Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.577
Filtrar
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39009411

RESUMEN

In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Isocitrato Deshidrogenasa , Mutación , Vitamina B 12 , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fenotipo , Glutaratos/metabolismo
2.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38991060

RESUMEN

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Asunto(s)
Evasión Inmune , Inmunidad Innata , Isocitrato Deshidrogenasa , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , ADN/metabolismo , Desmetilación del ADN , Metilación de ADN , Elementos Transponibles de ADN , Epigénesis Genética , Glutaratos/metabolismo , Inmunidad Innata/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación , Neoplasias/inmunología , Neoplasias/genética , Nucleotidiltransferasas/genética , Escape del Tumor , Evasión Inmune/genética
3.
Cell Rep ; 43(6): 114300, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38829739

RESUMEN

The high infiltration of tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment prominently attenuates the efficacy of immune checkpoint blockade (ICB) therapies, yet the underlying mechanisms are not fully understood. Here, we investigate the metabolic profile of TAMs and identify S-2-hydroxyglutarate (S-2HG) as a potential immunometabolite that shapes macrophages into an antitumoral phenotype. Blockage of L-2-hydroxyglutarate dehydrogenase (L2HGDH)-mediated S-2HG catabolism in macrophages promotes tumor regression. Mechanistically, based on its structural similarity to α-ketoglutarate (α-KG), S-2HG has the potential to block the enzymatic activity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), consequently reshaping chromatin accessibility. Moreover, S-2HG-treated macrophages enhance CD8+ T cell-mediated antitumor activity and sensitivity to anti-PD-1 therapy. Overall, our study uncovers the role of blockage of L2HGDH-mediated S-2HG catabolism in orchestrating macrophage antitumoral polarization and, further, provides the potential of repolarizing macrophages by S-2HG to overcome resistance to anti-PD-1 therapy.


Asunto(s)
Glutaratos , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Humanos , Glutaratos/metabolismo , Ratones Endogámicos C57BL , Línea Celular Tumoral , Microambiente Tumoral , Polaridad Celular/efectos de los fármacos , Oxidorreductasas de Alcohol/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Activación de Macrófagos/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Femenino
4.
ACS Chem Biol ; 19(7): 1544-1553, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38915184

RESUMEN

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/enzimología , Glutaratos/metabolismo , Glutaratos/química , Losartán/farmacología , Losartán/química , Coenzima A Transferasas/metabolismo , Coenzima A Transferasas/antagonistas & inhibidores , Coenzima A Transferasas/genética , Coenzima A Transferasas/química , Valsartán , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cristalografía por Rayos X , Dominio Catalítico , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Modelos Moleculares , Ensayos Analíticos de Alto Rendimiento , Glutaril-CoA Deshidrogenasa/deficiencia
5.
Mol Metab ; 86: 101969, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908793

RESUMEN

OBJECTIVES: Cachexia is a metabolic disorder and comorbidity with cancer and heart failure. The syndrome impacts more than thirty million people worldwide, accounting for 20% of all cancer deaths. In acute myeloid leukemia, somatic mutations of the metabolic enzyme isocitrate dehydrogenase 1 and 2 cause the production of the oncometabolite D2-hydroxyglutarate (D2-HG). Increased production of D2-HG is associated with heart and skeletal muscle atrophy, but the mechanistic links between metabolic and proteomic remodeling remain poorly understood. Therefore, we assessed how oncometabolic stress by D2-HG activates autophagy and drives skeletal muscle loss. METHODS: We quantified genomic, metabolomic, and proteomic changes in cultured skeletal muscle cells and mouse models of IDH-mutant leukemia using RNA sequencing, mass spectrometry, and computational modeling. RESULTS: D2-HG impairs NADH redox homeostasis in myotubes. Increased NAD+ levels drive activation of nuclear deacetylase Sirt1, which causes deacetylation and activation of LC3, a key regulator of autophagy. Using LC3 mutants, we confirm that deacetylation of LC3 by Sirt1 shifts its distribution from the nucleus into the cytosol, where it can undergo lipidation at pre-autophagic membranes. Sirt1 silencing or p300 overexpression attenuated autophagy activation in myotubes. In vivo, we identified increased muscle atrophy and reduced grip strength in response to D2-HG in male vs. female mice. In male mice, glycolytic intermediates accumulated, and protein expression of oxidative phosphorylation machinery was reduced. In contrast, female animals upregulated the same proteins, attenuating the phenotype in vivo. Network modeling and machine learning algorithms allowed us to identify candidate proteins essential for regulating oncometabolic adaptation in mouse skeletal muscle. CONCLUSIONS: Our multi-omics approach exposes new metabolic vulnerabilities in response to D2-HG in skeletal muscle and provides a conceptual framework for identifying therapeutic targets in cachexia.


Asunto(s)
Autofagia , Glutaratos , Músculo Esquelético , Transducción de Señal , Animales , Ratones , Músculo Esquelético/metabolismo , Masculino , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Caquexia/metabolismo , Femenino , Sirtuina 1/metabolismo , Sirtuina 1/genética , Ratones Endogámicos C57BL
6.
DNA Repair (Amst) ; 140: 103700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897003

RESUMEN

Mutations in isocitrate dehydrogenase isoform 1 (IDH1) are primarily found in secondary glioblastoma (GBM) and low-grade glioma but are rare in primary GBM. The standard treatment for GBM includes radiation combined with temozolomide, an alkylating agent. Fortunately, IDH1 mutant gliomas are sensitive to this treatment, resulting in a more favorable prognosis. However, it's estimated that up to 75 % of IDH1 mutant gliomas will progress to WHO grade IV over time and develop resistance to alkylating agents. Therefore, understanding the mechanism(s) by which IDH1 mutant gliomas confer sensitivity to alkylating agents is crucial for developing targeted chemotherapeutic approaches. The base excision repair (BER) pathway is responsible for repairing most base damage induced by alkylating agents. Defects in this pathway can lead to hypersensitivity to these agents due to unresolved DNA damage. The coordinated assembly and disassembly of BER protein complexes are essential for cell survival and for maintaining genomic integrity following alkylating agent exposure. These complexes rely on poly-ADP-ribose formation, an NAD+-dependent post-translational modification synthesized by PARP1 and PARP2 during the BER process. At the lesion site, poly-ADP-ribose facilitates the recruitment of XRCC1. This scaffold protein helps assemble BER proteins like DNA polymerase beta (Polß), a bifunctional DNA polymerase containing both DNA synthesis and 5'-deoxyribose-phosphate lyase (5'dRP lyase) activity. Here, we confirm that IDH1 mutant glioma cells have defective NAD+ metabolism, but still produce sufficient nuclear NAD+ for robust PARP1 activation and BER complex formation in response to DNA damage. However, the overproduction of 2-hydroxyglutarate, an oncometabolite produced by the IDH1 R132H mutant protein, suppresses BER capacity by reducing Polß protein levels. This defines a novel mechanism by which the IDH1 mutation in gliomas confers cellular sensitivity to alkylating agents and to inhibitors of the poly-ADP-ribose glycohydrolase, PARG.


Asunto(s)
ADN Polimerasa beta , Glutaratos , Isocitrato Deshidrogenasa , ADN Polimerasa beta/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/genética , Glutaratos/metabolismo , Línea Celular Tumoral , Reparación del ADN , Antineoplásicos Alquilantes/farmacología , Temozolomida/farmacología , Mutación , Glioma/metabolismo , Glioma/genética , Glioma/tratamiento farmacológico , Alquilantes/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Daño del ADN
7.
Mol Genet Metab ; 142(3): 108495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772223

RESUMEN

PURPOSE: To identify therapies for combined D, L-2-hydroxyglutaric aciduria (C-2HGA), a rare genetic disorder caused by recessive variants in the SLC25A1 gene. METHODS: Patients C-2HGA were identified and diagnosed by whole exome sequencing and biochemical genetic testing. Patient derived fibroblasts were then treated with phenylbutyrate and the functional effects assessed by metabolomics and RNA-sequencing. RESULTS: In this study, we demonstrated that C-2HGA patient derived fibroblasts exhibited impaired cellular bioenergetics. Moreover, Fibroblasts form one patient exhibited worsened cellular bioenergetics when supplemented with citrate. We hypothesized that treating patient cells with phenylbutyrate (PB), an FDA approved pharmaceutical drug that conjugates glutamine for renal excretion, would reduce mitochondrial 2-ketoglutarate, thereby leading to improved cellular bioenergetics. Metabolomic and RNA-seq analyses of PB-treated fibroblasts demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of PB, an increased level of phenylacetylglutamine in patient cells was consistent with the drug acting as 2-ketoglutarate sink. CONCLUSION: Our pre-clinical studies suggest that citrate supplementation has the possibility exacerbating energy metabolism in this condition. However, improvement in cellular bioenergetics suggests phenylbutyrate might have interventional utility for this rare disease.


Asunto(s)
Fibroblastos , Glutaratos , Fenilbutiratos , Humanos , Fenilbutiratos/farmacología , Fenilbutiratos/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glutaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/genética , Metabolómica , Secuenciación del Exoma , Citrato (si)-Sintasa/metabolismo , Citrato (si)-Sintasa/genética , Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/genética , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Multiómica , Proteínas Mitocondriales , Transportadores de Anión Orgánico
8.
J Clin Invest ; 134(13)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743486

RESUMEN

Tumor cells are known to undergo considerable metabolic reprogramming to meet their unique demands and drive tumor growth. At the same time, this reprogramming may come at a cost with resultant metabolic vulnerabilities. The small molecule l-2-hydroxyglutarate (l-2HG) is elevated in the most common histology of renal cancer. Similarly to other oncometabolites, l-2HG has the potential to profoundly impact gene expression. Here, we demonstrate that l-2HG remodels amino acid metabolism in renal cancer cells through combined effects on histone methylation and RNA N6-methyladenosine. The combined effects of l-2HG result in a metabolic liability that renders tumors cells reliant on exogenous serine to support proliferation, redox homeostasis, and tumor growth. In concert with these data, high-l-2HG kidney cancers demonstrate reduced expression of multiple serine biosynthetic enzymes. Collectively, our data indicate that high-l-2HG renal tumors could be specifically targeted by strategies that limit serine availability to tumors.


Asunto(s)
Glutaratos , Neoplasias Renales , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Glutaratos/metabolismo , Humanos , Animales , Ratones , Línea Celular Tumoral , Serina/metabolismo , Epigenoma , Transcriptoma , Histonas/metabolismo , Histonas/genética , Regulación Neoplásica de la Expresión Génica , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Epigénesis Genética , Adenosina/análogos & derivados
9.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805277

RESUMEN

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Glioma/genética , Glioma/cirugía , Glioma/patología , Isocitrato Deshidrogenasa/genética , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Espectrometría de Masas en Tándem/métodos , Glutaratos/metabolismo , Espectrometría de Masas/métodos , Ácido Glutámico/metabolismo , Ácido Glutámico/genética
10.
An Pediatr (Engl Ed) ; 100(5): 318-324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714461

RESUMEN

INTRODUCTION: . Neonatal screening of glutaric aciduria type 1 (GA-1) has brought radical changes in the course and outcomes of this disease. This study analyses the outcomes of the first 5 years (2015-2019) of the AGA1 neonatal screening programme in our autonomous community. MATERIAL: . We conducted an observational, descriptive and retrospective study. All neonates born between January 1, 2015 and December 31, 2019 that participated in the neonatal screening programme were included in the study. The glutarylcarnitine (C5DC) concentration in dry blood spot samples was measured by means of tandem mass spectrometry applying a cut-off point of 0.25 µmol/L. RESULTS: . A total of 30 120 newborns underwent screening. We found differences in the C5DC concentration based on gestational age, type of feeding and hours of life at sample collection. These differences were not relevant for screening purposes. There were no differences between neonates with weights smaller and greater than 1500 g. Screening identified 2 affected patients and there were 3 false positives. There were no false negatives. The diagnosis was confirmed by genetic testing. Patients have been in treatment since diagnosis and have not developed encephalopathic crises in the first 4 years of life. CONCLUSIONS: . Screening allowed early diagnosis of two cases of GA-1 in the first 5 years since its introduction in our autonomous community. Although there were differences in C5DC levels based on gestational age, type of feeding and hours of life at blood extraction, they were not relevant for screening.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Glutaril-CoA Deshidrogenasa , Tamizaje Neonatal , Humanos , Tamizaje Neonatal/métodos , Recién Nacido , Estudios Retrospectivos , Glutaril-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Masculino , Femenino , Encefalopatías Metabólicas/diagnóstico , Espectrometría de Masas en Tándem , Glutaratos/sangre , Edad Gestacional , Carnitina/análogos & derivados
11.
Biol Res ; 57(1): 30, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760850

RESUMEN

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Asunto(s)
Ciclo Celular , Glioma , Glutaratos , Isocitrato Deshidrogenasa , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Glioma/genética , Glioma/patología , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutación , Apoptosis/genética , Proliferación Celular/genética , Animales , Ratones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Ratones Desnudos
12.
Sci Adv ; 10(16): eadi1782, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630819

RESUMEN

Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.


Asunto(s)
Glutaratos , Leucemia Mieloide Aguda , Lisina , Humanos , Necroptosis , Leucemia Mieloide Aguda/tratamiento farmacológico , Apoptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
13.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189102, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653436

RESUMEN

Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Glutaratos/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 630-633, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660877

RESUMEN

Isocitrate dehydrogenase (IDH) is an enzymes involved in a variety of metabolic and epigenetic processes. IDH can be detected in approximately 20% of patients with acute myeloid leukemia (AML), the mutated IDH enzyme acquires new oncogenic enzyme activity and converts α-ketoglutaric acid (α-KG) to the tumor metabolite 2-hydroxyglutaric acid (2-HG), which accumulates at high levels in cells and hinders the function of αKG-dependent enzymes, including epigenetic regulators, resulting in DNA hypermethylation, abnormal gene expression, cell proliferation, and abnormal differentiation, and contributes to leukemia disease progression. IDH mutations have different effects on the prognosis of patients with AML depending on the location of the mutation and other co-occurring genomic abnormalities. This paper will review the latest research progress on the IDH positive AML gene changes, prognosis, and inhibitors.


Asunto(s)
Metilación de ADN , Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Mutación , Isocitrato Deshidrogenasa/genética , Humanos , Leucemia Mieloide Aguda/genética , Pronóstico , Epigénesis Genética , Glutaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo
15.
Nat Chem ; 16(6): 913-921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531969

RESUMEN

Post-translational modifications (PTMs) dynamically regulate cellular processes. Lysine undergoes a range of acylations, including malonylation, succinylation (SucK) and glutarylation (GluK). These PTMs increase the size of the lysine side chain and reverse its charge from +1 to -1 under physiological conditions, probably impacting protein structure and function. To understand the functional roles of these PTMs, homogeneously modified proteins are required for biochemical studies. While the site-specific encoding of PTMs and their mimics via genetic code expansion has facilitated the characterization of the functional roles of many PTMs, negatively charged lysine acylations have defied this approach. Here we describe site-specific incorporation of SucK and GluK into proteins via temporarily masking their negative charge through thioester derivatives. We prepare succinylated and glutarylated bacterial and mammalian target proteins, including non-refoldable multidomain proteins. This allows us to study how succinylation and glutarylation impact enzymatic activity of metabolic enzymes and regulate protein-DNA and protein-protein interactions in biological processes from replication to ubiquitin signalling.


Asunto(s)
Código Genético , Procesamiento Proteico-Postraduccional , Ácido Succínico , Ácido Succínico/metabolismo , Ácido Succínico/química , Humanos , Lisina/química , Lisina/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Glutaratos/metabolismo , Glutaratos/química
16.
J Vet Intern Med ; 38(3): 1370-1376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38485220

RESUMEN

BACKGROUND: Corticosteroids are among the most commonly used drugs in cats and are increasingly discussed as a treatment for feline pancreatitis. However, its effects on serum lipase in healthy cats remain unknown. OBJECTIVES: To evaluate the effects of prednisolone on serum lipase activity and pancreatic lipase immunoreactivity (PLI) in cats. ANIMALS: Seven clinically healthy colony cats, aged 4 to 7 years, with unremarkable CBC/biochemistry panel were studied. METHODS: Prospective study: Prednisolone (1.1-1.5 mg/kg, median 1.28 mg/kg PO) was given daily for 7 consecutive days. Lipase activity (LIPC Roche; RI, 8-26 U/L) and PLI (Spec fPL; RI, 0-3.5 µg/L) were determined at day 1 before first treatment and at days 2, 3, 8, 10, and 14. Cats were examined daily. An a priori power analysis indicated that 6 cats were needed to find a biological relevant effect at 1-ß = 0.8. Statistical analyses comprised the Friedman test, random intercept regression, and repeated-measures linear regression. RESULTS: Median (range) day 1 lipase activities and PLI were 22 U/L (14-52 U/L) and 3.2 µg/L (2.3-15.7 µg/L). One cat with abnormally high lipase activity (52 U/L) and PLI (15.7 µg/L) at day 1 continued having elevated lipase activities and PLI throughout the study. Lipase activities and PLI concentrations did not differ significantly among time points regardless of whether the cat with elevated values was included or not. All cats remained healthy throughout the study. CONCLUSIONS AND CLINICAL IMPORTANCE: Administration of prednisolone in anti-inflammatory doses does not significantly increase serum lipase activity and PLI concentration.


Asunto(s)
Lipasa , Páncreas , Prednisolona , Animales , Gatos , Lipasa/sangre , Lipasa/metabolismo , Prednisolona/farmacología , Prednisolona/administración & dosificación , Prednisolona/uso terapéutico , Masculino , Femenino , Páncreas/enzimología , Páncreas/efectos de los fármacos , Estudios Prospectivos , Glutaratos , Oxazinas
17.
Cancer Res Commun ; 4(3): 876-894, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38445960

RESUMEN

IDH1mut gliomas produce high levels of D-2-hydroxyglutarate (D-2-HG), an oncometabolite capable of inhibiting α-ketoglutarate-dependent dioxygenases critical to a range of cellular functions involved in gliomagenesis. IDH1mut gliomas also exhibit slower growth rates and improved treatment sensitivity compared with their IDH1wt counterparts. This study explores the mechanism driving apparent reduced growth in IDH1mut gliomas. Specifically, we investigated the relationship between IDH1mut and the RNA N6-methyladenosine (m6A) demethylases FTO and ALKBH5, and their potential for therapeutic targeting. We investigated the role of D-2-HG and m6A in tumor proliferation/viability using glioma patient tumor samples, patient-derived gliomaspheres, and U87 cells, as well as with mouse intracranial IDH1wt gliomasphere xenografts. Methylation RNA immunoprecipitation sequencing (MeRIP-seq) RNA sequencing was used to identify m6A-enriched transcripts in IDH1mut glioma. We show that IDH1mut production of D-2-HG is capable of reducing glioma cell growth via inhibition of the m6A epitranscriptomic regulator, FTO, with resultant m6A hypermethylation of a set of mRNA transcripts. On the basis of unbiased MeRIP-seq epitranscriptomic profiling, we identify ATF5 as a hypermethylated, downregulated transcript that potentially contributes to increased apoptosis. We further demonstrate how targeting this pathway genetically and pharmacologically reduces the proliferative potential of malignant IDH1wt gliomas, both in vitro and in vivo. Our work provides evidence that selective inhibition of the m6A epitranscriptomic regulator FTO attenuates growth in IDH1wt glioma, recapitulating the clinically favorable growth phenotype seen in the IDH1mut subtype. SIGNIFICANCE: We show that IDH1mut-generated D-2-HG can reduce glioma growth via inhibition of the m6A demethylase, FTO. FTO inhibition represents a potential therapeutic target for IDH1wt gliomas and possibly in conjunction with IDH1mut inhibitors for the treatment of IDH1mut glioma. Future studies are necessary to demonstrate the role of ATF5 downregulation in the indolent phenotype of IDH1mut gliomas, as well as to identify other involved gene transcripts deregulated by m6A hypermethylation.


Asunto(s)
Adenina/análogos & derivados , Glioma , Glutaratos , Humanos , Animales , Ratones , Glioma/tratamiento farmacológico , ARN/metabolismo , ARN Mensajero/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
18.
Nat Commun ; 15(1): 1032, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310110

RESUMEN

Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.


Asunto(s)
Escherichia coli , Glutaratos , Escherichia coli/genética , Escherichia coli/metabolismo , Glutaratos/metabolismo , Glucosa/metabolismo , Ingeniería Metabólica/métodos , Aldehído Deshidrogenasa/metabolismo
19.
J Neurooncol ; 167(2): 305-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38424338

RESUMEN

PURPOSE: Currently, there remains a scarcity of established preoperative tests to accurately predict the isocitrate dehydrogenase (IDH) mutation status in clinical scenarios, with limited research has explored the potential synergistic diagnostic performance among metabolite, perfusion, and diffusion parameters. To address this issue, we aimed to develop an imaging protocol that integrated 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy (MRS) and intravoxel incoherent motion (IVIM) by comprehensively assessing metabolic, cellular, and angiogenic changes caused by IDH mutations, and explored the diagnostic efficiency of this imaging protocol for predicting IDH mutation status in clinical scenarios. METHODS: Patients who met the inclusion criteria were categorized into two groups: IDH-wild type (IDH-WT) group and IDH-mutant (IDH-MT) group. Subsequently, we quantified the 2HG concentration, the relative apparent diffusion coefficient (rADC), the relative true diffusion coefficient value (rD), the relative pseudo-diffusion coefficient (rD*) and the relative perfusion fraction value (rf). Intergroup differences were estimated using t-test and Mann-Whitney U test. Finally, we performed receiver operating characteristic (ROC) curve and DeLong's test to evaluate and compare the diagnostic performance of individual parameters and their combinations. RESULTS: 64 patients (female, 21; male, 43; age, 47.0 ± 13.7 years) were enrolled. Compared with IDH-WT gliomas, IDH-MT gliomas had higher 2HG concentration, rADC and rD (P < 0.001), and lower rD* (P = 0.013). The ROC curve demonstrated that 2HG + rD + rD* exhibited the highest areas under curve (AUC) value (0.967, 95%CI 0.889-0.996) for discriminating IDH mutation status. Compared with each individual parameter, the predictive efficiency of 2HG + rADC + rD* and 2HG + rD + rD* shows a statistically significant enhancement (DeLong's test: P < 0.05). CONCLUSIONS: The integration of 2HG MRS and IVIM significantly improves the diagnostic efficiency for predicting IDH mutation status in clinical scenarios.


Asunto(s)
Neoplasias Encefálicas , Glioma , Glutaratos , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Mutación
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 199-204, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311559

RESUMEN

OBJECTIVE: To explore the clinical characteristics and genetic variants of two children with 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD). METHODS: Two children with HMGCLD diagnosed at Henan Provincial Children's Hospital respectively in December 2019 and June 2022 were selected as the study subjects. Clinical data and results of laboratory testing were analyzed retrospectively. RESULTS: Both children had manifested with repeated convulsions, severe hypoglycemia, metabolic acidosis and liver dysfunction. Blood amino acids and acylcarnitine analysis showed increased 3-hydroxy-isovalyl carnitine (C5OH) and 3-hydroxy-isovalyl carnitine/capryloyl carnitine ratio (C5OH/C8), and urinary organic acid analysis showed increased 3-hydroxyl-3-methyl glutaric acid, 3-methyl glutaric acid, 3-methyl glutaconic acid, 3-hydroxyisoglycine and 3-methylprotarylglycine. Child 1 was found to harbor homozygous c.722C>T variants of the HMGCL gene, which was rated as uncertain significance (PM2_Supporting+PP3). Child 2 was found to harbor homozygous c.121C>T variants of the HMGCL gene, which was rated as pathogenic variant (PVS1+PM2_Supporting+PP4). CONCLUSION: Acute episode of HMGCLD is usually characterized by metabolic disorders such as hypoglycemia and metabolic acidosis, and elevated organic acids in urine may facilitate the differential diagnosis, though definite diagnosis will rely on genetic testing.


Asunto(s)
Acetil-CoA C-Acetiltransferasa , Acidosis , Errores Innatos del Metabolismo de los Aminoácidos , Glutaratos , Hipoglucemia , Meglutol , Enfermedades Metabólicas , Niño , Humanos , Acetil-CoA C-Acetiltransferasa/deficiencia , Acidosis/genética , Carnitina , Hipoglucemia/genética , Meglutol/análogos & derivados , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA