Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Int J Biol Macromol ; 254(Pt 2): 127756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907177

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than ß-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.


Asunto(s)
Aminoacil-ARNt Sintetasas , Leishmania donovani , Humanos , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico , Aminoacil-ARNt Sintetasas/química , Adenosina Trifosfato , Leishmania donovani/metabolismo , Salicilatos
2.
Biochemistry ; 62(5): 989-999, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802529

RESUMEN

Phosphorylation is a key post-translational modification that alters the functional state of many proteins. The Escherichia coli toxin HipA, which phosphorylates glutamyl-tRNA synthetase and triggers bacterial persistence under stress, becomes inactivated upon autophosphorylation of Ser150. Interestingly, Ser150 is phosphorylation-incompetent in the crystal structure of HipA since it is deeply buried ("in-state"), although in the phosphorylated state it is solvent exposed ("out-state"). To be phosphorylated, a minor population of HipA must exist in the phosphorylation-competent "out-state" (solvent-exposed Ser150), not detected in the crystal structure of unphosphorylated HipA. Here we report a molten-globule-like intermediate of HipA at low urea (∼4 kcal/mol unstable than natively folded HipA). The intermediate is aggregation-prone, consistent with a solvent exposed Ser150 and its two flanking hydrophobic neighbors (Val/Ile) in the "out-state". Molecular dynamics simulations showed the HipA "in-out" pathway to contain multiple free energy minima with an increasing degree of Ser150 solvent exposure with the free energy difference between the "in-state" and the metastable exposed state(s) to be ∼2-2.5 kcal/mol, with unique sets of hydrogen bonds and salt bridges associated with the metastable loop conformations. Together, the data clearly identify the existence of a phosphorylation-competent metastable state of HipA. Our results not only suggest a mechanism of HipA autophosphorylation but also add to a number of recent reports on unrelated protein systems where the common proposed mechanism for phosphorylation of buried residues is their transient exposure even without phosphorylation.


Asunto(s)
Proteínas de Escherichia coli , Fosforilación , Proteínas de Escherichia coli/química , Escherichia coli/genética , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo
3.
Mol Biochem Parasitol ; 253: 111530, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370911

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Glutamato-ARNt Ligasa , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 8): 306-312, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924598

RESUMEN

Elizabethkingia bacteria are globally emerging pathogens that cause opportunistic and nosocomial infections, with up to 40% mortality among the immunocompromised. Elizabethkingia species are in the pipeline of organisms for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include the structure-function analysis of potential therapeutic targets. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined high-resolution structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS). EmGluRS was co-crystallized with glutamate, while EaGluRS is an apo structure. EmGluRS shares ∼97% sequence identity with EaGluRS but less than 39% sequence identity with any other structure in the Protein Data Bank. EmGluRS and EaGluRS have the prototypical bacterial GluRS topology. EmGluRS and EaGluRS have similar binding sites and tertiary structures to other bacterial GluRSs that are promising drug targets. These structural similarities can be exploited for drug discovery.


Asunto(s)
Anopheles , Infecciones por Flavobacteriaceae , Secuencia de Aminoácidos , Animales , Anopheles/metabolismo , Cristalografía por Rayos X , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo
5.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33896406

RESUMEN

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aminoacil-ARNt Sintetasas , Serina-ARNt Ligasa , Adenosina Monofosfato/metabolismo , Aminoácidos/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Iones , Ligasas/metabolismo , Magnesio , ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/química
6.
Nat Commun ; 12(1): 5513, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535641

RESUMEN

Under the Baltimore nucleic acid-based virus classification scheme, the herpesvirus human cytomegalovirus (HCMV) is a Class I virus, meaning that it contains a double-stranded DNA genome-and no RNA. Here, we report sub-particle cryoEM reconstructions of HCMV virions at 2.9 Å resolution revealing structures resembling non-coding transfer RNAs (tRNAs) associated with the virion's capsid-bound tegument protein, pp150. Through deep sequencing, we show that these RNA sequences match human tRNAs, and we built atomic models using the most abundant tRNA species. Based on our models, tRNA recruitment is mediated by the electrostatic interactions between tRNA phosphate groups and the helix-loop-helix motif of HCMV pp150. The specificity of these interactions may explain the absence of such tRNA densities in murine cytomegalovirus and other human herpesviruses.


Asunto(s)
Cápside/metabolismo , Citomegalovirus/ultraestructura , Fosfoproteínas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de la Matriz Viral/metabolismo , Virión/ultraestructura , Anticodón/metabolismo , Secuencia de Bases , Línea Celular , Microscopía por Crioelectrón , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Humanos , Modelos Moleculares , Fosfoproteínas/ultraestructura , ARN Viral/ultraestructura , Proteínas de la Matriz Viral/ultraestructura
7.
J Biol Chem ; 297(4): 101203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537243

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.


Asunto(s)
Enfermedades Óseas , Diabetes Mellitus , Enfermedades Genéticas Congénitas , Glutamato-ARNt Ligasa , Mutación Missense , Estrés Fisiológico/genética , Sustitución de Aminoácidos , Enfermedades Óseas/enzimología , Enfermedades Óseas/genética , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , Masculino
8.
J Inherit Metab Dis ; 44(4): 949-960, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855712

RESUMEN

Glutamyl-tRNA synthetase 2 (encoded by EARS2) is a mitochondrial aminoacyl-tRNA synthetase required to translate the 13 subunits of the electron transport chain encoded by the mitochondrial DNA. Pathogenic EARS2 variants cause combined oxidative phosphorylation deficiency, subtype 12 (COXPD12), an autosomal recessive disorder involving lactic acidosis, intellectual disability, and other features of mitochondrial compromise. Patients with EARS2 deficiency present with variable phenotypes ranging from neonatal lethality to a mitigated disease with clinical improvement in early childhood. Here, we report a neonate homozygous for a rare pathogenic variant in EARS2 (c.949G>T; p.G317C). Metabolomics in primary fibroblasts from this patient revealed expected abnormalities in TCA cycle metabolites, as well as numerous changes in purine, pyrimidine, and fatty acid metabolism. To examine genotype-phenotype correlations in COXPD12, we compared the metabolic impact of reconstituting these fibroblasts with wild-type EARS2 versus four additional EARS2 variants from COXPD12 patients with varying clinical severity. Metabolomics identified a group of signature metabolites, mostly from the TCA cycle and amino acid metabolism, that discriminate between EARS2 variants causing relatively mild and severe COXPD12. Taken together, these findings indicate that metabolomics in patient-derived fibroblasts may help establish genotype-phenotype correlations in EARS2 deficiency and likely other mitochondrial disorders.


Asunto(s)
Variación Genética/genética , Glutamato-ARNt Ligasa/genética , Leucoencefalopatías/genética , Errores Innatos del Metabolismo/genética , Acidosis Láctica/etiología , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Glutamato-ARNt Ligasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/etiología , Leucoencefalopatías/metabolismo , Masculino , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación
9.
J Biol Chem ; 293(49): 19148-19156, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30309984

RESUMEN

About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas Bacterianas/química , Evolución Molecular , Modelos Químicos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Fusión Génica , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Prolina/química , Prolina/metabolismo , Biosíntesis de Proteínas/genética
10.
Sci Signal ; 11(547)2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206139

RESUMEN

The bacterial serine-threonine protein kinase HipA promotes multidrug tolerance by phosphorylating the glutamate-tRNA ligase (GltX), leading to a halt in translation, inhibition of growth, and induction of a physiologically dormant state (persistence). The HipA variant HipA7 substantially increases persistence despite being less efficient at inhibiting cell growth. We postulated that this phenotypic difference was caused by differences in the substrates targeted by both kinases. We overproduced HipA and HipA7 in Escherichia coli and identified their endogenous substrates by SILAC-based quantitative phosphoproteomics. We confirmed that GltX was the main substrate of both kinase variants and likely the primary determinant of persistence. When HipA and HipA7 were moderately overproduced from plasmids, HipA7 targeted only GltX, but HipA phosphorylated several additional substrates involved in translation, transcription, and replication, such as ribosomal protein L11 (RplK) and the negative modulator of replication initiation, SeqA. HipA7 showed reduced kinase activity compared to HipA and targeted a substrate pool similar to that of HipA only when produced from a high-copy number plasmid. The kinase variants also differed in autophosphorylation, which was substantially reduced for HipA7. When produced endogenously from the chromosome, HipA showed no activity because of inhibition by the antitoxin HipB, whereas HipA7 phosphorylated GltX and phage shock protein PspA. Initial testing did not reveal a connection between HipA-induced phosphorylation of RplK and persistence or growth inhibition, suggesting that other HipA-specific substrates were likely responsible for growth inhibition. Our results contribute to the understanding of HipA7 action and present a resource for elucidating HipA-related persistence.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glutamato-ARNt Ligasa/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Especificidad por Sustrato
11.
Plant Physiol ; 177(2): 728-744, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29720556

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) have housekeeping roles in protein synthesis, but little is known about how these aaRSs are involved in organ development. Here, we report that a rice (Oryza sativa) glutamyl-tRNA synthetase (OsERS1) maintains proper somatic cell organization and limits the overproliferation of male germ cells during early anther development. The expression of OsERS1 is specifically detectable in meristematic layer 2-derived cells of the early anther, and osers1 anthers exhibit overproliferation and disorganization of layer 2-derived cells, producing fused lobes and extra germ cells in early anthers. The conserved biochemical function of OsERS1 in ligating glutamate to tRNAGlu is enhanced by its cofactor aaRS OsARC. Furthermore, metabolomics profiling revealed that OsERS1 is an important node for multiple metabolic pathways, indicated by the accumulation of amino acids and tricarboxylic acid cycle components in osers1 anthers. Notably, the anther defects of the osers1 mutant are causally associated with the abnormal accumulation of hydrogen peroxide, which can reconstitute the osers1 phenotype when applied to wild-type anthers. Collectively, these findings demonstrate how aaRSs affect male organ development in plants, likely through protein synthesis, metabolic homeostasis, and redox status.


Asunto(s)
Flores/citología , Glutamato-ARNt Ligasa/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , División Celular , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Glutamato-ARNt Ligasa/genética , Ácido Glutámico/metabolismo , Meristema/citología , Meristema/genética , Mutación , Oryza/citología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente
12.
J Biol Chem ; 293(23): 8843-8860, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29643180

RESUMEN

Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH-S-transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Caspasas/metabolismo , Aminoacil-ARNt Sintetasas/química , Dominio Catalítico , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Proteolisis
13.
J Biol Chem ; 291(33): 17102-11, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27330079

RESUMEN

Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRSc) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRSc and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37 °C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37 °C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRSc at 37 °C in vitro Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.


Asunto(s)
Biotinilación , Glutamato-ARNt Ligasa/química , Calor , Metionina-ARNt Ligasa/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Microb Cell Fact ; 14: 183, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26577071

RESUMEN

BACKGROUND: Corynebacterium glutamicum is generally regarded as a safe microorganism and is used to produce many biochemicals, including L-glutamate. 5-Aminolevulinic acid (ALA) is an L-glutamate derived non-protein amino acid, and is widely applied in fields such as medicine and agriculture. RESULTS: The products of the gltX, hemA, and hemL genes participate in the synthesis of ALA from L-glutamate. Their annotated C. glutamicum homologs were shown to be functional using heterologous complementation and overexpression techniques. Coexpression of hemA and hemL in native host led to the accumulation of ALA, suggesting the potential of C. glutamicum to produce ALA for research and commercial purposes. To improve ALA production, we constructed recombinant C. glutamicum strains expressing hemA and hemL derived from different organisms. Transcriptome analysis indicated that the dissolved oxygen level and Fe(2+) concentration had major effects on ALA synthesis. The downstream pathway of heme biosynthesis was inhibited using small molecules or introducing genetic modifications. Small-scale flask cultures of engineered C. glutamicum produced 1.79 g/L of ALA. CONCLUSION: Functional characterization of the key enzymes indicated complex regulation of the heme biosynthetic pathway in C. glutamicum. Systematic analysis and molecular genetic engineering of C. glutamicum may facilitate its development as a system for large-scale synthesis of ALA.


Asunto(s)
Ácido Aminolevulínico/metabolismo , Corynebacterium glutamicum/metabolismo , Glucosa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Escherichia coli/metabolismo , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Ácidos Levulínicos/química , Maleatos/química , Ingeniería Metabólica , Ácidos Ftálicos/química
15.
PLoS One ; 10(4): e0121043, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860020

RESUMEN

For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of -TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3'-OH oxygen of the 3'-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina/análogos & derivados , Adenosina/química , Glutamato-ARNt Ligasa/metabolismo , Glutamatos/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Adenosina/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Aminoacilación , Sitios de Unión , Calorimetría , Escherichia coli/enzimología , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Glutamatos/química , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Temperatura , Termodinámica
16.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 922-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005090

RESUMEN

The nature of interaction between glutamyl-tRNA synthetase (GluRS) and its tRNA substrate is unique in bacteria in that many bacterial GluRS are capable of recognizing two tRNA substrates: tRNAGlu and tRNAGln. To properly understand this distinctive GluRS-tRNA interaction it is important to pursue detailed structure-function studies; however, because of the fact that tRNA-GluRS interaction in bacteria is also associated with phylum-specific idiosyncrasies, the structure-function correlation studies must also be phylum-specific. GluRS from Thermus thermophilus and Escherichia coli, which belong to evolutionarily distant phyla, are the biochemically best characterized. Of these, only the structure of T. thermophilus GluRS is available. To fully unravel the subtleties of tRNAGlu-GluRS interaction in E. coli, a model bacterium that can also be pathogenic, determination of the E. coli GluRS structure is essential. However, previous attempts have failed to crystallize E. coli GluRS. By mapping crystal contacts of a homologous GluRS onto the E. coli GluRS sequence, two surface residues were identified that might have been hindering crystallization attempts. Accordingly, these two residues were mutated and crystallization of the double mutant was attempted. Here, the design, expression, purification and crystallization of an engineered E. coli GluRS in which two surface residues were mutated to optimize crystal contacts are reported.


Asunto(s)
Escherichia coli/química , Glutamato-ARNt Ligasa/química , Ácido Glutámico/química , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/metabolismo , Cinética , Lisina/química , Lisina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
17.
BMC Evol Biol ; 14: 26, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24521160

RESUMEN

BACKGROUND: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. RESULTS: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. CONCLUSIONS: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Quimera/genética , Eucariontes/enzimología , Evolución Molecular , Genoma Bacteriano , Glutamato-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Duplicación de Gen , Transferencia de Gen Horizontal , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Filogenia , ARN de Transferencia de Glutamina/metabolismo
18.
Protein J ; 33(2): 143-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24505021

RESUMEN

Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) and glutamyl-tRNA synthetase (GluRS), differ widely by their function although they share close structural resemblance within their catalytic core of GluRS. In particular both Escherichia coli GluRS and Glu-Q-RS contain a single zinc-binding site in their putative tRNA acceptor stem-binding domain. It has been shown that the zinc is crucial for correct positioning of the tRNA(Glu) acceptor-end in the active site of E. coli GluRS. To address the role of zinc ion in Glu-Q-RS, the C101S/C103S Glu-Q-RS variant is constructed. Energy dispersive X-ray fluorescence show that the zinc ion still remained coordinated but the variant became structurally labile and acquired aggregation capacity. The extent of aggregation of the protein is significantly decreased in presence of the small substrates and more particularly by adenosine triphosphate. Addition of zinc increased significantly the solubility of the variant. The aminoacylation assay reveals a decrease in activity of the variant even after addition of zinc as compared to the wild-type, although the secondary structure of the protein is not altered as shown by the Fourier transform infrared spectroscopy study.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Zinc/metabolismo , Aminoacil-ARNt Sintetasas/química , Sitios de Unión , Escherichia coli/química , Proteínas de Escherichia coli/química , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Conformación Proteica , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Zinc/química
19.
Nat Commun ; 4: 3001, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24343429

RESUMEN

Bacterial persistence has been shown to be an underlying factor in the failure of antibiotic treatments. Although many pathways, among them the stringent response and toxin-antitoxin modules, have been linked to antibiotic persistence, a clear molecular mechanism for the growth arrest that characterizes persistent bacteria remained elusive. Here, we screened an expression library for putative targets of HipA, the first toxin linked to persistence, and a serine/threonine kinase. We found that the expression of GltX, the glutamyl-tRNA-synthetase, reverses the toxicity of HipA and prevents persister formation. We show that upon HipA expression, GltX undergoes phosphorylation at Ser239, its ATP-binding site. This phosphorylation leads to accumulation of uncharged tRNA(Glu) in the cell, which results in the activation of the stringent response. Our findings demonstrate a mechanism for persister formation by the hipBA toxin-antitoxin module and provide an explanation for the long-observed connection between persistence and the stringent response.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glutamato-ARNt Ligasa/metabolismo , Adenosina Trifosfato/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/efectos de los fármacos , Biblioteca de Genes , Fenotipo , Fosforilación , Serina/metabolismo , Factores de Tiempo
20.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095282

RESUMEN

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacilación , Antibacterianos/farmacología , Sitios de Unión/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA