Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Biol Macromol ; 254(Pt 2): 127756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907177

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than ß-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.


Asunto(s)
Aminoacil-ARNt Sintetasas , Leishmania donovani , Humanos , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico , Aminoacil-ARNt Sintetasas/química , Adenosina Trifosfato , Leishmania donovani/metabolismo , Salicilatos
2.
Mol Biochem Parasitol ; 253: 111530, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36370911

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Glutamato-ARNt Ligasa , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Adenosina Trifosfato/metabolismo
3.
Nat Commun ; 13(1): 6732, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347866

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.


Asunto(s)
Aminoacil-ARNt Sintetasas , Isoleucina-ARNt Ligasa , Isoleucina-ARNt Ligasa/química , Aminoacil-ARNt Sintetasas/metabolismo , Glutamato-ARNt Ligasa/química , ARN de Transferencia/metabolismo
4.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 8): 306-312, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35924598

RESUMEN

Elizabethkingia bacteria are globally emerging pathogens that cause opportunistic and nosocomial infections, with up to 40% mortality among the immunocompromised. Elizabethkingia species are in the pipeline of organisms for high-throughput structural analysis at the Seattle Structural Genomics Center for Infectious Disease (SSGCID). These efforts include the structure-function analysis of potential therapeutic targets. Glutamyl-tRNA synthetase (GluRS) is essential for tRNA aminoacylation and is under investigation as a bacterial drug target. The SSGCID produced, crystallized and determined high-resolution structures of GluRS from E. meningosepticum (EmGluRS) and E. anopheles (EaGluRS). EmGluRS was co-crystallized with glutamate, while EaGluRS is an apo structure. EmGluRS shares ∼97% sequence identity with EaGluRS but less than 39% sequence identity with any other structure in the Protein Data Bank. EmGluRS and EaGluRS have the prototypical bacterial GluRS topology. EmGluRS and EaGluRS have similar binding sites and tertiary structures to other bacterial GluRSs that are promising drug targets. These structural similarities can be exploited for drug discovery.


Asunto(s)
Anopheles , Infecciones por Flavobacteriaceae , Secuencia de Aminoácidos , Animales , Anopheles/metabolismo , Cristalografía por Rayos X , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo
5.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33896406

RESUMEN

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aminoacil-ARNt Sintetasas , Serina-ARNt Ligasa , Adenosina Monofosfato/metabolismo , Aminoácidos/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Iones , Ligasas/metabolismo , Magnesio , ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/química
6.
J Biol Chem ; 297(4): 101203, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34537243

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.


Asunto(s)
Enfermedades Óseas , Diabetes Mellitus , Enfermedades Genéticas Congénitas , Glutamato-ARNt Ligasa , Mutación Missense , Estrés Fisiológico/genética , Sustitución de Aminoácidos , Enfermedades Óseas/enzimología , Enfermedades Óseas/genética , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , Masculino
7.
Nat Commun ; 12(1): 5513, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535641

RESUMEN

Under the Baltimore nucleic acid-based virus classification scheme, the herpesvirus human cytomegalovirus (HCMV) is a Class I virus, meaning that it contains a double-stranded DNA genome-and no RNA. Here, we report sub-particle cryoEM reconstructions of HCMV virions at 2.9 Å resolution revealing structures resembling non-coding transfer RNAs (tRNAs) associated with the virion's capsid-bound tegument protein, pp150. Through deep sequencing, we show that these RNA sequences match human tRNAs, and we built atomic models using the most abundant tRNA species. Based on our models, tRNA recruitment is mediated by the electrostatic interactions between tRNA phosphate groups and the helix-loop-helix motif of HCMV pp150. The specificity of these interactions may explain the absence of such tRNA densities in murine cytomegalovirus and other human herpesviruses.


Asunto(s)
Cápside/metabolismo , Citomegalovirus/ultraestructura , Fosfoproteínas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de la Matriz Viral/metabolismo , Virión/ultraestructura , Anticodón/metabolismo , Secuencia de Bases , Línea Celular , Microscopía por Crioelectrón , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Humanos , Modelos Moleculares , Fosfoproteínas/ultraestructura , ARN Viral/ultraestructura , Proteínas de la Matriz Viral/ultraestructura
8.
Genes (Basel) ; 10(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939863

RESUMEN

The aminoacyl-tRNA synthetases (aaRSs) are well established as the translators of the genetic code, because their products, the aminoacyl-tRNAs, read codons to translate messenger RNAs into proteins. Consequently, deleterious errors by the aaRSs can be transferred into the proteome via misacylated tRNAs. Nevertheless, many microorganisms use an indirect pathway to produce Asn-tRNAAsn via Asp-tRNAAsn. This intermediate is produced by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) that has retained its ability to also generate Asp-tRNAAsp. Here we report the discovery that ND-AspRS and its discriminating counterpart, AspRS, are also capable of specifically producing Glu-tRNAGlu, without producing misacylated tRNAs like Glu-tRNAAsn, Glu-tRNAAsp, or Asp-tRNAGlu, thus maintaining the fidelity of the genetic code. Consequently, bacterial AspRSs have glutamyl-tRNA synthetase-like activity that does not contaminate the proteome via amino acid misincorporation.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/genética , ARN de Transferencia de Asparagina/genética , ARN de Transferencia de Aspártico/genética , Secuencia de Aminoácidos/genética , Asparagina/química , Asparagina/genética , Aspartato-ARNt Ligasa/química , Código Genético/genética , Glutamato-ARNt Ligasa/química , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Conformación Proteica , Proteoma/química , Proteoma/genética , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Aspártico/química , Homología de Secuencia de Aminoácido
9.
J Biol Chem ; 293(49): 19148-19156, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30309984

RESUMEN

About 1 billion years ago, in a single-celled holozoan ancestor of all animals, a gene fusion of two tRNA synthetases formed the bifunctional enzyme, glutamyl-prolyl-tRNA synthetase (EPRS). We propose here that a confluence of metabolic, biochemical, and environmental factors contributed to the specific fusion of glutamyl- (ERS) and prolyl- (PRS) tRNA synthetases. To test this idea, we developed a mathematical model that centers on the precursor-product relationship of glutamic acid and proline, as well as metabolic constraints on free glutamic acid availability near the time of the fusion event. Our findings indicate that proline content increased in the proteome during the emergence of animals, thereby increasing demand for free proline. Together, these constraints contributed to a marked cellular depletion of glutamic acid and its products, with potentially catastrophic consequences. In response, an ancient organism invented an elegant solution in which genes encoding ERS and PRS fused to form EPRS, forcing coexpression of the two enzymes and preventing lethal dysregulation. The substantial evolutionary advantage of this coregulatory mechanism is evidenced by the persistence of EPRS in nearly all extant animals.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas Bacterianas/química , Evolución Molecular , Modelos Químicos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Fusión Génica , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Prolina/química , Prolina/metabolismo , Biosíntesis de Proteínas/genética
10.
J Biol Chem ; 293(23): 8843-8860, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29643180

RESUMEN

Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH-S-transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Caspasas/metabolismo , Aminoacil-ARNt Sintetasas/química , Dominio Catalítico , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Proteolisis
11.
J Biol Chem ; 291(33): 17102-11, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27330079

RESUMEN

Arc1p is a yeast-specific tRNA-binding protein that forms a ternary complex with glutamyl-tRNA synthetase (GluRSc) and methionyl-tRNA synthetase (MetRS) in the cytoplasm to regulate their catalytic activities and subcellular distributions. Despite Arc1p not being involved in any known biotin-dependent reaction, it is a natural target of biotin modification. Results presented herein show that biotin modification had no obvious effect on the growth-supporting activity, subcellular distribution, tRNA binding, or interactions of Arc1p with GluRSc and MetRS. Nevertheless, biotinylation of Arc1p was temperature dependent; raising the growth temperature from 30 to 37 °C drastically reduced its biotinylation level. As a result, Arc1p purified from a yeast culture that had been grown overnight at 37 °C was essentially biotin free. Non-biotinylated Arc1p was more heat stable, more flexible in structure, and more effective than its biotinylated counterpart in promoting glutamylation activity of the otherwise inactive GluRSc at 37 °C in vitro Our study suggests that the structure and function of Arc1p can be modulated via biotinylation in response to temperature changes.


Asunto(s)
Biotinilación , Glutamato-ARNt Ligasa/química , Calor , Metionina-ARNt Ligasa/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Biomol Screen ; 20(9): 1160-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116192

RESUMEN

Pseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNA(Glu) to produce a glutamyl-AMP intermediate. Kinetic parameters for interaction with tRNA were determined and the k(cat) and KM were 0.8 s(-1) and 0.68 µM, respectively, resulting in a k(cat)/KM of 1.18 s(-1) µM(-1). A robust aminoacylation-based scintillation proximity assay (SPA) assay was developed and 800 natural products and 890 synthetic compounds were screened for inhibitory activity against P. aeruginosa GluRS. Fourteen compounds with inhibitory activity were identified. IC50s were in the low micromolar range. The minimum inhibitory concentration (MIC) was determined for each of the compounds against a panel of pathogenic bacteria. Two compounds, BT_03F04 and BT_04B09, inhibited GluRS with IC50s of 21.9 and 24.9 µM, respectively, and both exhibited promising MICs against Gram-positive bacteria. Time-kill studies indicated that one compound was bactericidal and one was bacteriostatic against Gram-positive bacteria. BT_03F04 was found to be noncompetitive with both ATP and glutamic acid, and BT_04B09 was competitive with glutamic acid but noncompetitive with ATP. The compounds were not observed to be toxic to mammalian cells in MTT assays.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antibacterianos/toxicidad , Proteínas Bacterianas/química , Evaluación Preclínica de Medicamentos , Pruebas de Enzimas , Glutamato-ARNt Ligasa/química , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Cinética , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Pseudomonas aeruginosa/enzimología
13.
Biosci Rep ; 35(2)2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25686371

RESUMEN

The putative zinc-binding domain (pZBD) in Escherichia coli glutamyl-tRNA synthetase (GluRS) is known to correctly position the tRNA acceptor arm and modulate the amino acid-binding site. However, its functional role in other bacterial species is not clear since many bacterial GluRSs lack a zinc-binding motif in the pZBD. From experimental studies on pZBD-swapped E. coli GluRS, with Thermosynechoccus elongatus GluRS, Burkholderia thailandensis GluRS and E. coli glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS), we show that E. coli GluRS, containing the zinc-free pZBD of B. thailandensis, is as functional as the zinc-bound wild-type E. coli GluRS, whereas the other constructs, all zinc-bound, show impaired function. A pZBD-tinkered version of E. coli GluRS that still retained Zn-binding capacity, also showed reduced activity. This suggests that zinc is not essential for the pZBD to be functional. From extensive structural and sequence analyses from whole genome database of bacterial GluRS, we further show that in addition to many bacterial GluRS lacking a zinc-binding motif, the pZBD is actually deleted in some bacteria, all containing either glutaminyl-tRNA synthetase (GlnRS) or a second copy of GluRS (GluRS2). Correlation between the absence of pZBD and the occurrence of glutamine amidotransferase CAB (GatCAB) in the genome suggests that the primordial role of the pZBD was to facilitate transamidation of misacylated Glu-tRNA(Gln) via interaction with GatCAB, whereas its role in tRNA(Glu) interaction may be a consequence of the presence of pZBD.


Asunto(s)
Burkholderia , Proteínas de Escherichia coli , Escherichia coli , Genoma Bacteriano , Glutamato-ARNt Ligasa , Zinc/química , Burkholderia/enzimología , Burkholderia/genética , Bases de Datos Genéticas , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Estructura Terciaria de Proteína
14.
J Mol Biol ; 426(21): 3619-33, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25149203

RESUMEN

The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNA(Gln) for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNA(Gln) and tRNA(Glu) with glutamate. This ancient GluRS also separately differentiated to exclude tRNA(Gln) as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNA(Gln) and tRNA(Glu) recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Glutamato-ARNt Ligasa/química , ARN de Transferencia/química , Sitio Alostérico , Aminoácidos/química , Anticodón/química , Secuencia de Bases , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Estructura Terciaria de Proteína , Proteínas/química , ARN/química , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Ácido Nucleico
15.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 7): 922-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25005090

RESUMEN

The nature of interaction between glutamyl-tRNA synthetase (GluRS) and its tRNA substrate is unique in bacteria in that many bacterial GluRS are capable of recognizing two tRNA substrates: tRNAGlu and tRNAGln. To properly understand this distinctive GluRS-tRNA interaction it is important to pursue detailed structure-function studies; however, because of the fact that tRNA-GluRS interaction in bacteria is also associated with phylum-specific idiosyncrasies, the structure-function correlation studies must also be phylum-specific. GluRS from Thermus thermophilus and Escherichia coli, which belong to evolutionarily distant phyla, are the biochemically best characterized. Of these, only the structure of T. thermophilus GluRS is available. To fully unravel the subtleties of tRNAGlu-GluRS interaction in E. coli, a model bacterium that can also be pathogenic, determination of the E. coli GluRS structure is essential. However, previous attempts have failed to crystallize E. coli GluRS. By mapping crystal contacts of a homologous GluRS onto the E. coli GluRS sequence, two surface residues were identified that might have been hindering crystallization attempts. Accordingly, these two residues were mutated and crystallization of the double mutant was attempted. Here, the design, expression, purification and crystallization of an engineered E. coli GluRS in which two surface residues were mutated to optimize crystal contacts are reported.


Asunto(s)
Escherichia coli/química , Glutamato-ARNt Ligasa/química , Ácido Glutámico/química , Alanina/química , Alanina/genética , Secuencia de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/metabolismo , Cinética , Lisina/química , Lisina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Ingeniería de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
16.
BMC Evol Biol ; 14: 26, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24521160

RESUMEN

BACKGROUND: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. RESULTS: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. CONCLUSIONS: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Quimera/genética , Eucariontes/enzimología , Evolución Molecular , Genoma Bacteriano , Glutamato-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Duplicación de Gen , Transferencia de Gen Horizontal , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Filogenia , ARN de Transferencia de Glutamina/metabolismo
17.
Protein J ; 33(2): 143-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24505021

RESUMEN

Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) and glutamyl-tRNA synthetase (GluRS), differ widely by their function although they share close structural resemblance within their catalytic core of GluRS. In particular both Escherichia coli GluRS and Glu-Q-RS contain a single zinc-binding site in their putative tRNA acceptor stem-binding domain. It has been shown that the zinc is crucial for correct positioning of the tRNA(Glu) acceptor-end in the active site of E. coli GluRS. To address the role of zinc ion in Glu-Q-RS, the C101S/C103S Glu-Q-RS variant is constructed. Energy dispersive X-ray fluorescence show that the zinc ion still remained coordinated but the variant became structurally labile and acquired aggregation capacity. The extent of aggregation of the protein is significantly decreased in presence of the small substrates and more particularly by adenosine triphosphate. Addition of zinc increased significantly the solubility of the variant. The aminoacylation assay reveals a decrease in activity of the variant even after addition of zinc as compared to the wild-type, although the secondary structure of the protein is not altered as shown by the Fourier transform infrared spectroscopy study.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Zinc/metabolismo , Aminoacil-ARNt Sintetasas/química , Sitios de Unión , Escherichia coli/química , Proteínas de Escherichia coli/química , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Conformación Proteica , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Zinc/química
18.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2136-45, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24100331

RESUMEN

Aminoacyl-tRNA synthetases recognize cognate amino acids and tRNAs from their noncognate counterparts and catalyze the formation of aminoacyl-tRNAs. Halofuginone (HF), a coccidiostat used in veterinary medicine, exerts its effects by acting as a high-affinity inhibitor of the enzyme glutamyl-prolyl-tRNA synthetase (EPRS). In order to elucidate the precise molecular basis of this inhibition mechanism of human EPRS, the crystal structures of the prolyl-tRNA synthetase domain of human EPRS (hPRS) at 2.4 Šresolution (hPRS-apo), of hPRS complexed with ATP and the substrate proline at 2.3 Šresolution (hPRS-sub) and of hPRS complexed with HF at 2.62 Šresolution (hPRS-HF) are presented. These structures show plainly that motif 1 functions as a cap in hPRS, which is loosely opened in hPRS-apo, tightly closed in hPRS-sub and incorrectly closed in hPRS-HF. In addition, the structural analyses are consistent with more effective binding of hPRS to HF with ATP. Mutagenesis and biochemical analysis confirmed the key roles of two residues, Phe1097 and Arg1152, in the HF inhibition mechanism. These structures will lead to the development of more potent and selective hPRS inhibitors for promoting inflammatory resolution.


Asunto(s)
Adenosina Trifosfato/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Piperidinas/farmacología , Prolina/química , Quinazolinonas/farmacología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/genética , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Cristalografía por Rayos X , Glutamato-ARNt Ligasa/antagonistas & inhibidores , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Humanos , Mutagénesis , Piperidinas/química , Prolina/antagonistas & inhibidores , Prolina/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Conformación Proteica/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Quinazolinonas/química , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética
19.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095282

RESUMEN

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Asunto(s)
Tolerancia a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacilación , Antibacterianos/farmacología , Sitios de Unión/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Fosforilación , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
20.
Nucleic Acids Res ; 41(1): 667-76, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23161686

RESUMEN

In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.


Asunto(s)
Glutamato-ARNt Ligasa/química , Metionina-ARNt Ligasa/química , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Metionina/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Ensayo de Cambio de Movilidad Electroforética , Glutamato-ARNt Ligasa/metabolismo , Metionina-ARNt Ligasa/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA