Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.314
Filtrar
1.
Sci Adv ; 10(38): eadn2806, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303037

RESUMEN

We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Glutaminasa , Glucólisis , Folículo Piloso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Animales , Folículo Piloso/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Ratones , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Células Madre/metabolismo , Glutamina/metabolismo , Humanos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética
2.
Food Res Int ; 195: 114995, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277255

RESUMEN

Common vetch protein, similar to pea protein, offers valuable qualities like being non-GMO, hypoallergenic, and nutritious. However, its strong beany flavor hinders consumer acceptance. This study explores enzymatic deamidation using glutaminase to address this issue. GC-MS analysis identified 54 volatile compounds in the raw material protein, with 2-pentylfuran, hexanal, and several nonenals contributing the most to the undesirable aroma. Principal component analysis (PCA) confirmed the effectiveness of glutaminase deamidation in removing these off-flavors. The study further reveals that deamidation alters the protein's secondary structure, with an increase in α - helix structure and a decrease in ß - sheet structure. The surface hydrophobicity increased from 587.33 ± 2.63 to 1855.63 ± 3.91 exposing hydrophobic clusters that bind flavor compounds. This disruption weakens the interactions that trap these undesirable flavors, ultimately leading to their release and a more pleasant aroma. These findings provide valuable insights for enzymatic deodorization of not only common vetch protein but also pea protein.


Asunto(s)
Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Cromatografía de Gases y Espectrometría de Masas , Aromatizantes/química , Odorantes/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Estructura Secundaria de Proteína
3.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273225

RESUMEN

Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack the context of CAF-cancer interaction, focusing on monocultures. This study assesses the influence of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red) and fibroblast (green) in a co-culture system to evaluate CAFs' effects on PCa cell proliferation and clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival analysis of GLS1 expression in the PCa epithelium and stroma identified a "high-risk" patient group that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.


Asunto(s)
Fibroblastos Asociados al Cáncer , Proliferación Celular , Técnicas de Cocultivo , Glutamina , Neoplasias de la Próstata , Microambiente Tumoral , Humanos , Glutamina/metabolismo , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Glutaminasa/metabolismo , Fibroblastos/metabolismo
4.
Cell Rep Med ; 5(9): 101706, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39236712

RESUMEN

Antipsychotic drugs have been shown to have antitumor effects but have had limited potency in the clinic. Here, we unveil that pimozide inhibits lysosome hydrolytic function to suppress fatty acid and cholesterol release in glioblastoma (GBM), the most lethal brain tumor. Unexpectedly, GBM develops resistance to pimozide by boosting glutamine consumption and lipogenesis. These elevations are driven by SREBP-1, which we find upregulates the expression of ASCT2, a key glutamine transporter. Glutamine, in turn, intensifies SREBP-1 activation through the release of ammonia, creating a feedforward loop that amplifies both glutamine metabolism and lipid synthesis, leading to drug resistance. Disrupting this loop via pharmacological targeting of ASCT2 or glutaminase, in combination with pimozide, induces remarkable mitochondrial damage and oxidative stress, leading to GBM cell death in vitro and in vivo. Our findings underscore the promising therapeutic potential of effectively targeting GBM by combining glutamine metabolism inhibition with lysosome suppression.


Asunto(s)
Glioblastoma , Glutamina , Metabolismo de los Lípidos , Lisosomas , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glutamina/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Línea Celular Tumoral , Animales , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ratones , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antígenos de Histocompatibilidad Menor
5.
JCI Insight ; 9(17)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253977

RESUMEN

Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.


Asunto(s)
Negro o Afroamericano , Glutaminasa , Glutamina , Mitocondrias , Fosforilación Oxidativa , Neoplasias de la Vejiga Urinaria , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Negro o Afroamericano/genética , Línea Celular Tumoral , Proliferación Celular , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Metabolómica/métodos , Mitocondrias/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética
6.
Curr Med Sci ; 44(4): 799-808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39096478

RESUMEN

OBJECTIVE: The metabolic reprogramming of acute myeloid leukemia (AML) cells is a compensatory adaptation to meet energy requirements for rapid proliferation. This study aimed to examine the synergistic effects of glutamine deprivation and metformin exposure on AML cells. METHODS: SKM-1 cells (an AML cell line) were subjected to glutamine deprivation and/or treatment with metformin or bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES, a glutaminase inhibitor) or cytarabine. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis and reactive oxygen species (ROS) by flow cytometry. Western blotting was conducted to examine the levels of apoptotic proteins, including cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP). Moreover, the human long noncoding RNA (lncRNA) microarray was used to analyze gene expression after glutamine deprivation, and results were confirmed with quantitative RT-PCR (qRT-PCR). The expression of metallothionein 2A (MT2A) was suppressed using siRNA. Cell growth and apoptosis were further detected by CCK-8 assay and flow cytometry, respectively, in cells with MT2A knockdown. RESULTS: Glutamine deprivation or treatment with BPTES inhibited cell growth and induced apoptosis in SKM-1 cells. The lncRNA microarray result showed that the expression of MT family genes was significantly upregulated after glutamine deprivation. MT2A knockdown increased apoptosis, while proliferation was not affected in SKM-1 cells. In addition, metformin inhibited cell growth and induced apoptosis in SKM-1 cells. Both glutamine deprivation and metformin enhanced the sensitivity of SKM-1 cells to cytarabine. Furthermore, the combination of glutamine deprivation with metformin exhibited synergistic antileukemia effects on SKM-1 cells. CONCLUSION: Targeting glutamine metabolism in combination with metformin is a promising new therapeutic strategy for AML.


Asunto(s)
Apoptosis , Glutamina , Leucemia Mieloide Aguda , Metformina , Metformina/farmacología , Humanos , Glutamina/metabolismo , Glutamina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glutaminasa/genética , Glutaminasa/metabolismo , Tiadiazoles/farmacología , Sulfuros/farmacología , Sinergismo Farmacológico , Citarabina/farmacología , Especies Reactivas de Oxígeno/metabolismo , ARN Largo no Codificante/genética
7.
Cell Rep ; 43(8): 114632, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159042

RESUMEN

Tumor cells undergo uncontrolled proliferation driven by enhanced anabolic metabolism including glycolysis and glutaminolysis. Targeting these pathways to inhibit cancer growth is a strategy for cancer treatment. Critically, however, tumor-responsive T cells share metabolic features with cancer cells, making them susceptible to these treatments as well. Here, we assess the impact on anti-tumor T cell immunity and T cell exhaustion by genetic ablation of lactate dehydrogenase A (LDHA) and glutaminase1 (GLS1), key enzymes in aerobic glycolysis and glutaminolysis. Loss of LDHA severely impairs expansion of T cells in response to tumors and chronic infection. In contrast, T cells lacking GLS1 can compensate for impaired glutaminolysis by engaging alternative pathways, including upregulation of asparagine synthetase, and thus efficiently respond to tumor challenge and chronic infection as well as immune checkpoint blockade. Targeting GLS1-dependent glutaminolysis, but not aerobic glycolysis, may therefore be a successful strategy in cancer treatment, particularly in combination with immunotherapy.


Asunto(s)
Glutaminasa , Glutamina , Glucólisis , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutamina/metabolismo , Animales , Ratones , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Línea Celular Tumoral , Inmunidad
8.
Front Immunol ; 15: 1440269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211039

RESUMEN

Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.


Asunto(s)
Aminoácidos , Arginasa , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inmunoterapia/métodos , Animales , Aminoácidos/metabolismo , Arginasa/metabolismo , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Escape del Tumor , Óxido Nítrico Sintasa de Tipo II/metabolismo , Triptófano Oxigenasa/metabolismo , Triptófano Oxigenasa/antagonistas & inhibidores , Terapia Molecular Dirigida , Microambiente Tumoral/inmunología , L-Aminoácido Oxidasa
9.
Int J Biol Macromol ; 277(Pt 4): 134535, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111467

RESUMEN

Microbial enzymes are crucial catalysts in various industries due to their versatility and efficiency. The microbial enzymes market has recently expanded due to increased demand for many reasons. Among them are eco-friendly solutions, developing novel microbial strains with enhanced enzymes that perform under harsh conditions, providing sustainability, and raising awareness about the benefits of enzyme-based products. By 2030, the global enzyme market is expected to account for $525 billion, with a growth rate of 6.7 %. L-asparaginase and L-glutaminase are among the leading applied microbial enzymes in antitumor therapy, with a growing market share of 16.5 % and 9.5 %, respectively. The use of microbial enzymes has opened new opportunities to fight various tumors, including leukemia, lymphosarcoma, and breast cancer, which has increased their demand in the pharmaceutical and medicine sectors. Despite their promising applications, commercial use of microbial enzymes faces challenges such as short half-life, immunogenicity, toxicity, and other side effects. Therefore, this review explores the industrial production, purification, formulation, and commercial utilization of microbial enzymes, along with an overview of the global enzyme market. With ongoing discoveries of novel enzymes and their applications, enzyme technology offers promising avenues for cancer treatment and other therapeutic interventions.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Asparaginasa/uso terapéutico , Asparaginasa/química , Asparaginasa/metabolismo , Glutaminasa/metabolismo , Bacterias/enzimología
10.
Food Chem ; 461: 140845, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154467

RESUMEN

Protein glutaminase (PG; EC 3.5.1.44) is a class of food-grade enzyme with the potential to significantly improve protein functionality. However, its low catalytic activity and stability greatly hindered industrial application. In this study, we employed structural-based engineering and computational-aided design strategies to target the engineering of protein glutaminase PG5, which led to the development of a combinatorial mutant, MT8, exhibiting a specific activity of 31.1 U/mg and a half-life of 216.2 min at 55 °C. The results indicated that the flexible region in MT8 shifted from the C-terminus to the N-terminus, with increased N-terminal flexibility positively correlating with its catalytic activity. Additionally, MT8 notably boosted fish myofibrillar proteins (MPs) solubility under the absence of NaCl conditions and enhanced their foaming and emulsifying properties. Key residues like Asp31, Ser72, Asn121, Asp471, and Glu485 were crucial for maintaining PG5-myosin interaction, with Ser72 and Asn121 making significant energy contributions.


Asunto(s)
Proteínas de Peces , Peces , Glutaminasa , Ingeniería de Proteínas , Glutaminasa/química , Glutaminasa/metabolismo , Glutaminasa/genética , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces/genética , Miofibrillas/química , Miofibrillas/metabolismo , Miofibrillas/enzimología , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Estabilidad de Enzimas
11.
Stem Cells Transl Med ; 13(9): 873-885, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39120480

RESUMEN

Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.


Asunto(s)
Senescencia Celular , Glutaminasa , Células Madre Mesenquimatosas , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Senescencia Celular/efectos de los fármacos , Humanos , Animales , Ratones , Gelatina de Wharton/citología , Tiadiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Trasplante de Células Madre Mesenquimatosas/métodos , Sulfuros
12.
Phytomedicine ; 133: 155906, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089089

RESUMEN

BACKGROUND: Colorectal cancer (CRC) and its chemoresistance pose significant threats to human health. Gegen Qinlian Decoction (GQD) is frequently employed alongside chemotherapy drugs for the treatment of CRC and various intestinal disorders. Despite its widespread use, there is limited research investigating the mechanisms through which GQD reverses chemoresistance. PURPOSE: This study investigated the mechanism by which GQD reverses oxaliplatin (OXA) resistance in CRC. METHODS: A YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-knockdown OXA-resistant cell line was constructed by lentivirus to clarify YTHDF1-mediated chemoresistance through the regulation of glutaminase 1 (GLS1). The efficacy of GQD in reversing OXA resistance in CRC in vitro was evaluated by Cell Counting Kit-8, western blotting, quantitative real-time polymerase chain reaction, and glutaminase activity assays. In vivo validation was performed by constructing tumor xenografts in nude mice with OXA-resistant cells. In addition, mouse feces were collected and a 16S rDNA assay was performed to assess the regulation of intestinal flora by GQD. RESULTS: Overexpression of YTHDF1 upregulated GLS1 expression and induced OXA-resistance in CRC. GQD induced apoptosis in LoVo/OXAR, increased OXA accumulation in LoVo/OXAR, inhibited expression of YTHDF1 and GLS1 when administered alone and in combination with OXA, and suppressed GLS1 activity to reverse drug resistance with good synergistic effects. GQD and OXA combination or GLS1 inhibitor alleviated OXA toxicity, reduced the volume of tumor xenografts in nude mice, inhibited YTHDF1 and GLS1 protein expression and GLS1 activity, adjusted the intestinal flora, and significantly reversed the increased Firmicutes/Bacteroidetes ratio. CONCLUSION: GQD has shown superior efficacy in reversing OXA-resistance and increasing sensitivity. These findings indicate that the therapy combined with GQD has potential utility in the treatment of OXA-resistant CRC.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Medicamentos Herbarios Chinos , Glutaminasa , Ratones Desnudos , Oxaliplatino , Proteínas de Unión al ARN , Oxaliplatino/farmacología , Animales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glutaminasa/metabolismo , Medicamentos Herbarios Chinos/farmacología , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Adenosina/análogos & derivados
13.
Eur J Pharmacol ; 982: 176912, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159716

RESUMEN

Glutaminase inhibitors are currently being explored as potential treatments for cancer. This study aimed to elucidate the molecular mechanisms underlying the effects of CB-839 on lung tumor cell lines compared to non-tumor cell lines. Viability assays based on NADPH-dependent dehydrogenases activity, ATP energy production, or mitochondrial reductase activity were used to determine that CB-839 caused significant tumor cell specific inhibition of cellular functions. Clonogenic survival assay revealed a dose dependent reduction in clonogenic survival of various lung tumor cells presenting estimated IC50 values between 10 and 90 nM, while no effect on non-tumor cells was observed. CB-839 led to a 20% reduction in glutaminase (GLS1, a mitochondrial enzyme that catalyzes the conversion of glutamine to glutamate) activity, and a dose-dependent reduced glutamine consumption in tumor cells and had no effect on non-tumor cells. Cell cycle analysis showed the CB-839 did not lead to cell cycle arrest. Apoptosis and necrosis assays revealed an only slight increase in apoptosis in tumor cells. Furthermore, a trypan blue exclusion assay revealed about 40% growth reduction in tumor cells at 0.1-1 µM CB-839 treatment. Surprisingly, treated cells resumed normal growth when re-plated in a drug-free medium, demonstrating reversibility. In hypoxic conditions, CB-839's effect on clonogenic survival was amplified in a dose dependent manner consistent with increased role of GLS1 for energy production under hypoxic conditions. In conclusion, these results suggest CB-839 efficacy is linked to temporary and reversible reduction in glutamine utilization suggesting induction of dormancy.


Asunto(s)
Apoptosis , Bencenoacetamidas , Glutaminasa , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Bencenoacetamidas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glutamina/metabolismo , Tiadiazoles/farmacología , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
14.
Cancer Lett ; 601: 217186, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151722

RESUMEN

Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analyses of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in an m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glutamina , Proteínas Nucleares , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Nucleares/metabolismo
15.
Cancer Biomark ; 41(1): 55-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213050

RESUMEN

BACKGROUND: Myelodysplastic syndrome (MDS) features bone marrow failure and a heightened risk of evolving into acute myeloid leukemia (AML), increasing with age and reducing overall survival. Given the unfavorable outcomes of MDS, alternative treatments are necessary. Glutamine, the most abundant amino acid in the blood, is metabolized first by the enzyme glutaminase (GLS). OBJECTIVES: To investigate whether GLS is involved in the progression of MDS. The efficacy of GLS inhibitors (CB839 or IPN60090) and BCL2 inhibitor venetoclax was also examined. METHODS: We employed GLS inhibitors (CB839, IPN60090) and the BCL2 inhibitor venetoclax, prepared as detailed. MDS and AML cell lines were cultured under standard and modified (hypoxic, glutamine-free) conditions. Viability, proliferation, and caspase activity were assessed with commercial kits. RT-PCR quantified gene expression post-shRNA transfection. Mitochondrial potential, ATP levels, proteasome activity, and metabolic functions were evaluated using specific assays. Statistical analyses (t-tests, ANOVA) validated the findings. RESULTS: The glutamine-free medium inhibited the growth of MDS cells. GLS1 expression was higher in AML cells than in normal control samples (GSE15061), whereas GLS2 expression was not. Treatment of MDS and AML cells for 72 h was inhibited in a dose-dependent manner by GLS inhibitors. Co-treatment with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax and GLS inhibitors increased potency. Cells transfected with GLS1 short hairpin RNA showed suppressed proliferation under hypoxic conditions and increased sensitivity to venetoclax. CONCLUSIONS: Targeting glutaminolysis and BCL2 inhibition enhances the therapeutic efficacy and has been proposed as a novel strategy for treating high-risk MDS and AML.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Glutaminasa , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Sulfonamidas , Tiadiazoles , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glutaminasa/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Sulfonamidas/farmacología , Tiadiazoles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Bencenoacetamidas/farmacología , Compuestos de Bencilideno/farmacología , Apoptosis/efectos de los fármacos , Sulfuros
16.
Nat Metab ; 6(8): 1529-1548, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39192144

RESUMEN

Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis by glutaminase (GLS). However, this metabolic addiction can be lost in the tumour microenvironment, rendering GLS inhibitors ineffective in the clinic. Here we show that glutamine-addicted breast cancer cells adapt to chronic glutamine starvation, or GLS inhibition, via AMPK-mediated upregulation of the serine synthesis pathway (SSP). In this context, the key product of the SSP is not serine, but α-ketoglutarate (α-KG). Mechanistically, we find that phosphoserine aminotransferase 1 (PSAT1) has a unique capacity for sustained α-KG production when glutamate is depleted. Breast cancer cells with resistance to glutamine starvation or GLS inhibition are highly dependent on SSP-supplied α-KG. Accordingly, inhibition of the SSP prevents adaptation to glutamine blockade, resulting in a potent drug synergism that suppresses breast tumour growth. These findings highlight how metabolic redundancy can be context dependent, with the catalytic properties of different metabolic enzymes that act on the same substrate determining which pathways can support tumour growth in a particular nutrient environment. This, in turn, has practical consequences for therapies targeting cancer metabolism.


Asunto(s)
Neoplasias de la Mama , Glutamina , Transaminasas , Glutamina/metabolismo , Humanos , Transaminasas/metabolismo , Transaminasas/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Animales , Ácidos Cetoglutáricos/metabolismo , Adaptación Fisiológica , Ratones , Serina/metabolismo , Microambiente Tumoral
17.
Nat Commun ; 15(1): 5620, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965208

RESUMEN

Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Proteína 1 Similar a ELAV , Glutaminasa , Glutaminasa/metabolismo , Glutaminasa/genética , Glutaminasa/antagonistas & inhibidores , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Empalme Alternativo , Proliferación Celular , Glutamina/metabolismo , Estabilidad del ARN
18.
Sci Rep ; 14(1): 16059, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992159

RESUMEN

Cholangiocarcinoma (CCA) is often diagnosed late, leading to incomplete tumor removal, drug resistance and reduced chemotherapy efficacy. Curcumin has the potential for anti-cancer activity through various therapeutic properties and can improve the efficacy of chemotherapy. We aimed to investigate the synergistic effect of a combination of curcumin and gemcitabine against CCA, targeting the LAT2/glutamine pathway. This combination synergistically suppressed proliferation in gemcitabine-resistant CCA cells (KKU-213BGemR). It also resulted in a remarkable degree of CCA cell apoptosis and cell cycle arrest, characterized by a high proportion of cells in the S and G2/M phases. Knockdown of SLC7A8 decreased the expressions of glutaminase and glutamine synthetase, resulting in inhibited cell proliferation and sensitized CCA cells to gemcitabine treatment. Moreover, in vivo experiments showed that a combination curcumin and gemcitabine significantly reduced tumor size, tumor growth rate and LAT2 expression in a gemcitabine-resistant CCA xenograft mouse model. Suppression of tumor progression in an orthotopic CCA hamster model provided strong support for clinical application. In conclusion, curcumin synergistically enhances gemcitabine efficacy against gemcitabine-resistant CCA by induction of apoptosis, partly via inhibiting LAT2/glutamine pathway. This approach may be an alternative strategy for the treatment of gemcitabine-resistant in CCA patients.


Asunto(s)
Apoptosis , Proliferación Celular , Colangiocarcinoma , Curcumina , Desoxicitidina , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Gemcitabina , Glutamina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Animales , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Humanos , Curcumina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Glutamina/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Masculino
19.
Nat Metab ; 6(7): 1329-1346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39009762

RESUMEN

Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.


Asunto(s)
Adipocitos , Metabolismo Energético , Glutaminasa , Ratones Noqueados , Animales , Glutaminasa/metabolismo , Ratones , Humanos , Masculino , Adipocitos/metabolismo , Femenino , Obesidad/metabolismo , Resistencia a la Insulina , Glutamina/metabolismo , Dieta Alta en Grasa , Glucólisis
20.
Toxicology ; 507: 153899, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032683

RESUMEN

Cadmium (Cd) exposure significantly increases the risk of lung cancer. The demand for glutamine is increasing in cancers, including lung cancer. In this study, we investigated the role of glutamine metabolism in Cd-induced cell growth and migration. Firstly, we found that 2 µM Cd-treatment up-regulated the expression of ASCT2 (alanine, serine, cysteine-preferring transporter 2) and ASNS (asparagine synthetase) while downregulating mitochondrial glutaminase GLS1 in A549 cells. The same results were obtained in male BALB/c mice treated with 0.5 and 1 mg Cd/kg body weight. Subsequently, both glutamine deprivation and transfection with siASCT2 revealed that glutamine played a role in Cd-induced cell growth and migration. Furthermore, using 4-PBA (5 mM), an inhibitor of endoplasmic reticulum (ER) stress, Tm (0.1 µg/ml), an inducer of ER stress, siHMGA2, and over-expressing HMGA2 plasmids we demonstrated that ER stress/HMGA2 axis was involved in inducing ASCT2 and ASNS, while inhibiting GLS1. Additionally, the chromatin immunoprecipitation assay using an HMGA2 antibody revealed the direct binding of the HMGA2 to the promoter sequences of the ASCT2, ASNS, and GLS1 genes. Finally, dual luciferase reporter assay determined that HMGA2 increased the transcription of ASCT2 and ASNS while inhibiting the transcription of GLS1. Overall, we found that ER stress-induced HMGA2 controls glutamine metabolism by transcriptional regulation of ASCT2, ASNS and GLS1 to accelerate cell growth and migration during exposure to Cd at low concentrations. This study innovatively revealed the mechanism of Cd-induced cell growth which offers a fresh perspective on preventing Cd toxicity through glutamine metabolism.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Movimiento Celular , Glutamina , Proteína HMGA2 , Animales , Humanos , Masculino , Ratones , Células A549 , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Cadmio/toxicidad , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Glutaminasa/metabolismo , Glutaminasa/genética , Glutamina/metabolismo , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA