is an herbal agent which can exert anti-neuroinflammatory effects in activated microglia. However, it remains uncertain if it can inhibit microglia-mediated neuroinflammation by regulating miRNAs. This study sought to elucidate the upstream regulatory mechanisms by endogenous microRNAs and its target gene in activated microglia in lipopolysaccharide (LPS)-induced BV-2 microglia. Results show that scutellarin suppressed the expression of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase (iNOS) significantly in LPS-stimulated BV-2 microglia. As with the results of miRNAs function classification in vitro, the expression levels of mir-7036a-5p are upregulated in LPS-activated BV-2 microglia, but are downregulated by scutellarin. Rescue experiments indicated that mir-7036a-5p is a pro-inflammatory factor in activated BV-2 microglia. mir-7036a-5p agomir promoted the expression of phosphorylated tau proteins (p-tau), protein kinase C gamma type (PRKCG), extracellular regulated protein kinases (ERK1/2), but the is reversed by mir-7036a-5p antagomir in vitro. It is shown here that mir-7036a-5p is involved in microglia-mediated inflammation in LPS-induced BV-2 microglia. More important is the novel finding that scutellarin mitigated microglia inflammation by down-regulating the mir-7036a-5p/MAPT/PRKCG/ERK signaling pathway.


Asunto(s)
Apigenina , Glucuronatos , Lipopolisacáridos , MicroARNs , Microglía , Apigenina/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Glucuronatos/farmacología , Lipopolisacáridos/farmacología , MicroARNs/metabolismo , MicroARNs/genética , Animales , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Línea Celular , Proteína Quinasa C/metabolismo
9.
J Nutr Biochem ; 129: 109640, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583497

RESUMEN

Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Oligosacáridos , Prebióticos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Oligosacáridos/farmacología , Oligosacáridos/administración & dosificación , Masculino , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Glucuronatos/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Lípidos/sangre , Disfunción Cognitiva/prevención & control , Disbiosis , Metabolismo de los Lípidos/efectos de los fármacos
10.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1059-1071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38500315

RESUMEN

The primary aim of this study was to examine the impact of xylooligosaccharide (XOS) in rice protein concentrate (RPC) based diets on the growth performance, body composition, digestive enzymes, intestinal morphology and blood biochemistry of Labeo rohita fingerlings. Four different XOS levels (0%, 0.5%, 1% and 2%) were used at each RPC (75% and 100%) level. Twenty-five fish per tank with an average initial weight of 25 ± 0.05 g were randomly assigned (Randomised complete block design) to each of the 8 groups in triplicate aquaria (36 × 16 × 12″) and then fed with respective diets @ 3% body weight for 90 days. The results showed significant improvements in growth performance, such as increased weight gain %, specific growth rate, and protein efficiency ratio and improved feed conversion ratio in 1% XOS supplemented diet at 75% RPC. A significant decrease in serum alkaline phosphatase activity (ALP) and plasma melanodialdehyde (MDA) were observed at 1% XOS level in 75% RPC based diets, respectively. Meanwhile, the lowest total cholesterol and highest lysozyme activity were observed in 1% XOS supplemented diet at 75% RPC levels. Moreover, the serum (alanine aminotransferase and aspartate transaminase) and plasma (superoxide dismutase, triglyceride, high density and low density lipoprotein) activities showed nonsignificant effects among the treatments. Furthermore, the digestive enzymes (protease & lipase) and intestinal morphology were significantly influenced at 1% XOS in the 75% RPC-based diet. Polynomial regression analysis showed that 1.25% XOS is the optimum requirement for the growth of rohu fingerlings when fed at 75% RPC based diets. Overall, it was concluded that the 75% RPC diet was efficiently replaced by fishmeal along with 1% XOS addition in L. rohita fingerlings without any negative effect on growth performance and intestinal health.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Cyprinidae , Dieta , Suplementos Dietéticos , Glucuronatos , Oligosacáridos , Oryza , Animales , Oligosacáridos/farmacología , Oligosacáridos/administración & dosificación , Alimentación Animal/análisis , Dieta/veterinaria , Glucuronatos/administración & dosificación , Glucuronatos/farmacología , Cyprinidae/crecimiento & desarrollo
11.
Phytomedicine ; 128: 155418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518647

RESUMEN

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Asunto(s)
Apigenina , Neoplasias de la Mama , Proliferación Celular , Glucuronatos , Ratones Endogámicos NOD , Células Madre Neoplásicas , Scutellaria , Animales , Apigenina/farmacología , Scutellaria/química , Glucuronatos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones SCID , Antineoplásicos Fitogénicos/farmacología , Ratones , Extractos Vegetales/farmacología , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores de Hialuranos/metabolismo
12.
Inflammation ; 47(3): 853-873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38168709

RESUMEN

Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. Epithelial-mesenchymal transition (EMT) is an essential player in these alterations. Scutellarin is isolated from Erigeron breviscapus. Its vascular relaxative, myocardial protective, and anti-inflammatory effects have been well established. This study was designed to detect the biological roles of scutellarin in asthma and its related mechanisms. The asthma-like conditions were induced by ovalbumin challenges. The airway resistance and dynamic compliance were recorded as the results of AHR. Bronchoalveolar lavage fluid (BALF) was collected and processed for differential cell counting. Hematoxylin and eosin staining, periodic acid-Schiff staining, and Masson staining were conducted to examine histopathological changes. The levels of asthma-related cytokines were measured by enzyme-linked immunosorbent assay. For in vitro analysis, the 16HBE cells were stimulated with 10 ng/mL transforming growth beta-1 (TGF-ß1). Cell migration was estimated by Transwell assays and wound healing assays. E-cadherin, N-cadherin, and α-smooth muscle actin (α-SMA) were analyzed by western blotting, real-time quantitative polymerase chain reaction, immunofluorescence staining, and immunohistochemistry staining. The underlying mechanisms of the mitogen-activated protein kinase (MAPK) and Smad pathways were investigated by western blotting. In an ovalbumin-induced asthmatic mouse model, scutellarin suppressed inflammation and inflammatory cell infiltration into the lungs and attenuated AHR and airway remodeling. Additionally, scutellarin inhibited airway EMT (upregulated E-cadherin level and downregulated N-cadherin and α-SMA) in ovalbumin-challenged asthmatic mice. For in vitro analysis, scutellarin prevented the TGF-ß1-induced migration and EMT in 16HBE cells. Mechanistically, scutellarin inhibits the phosphorylation of Smad2, Smad3, ERK, JNK, and p38 in vitro and in vivo. In conclusion, scutellarin can inactivate the Smad/MAPK pathways to suppress the TGF-ß1-stimulated epithelial fibrosis and EMT and relieve airway inflammation and remodeling in asthma. This study provides a potential therapeutic strategy for asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Apigenina , Asma , Glucuronatos , Ovalbúmina , Proteína Smad2 , Proteína smad3 , Apigenina/farmacología , Apigenina/uso terapéutico , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Ratones , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Ovalbúmina/toxicidad , Humanos , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Proteína smad3/metabolismo , Proteína Smad2/metabolismo , Transducción de Señal/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Línea Celular , Bronquios/patología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Ratones Endogámicos BALB C , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fenotipo
13.
Food Funct ; 14(19): 8734-8746, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37694718

RESUMEN

This study aimed to optimize the structure and efficacy of xylooligosaccharides (XOSs) from corn cobs in constipated mice. Structural analysis revealed that XOSs from corn cobs were composed of ß-Xyl-(1 →4)-[ß-Xyl-(1→4)]n-α/ß-Xyl (n = 0-5) without any other substituents. XOS administration significantly reduced the defecation time, increased the gastrointestinal transit rate, restored the gastrointestinal neurotransmitter imbalance, protected against oxidative stress, and reversed constipation-induced colonic inflammation. Fecal metabolite and microbiota analysis showed that XOS supplementation significantly increased short chain fatty acid (SCFA) levels and improved the gut microbial environment. These findings highlighted the potential of XOSs from corn cobs as an active ingredient for functional foods or as a therapeutic agent in constipation therapy.


Asunto(s)
Estreñimiento , Microbioma Gastrointestinal , Glucuronatos , Loperamida , Oligosacáridos , Animales , Ratones , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Loperamida/efectos adversos , Zea mays , Glucuronatos/farmacología , Oligosacáridos/farmacología
15.
Phytomedicine ; 103: 154214, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689902

RESUMEN

BACKGROUND: Oxidative stress plays an important role in the pathology of ischemic stroke. Studies have confirmedthat scutellarin has antioxidant effects against ischemic injury, and we also reported that the involvement of Aldose reductase (AR) in oxidative stress and cerebral ischemic injury, in this study we furtherly explicit whether the antioxidant effect of scutellarin on cerebral ischemia injury is related to AR gene regulation and its specific mechanism. METHODS: C57BL/6N mice (Wild-type, WT) and AR knockout (AR-/-) mice suffered from transient middle cerebral artery occlusion (tMCAO) injury (1 h occlusion followed by 3 days reperfusion), and scutellarin was administered from 2 h before surgery to 3 days after surgery. Subsequently, neurological function was assessed by the modified Longa score method, the histopathological morphology observed with 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (Elisa) was used to detect the levels of ROS, 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHDG), Neurotrophin-3 (NT-3), poly ADP-ribose polymerase-1 (PARP1) and 3-nitrotyrosine (3-NT) in the ischemic penumbra regions. Quantitative proteomics profiling using quantitative nano-HPLC-MS/MS were performed to compare the protein expression difference between AR-/- and WT mice with or without tMCAO injury. The expression of AR, nicotinamide adenine dinucleotide phosphate oxidases (NOX1, NOX2 and NOX4) in the ipsilateral side of ischemic brain were detected by qRT-PCR, Western blot and immunofluorescence co-staining with NeuN. RESULTS: Scutellarin treatment alleviated brain damage in tMCAO stroke model such as improved neurological function deficit, brain infarct area and neuronal injury and reduced the expression of oxidation-related products, moreover, also down-regulated tMCAO induced AR mRNA and protein expression. In addition, the therapeutic effect of scutellarin on the reduction of cerebral infarction area and neurological function deficits abolished in AR-/- mice under ischemia cerebral injury, which indicated that the effect of scutellarin treatment on tMCAO injury is through regulating AR gene. Proteomic analysis of AR-/- and WT mice indicated AR knockout would affect oxidation reaction even as NADPH related process and activity in mice under cerebral ischemia conditions. Moreover, NOX isoforms (NOX1, NOX2 and NOX4) mRNA and protein expression were significant decreased in neurons of penumbra region in AR-/- mice compared with that in WT mice at 3d after tMCAO injury, which indicated that AR should be the upstream protein regulating NOX after cerebral ischemia. CONCLUSIONS: We first reported that AR directly regulates NOX subtypes (not only NOX2 but also NOX1 and NOX4) after cerebral ischaemic injury. Scutellarin specifically targets the AR-NOX axis and has antioxidant effects in mice with cerebral ischaemic injury, providing a theoretical basis and accurate molecular targets for the clinical application of scutellarin.


Asunto(s)
Aldehído Reductasa , Apigenina , Isquemia Encefálica , Glucuronatos , Infarto de la Arteria Cerebral Media , NADPH Oxidasa 1 , Estrés Oxidativo , Daño por Reperfusión , Aldehído Reductasa/metabolismo , Animales , Antioxidantes/metabolismo , Apigenina/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Glucuronatos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 1/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteómica , ARN Mensajero/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Espectrometría de Masas en Tándem
16.
Biomed Pharmacother ; 151: 113187, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35676787

RESUMEN

One characteristic of tumor-associated CD4+Foxp3+ regulatory T cells (Tregs) is the high expression of tumor necrosis factor receptor type II (TNFR2), a receptor that mediates the decisive effect of tumor necrosis factor (TNF) in the activation and expansion of Tregs. There is increasing evidence that inhibition of TNFR2 can enhance anti-tumor immune responses. Therefore, we screened Chinese herbal extracts for their capacity to block TNF-TNFR2 interaction. The results showed that the treatment with a Chinese herb extract could inhibit TNFR2-induced biological responses in vitro, including the proliferation of TNFR2+ Tregs. Our subsequent study led to the identification of flavonoid compound scutellarin was responsible for the activity. Our results showed that scutellarin is able to disrupt the interaction of TNF-TNFR2 and inhibited the phosphorylation of p38 MAPK, a down-stream signaling component of TNFR2. Importantly, in vivo scutellarin treatment markedly enhanced the efficacy of tumor immunotherapy with CpG oligodeoxynucleotide in mouse CT26 colon cancer model. This effect of scutellarin was associated with the reduction of the number of tumor-infiltrating TNFR2-expressing Tregs and increased tumor infiltration of interferon-γ-producing CD8+ T cells. Our result also suggests that scutellarin or its analogs may be used as an adjuvant to enhance the anti-tumor effect of immunotherapeutic agent by eliminating TNFR2+ Treg activity.


Asunto(s)
Apigenina , Glucuronatos , Neoplasias , Receptores Tipo II del Factor de Necrosis Tumoral , Animales , Apigenina/farmacología , Linfocitos T CD8-positivos , Medicamentos Herbarios Chinos , Factores de Transcripción Forkhead/metabolismo , Glucuronatos/farmacología , Inmunidad , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa/farmacología
17.
Chem Biodivers ; 19(4): e202100856, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35263019

RESUMEN

The present study aims to investigate the roles of scutellarin (SCU) on acute alcohol intestinal injury. Mice were divided into six groups: alcohol, three administration, negative control and positive drug bifendate control. The administration group mice were intraperitoneally injected with SCU for 3 consecutive days followed by alcohol gavage at an interval of 1 h. After the mice were sacrificed, colon tissue damage was evaluated by histopathological examination; the activities of inducible nitric oxide synthase (iNOS) and catalase (CAT), as well as the content of malondialdehyde (MDA) were detected using biochemical kits; the levels of inflammatory cytokines mRNA were determined by real-time fluorescence quantitative PCR; the protein expression levels of hemeoxygenase-1 (HO-1) and phosphorylated nuclear factor-ĸB p65 were measured via western blotting. The results showed that alcohol induced severe colon morphological degradation, epithelia atrophy, and more inflammatory cells infiltration in the submucosa. SCU treatment prevented this process, especially in the middle and high dose groups. Alcohol treatment caused excessive lipid peroxidation product accumulation of MDA, restrained the activity of antioxidant enzyme CAT, induced HO-1 expression in the colon, whereas low dose SCU treatment significantly down-regulated the MDA level, enhanced the CAT level, and accelerated HO-1 signals. SCU prevented alcohol stimulation triggered inflammatory response in colon tissues through significantly downregulating the iNOS activity, transcript levels of Tnf-α, Il-1ß and Il-6, and phosphorylation levels of NF-κB p65. These findings suggest that SCU protects the colon via antioxidant and anti-inflammatory mechanisms, making it a promising drug against alcohol-induced colon damage.


Asunto(s)
Antioxidantes , Apigenina , Animales , Apigenina/farmacología , Apigenina/uso terapéutico , Etanol , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Ratones , Factor de Necrosis Tumoral alfa/metabolismo
18.
J Zhejiang Univ Sci B ; 23(3): 258-264, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35261221

RESUMEN

Drinking culture has high significance in both China and the world, whether in the entertainment sector or in social occasions; according to the World Health Organization's 2018 Global Alcohol and Health Report, about 3 million people died from excessive drinking in 2016, accounting for 5.3% of the total global deaths that year. Oxidative stress and inflammation are the most common pathological phenomena caused by alcohol abuse (Snyder et al., 2017). Scutellarin, a kind of flavonoid, is one of the main active ingredients extracted from breviscapine. It exerts anti-inflammatory, antioxidant, and vasodilation effects, and has been used to treat cardiovascular diseases and alcoholic liver injury. Although scutellarin can effectively alleviate multi-target organ injury induced by different forms of stimulation, its protective effect on alcoholic brain injury has not been well-defined. Therefore, the present study established an acute alcohol mice brain injury model to explore the effect of scutellarin on acute alcoholic brain injury. The study was carried out based on the targets of oxidative stress and inflammation, which is of great significance for the targeted therapy of clinical alcohol diseases.


Asunto(s)
Apigenina , Lesiones Encefálicas , Animales , Apigenina/farmacología , Apigenina/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Glucuronatos/farmacología , Glucuronatos/uso terapéutico , Humanos , Ratones , Estrés Oxidativo
19.
Bioengineered ; 13(1): 1013-1024, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974800

RESUMEN

The present research aimed to elucidate a convenient, safe and economic approach to induce the growth of endogenous bone tissue and bone regeneration. S-UNL-E was prepared using reverse-phase evaporation, and scutellarin encapsulation was subsequently compared. Meanwhile, the optimal preparation scheme was developed using an orthogonal method, and the particle size was determined using laser light scattering. In osteoblasts cultured in vitro, methyl thiazolyl tetrazolium (MTT), alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic effects of S-UNL-E. The results indicated that the optimal process conditions for S-UNL-E included mass ratios of phospholipid-cholesterol, phospholipid-breviscapine, phospholipid-sodium cholate, and phospholipid-stearamide were 2:1, 15:1, 7:1 and 7:1, respectively, and the mass of ethylenediamine tetramethylphosphonic acid (EDTMP) was 30 mg. The average particle size of S-UNL-E was 156.67 ± 1.76 nm, and Zeta potential was -28.77 ± 0.66 mv. S-UNL-E substantially increased the expression of ALP osteoblasts, elevated the content of osteocalcin protein and promoted the formation of mineralized nodules. Cells in the S-UNL-E group were densely distributed with integrated cell structure, and the actin filaments were clear and obvious. The findings demonstrated that S-UNL-E greatly promoted the differentiation and maturation of osteoblasts, and S-UNL-E (2.5 × 108) produced the most favorable effect in differentiation promotion. In conclusion, the present study successfully constructed an S-UNL-E material characterized by high encapsulation and high stability, which could effectively promote osteogenic differentiation and bone formation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Fosfatasa Alcalina/metabolismo , Apigenina/farmacología , Glucuronatos/farmacología , Osteoblastos/citología , Osteocalcina/metabolismo , Animales , Apigenina/química , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Composición de Medicamentos , Glucuronatos/química , Liposomas , Nanopartículas , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis , Tamaño de la Partícula , Cultivo Primario de Células , Ratas
20.
Carbohydr Polym ; 275: 118684, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742414

RESUMEN

Bioconversion of lignocellulosic biomass into value-added products relies on polysaccharides depolymerization by carbohydrate active enzymes. This work reports biochemical characterization of Paludibacter propionicigenes xylanase from GH10 (PpXyn10A) and its application for enzymatic xylooligosaccharides (XOS) production from commercial heteroxylans and liquor of hydrothermally pretreated corn cobs (PCC). PpXyn10A is tolerant to ethanol and NaCl, and releases xylobiose (X2) and xylotriose (X3) as the main hydrolytic products. The conversion rate of complex substrates into short XOS was approximately 30% for glucuronoxylan and 8.8% for rye arabinoxylan, after only 4 h; while for PCC, PpXyn10A greatly increased unbranched XOS yields. B. adolescentis fermentation with XOS from beechwood glucuronoxylan produced mainly acetic and lactic acids. Structural analysis shows that while the glycone region of PpXyn10A active site is well preserved, the aglycone region has aromatic interactions in the +2 subsite that may explain why PpXyn10A does not release xylose.


Asunto(s)
Bacteroidetes , Endo-1,4-beta Xilanasas/metabolismo , Glucuronatos/química , Oligosacáridos/química , Xilanos/química , Animales , Bifidobacterium adolescentis/efectos de los fármacos , Disacáridos/química , Fermentación , Glucuronatos/farmacología , Humanos , Hidrólisis , Oligosacáridos/farmacología , Prebióticos , Trisacáridos/química , Xilosa/química , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA