Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.063
Filtrar
1.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831060

RESUMEN

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Asunto(s)
Antioxidantes , Carbono , Colorimetría , Cobre , Nitrógeno , Nitrógeno/química , Colorimetría/métodos , Carbono/química , Antioxidantes/química , Antioxidantes/análisis , Cobre/química , Cobalto/química , Peróxido de Hidrógeno/química , Humanos , Catálisis , Límite de Detección , Glutatión/química , Glutatión/sangre , Dopamina/sangre , Dopamina/análisis , Dopamina/química , Bencidinas/química , Polifenoles/química , Polifenoles/análisis , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Ácido Ascórbico/análisis , Oxidación-Reducción , Ácido Úrico/sangre , Ácido Úrico/química , Ácido Úrico/análisis , Cisteína/química , Cisteína/sangre
2.
Int J Nanomedicine ; 19: 5045-5056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832334

RESUMEN

Background: Chemodynamic therapy (CDT) is a new treatment approach that is triggered by endogenous stimuli in specific intracellular conditions for generating hydroxyl radicals. However, the efficiency of CDT is severely limited by Fenton reaction agents and harsh reaction conditions. Methods: Bimetallic PtMn nanocubes were rationally designed and simply synthesized through a one-step high-temperature pyrolysis process by controlling both the nucleation process and the subsequent crystal growth stage. The polyethylene glycol was modified to enhance biocompatibility. Results: Benefiting from the alloying of Pt nanocubes with Mn doping, the structure of the electron cloud has changed, resulting in different degrees of the shift in electron binding energy, resulting in the increasing of Fenton reaction activity. The PtMn nanocubes could catalyze endogenous hydrogen peroxide to toxic hydroxyl radicals in mild acid. Meanwhile, the intrinsic glutathione (GSH) depletion activity of PtMn nanocubes consumed GSH with the assistance of Mn3+/Mn2+. Upon 808 nm laser irradiation, mild temperature due to the surface plasmon resonance effect of Pt metal can also enhance the Fenton reaction. Conclusion: PtMn nanocubes can not only destroy the antioxidant system via efficient reactive oxygen species generation and continuous GSH consumption but also propose the photothermal effect of noble metal for enhanced Fenton reaction activity.


Asunto(s)
Glutatión , Manganeso , Platino (Metal) , Especies Reactivas de Oxígeno , Animales , Platino (Metal)/química , Platino (Metal)/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química , Humanos , Manganeso/química , Manganeso/farmacología , Terapia Fototérmica/métodos , Ratones , Nanopartículas del Metal/química , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química
3.
Nat Commun ; 15(1): 3684, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693181

RESUMEN

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Línea Celular Tumoral , ADN Catalítico/metabolismo , ADN Catalítico/química , Animales , Receptor ErbB-2/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones , Reparación del ADN , Daño del ADN , Glutatión/metabolismo , Glutatión/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
4.
J Nanobiotechnology ; 22(1): 299, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812031

RESUMEN

BACKGROUND: Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity. One of the primary hurdles lies in the elevated levels of intracellular glutathione (GSH). Presently, predominant methods to mitigate intracellular GSH involve inhibiting its synthesis or promoting GSH efflux. However, a conspicuous gap remains in the absence of a strategy capable of directly and efficiently clearing GSH. METHODS: We initially elucidated the chemical mechanism underpinning oridonin, a diminutive pharmacological agent demonstrated to perturb reactive oxygen species, through its covalent interaction with glutathione. Subsequently, we employed the incorporation of maleimide-liposomes, renowned for their capacity to disrupt the ROS delivery system, to ameliorate the drug's water solubility and pharmacokinetics, thereby enhancing its ROS-disruptive efficacy. In a pursuit to further refine the targeting for acute myeloid leukemia (AML), we harnessed the maleic imide and thiol reaction mechanism, facilitating the coupling of Toll-like receptor 2 (TLR2) peptides to the liposomes' surface via maleic imide. This strategic approach offers a novel method for the precise removal of GSH, and its enhancement endeavors are directed towards fortifying the precision and efficacy of the drug's impact on AML targets. RESULTS: We demonstrated that this peptide-liposome-small molecule machinery targets AML and consequently induces cell apoptosis both in vitro and in vivo through three disparate mechanisms: (I) Oridonin, as a Michael acceptor molecule, inhibits GSH function through covalent bonding, triggering an initial imbalance of oxidative stress. (II) Maleimide further induces GSH exhaustion, aggravating redox imbalance as a complementary augment with oridonin. (III) Peptide targets TLR2, enhances the directivity and enrichment of oridonin within AML cells. CONCLUSION: The rationally designed nanocomplex provides a ROS drug enhancement and targeted delivery platform, representing a potential solution by disrupting redox balance for AML therapy.


Asunto(s)
Diterpenos de Tipo Kaurano , Glutatión , Leucemia Mieloide Aguda , Liposomas , Especies Reactivas de Oxígeno , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/farmacología , Glutatión/metabolismo , Glutatión/química , Liposomas/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos
5.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731608

RESUMEN

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Asunto(s)
Colorimetría , Cobre , Glutatión , Peróxido de Hidrógeno , Nanoestructuras , Glutatión/análisis , Glutatión/química , Colorimetría/métodos , Cobre/química , Nanoestructuras/química , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Porosidad , Oxidación-Reducción , Ácidos Ftálicos/química , Humanos , Bencidinas/química , Límite de Detección
6.
Anal Chim Acta ; 1309: 342687, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772659

RESUMEN

BACKGROUND: Cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), as three major biothiols are involved in a variety of physiological processes and play a crucial role in plant growth. Abnormal levels of Cys can cause plants to fail to grow properly. To date, although a very large number of fluorescent probes have been reported for the detection of biothiols, very few of them can be used for the selective discrimination of Cys from GSH and Hcy due to their structural similarity, and only a few of them can be used for plant imaging. RESULTS: Here, three fluorescent probes (o-/m-/p-TMA) based on TMN fluorophore and the ortho-/meta-/para-substituted maleimide recognition groups were constructed to investigate the selective response effect of Cys. Compared to the o-/m-TMA, p-TMA can selectively detect Cys over GSH and Hcy with a rapid response time (10 min) and a low detection limit (0.26 µM). The theoretical calculation confirmed that the intermediate p-TMA-Cys-int has shorter interatomic reaction distances (3.827 Å) compared to o-/m-TMA-Cys (5.533/5.287 Å), making it more suitable for further transcyclization reactions. Additionally, p-TMA has been employed for selective tracking of exogenous and endogenous Cys in Arabidopsis thaliana using both single-/two-photon fluorescence imaging. Furthermore, single cell walls produced obvious two-photon fluorescence signals, indicating that p-TMA can be used for high-concentration Cys analysis in single cells. Surprisingly, p-TMA can be used as a fluorescent dye for protein staining in SDS-PAGE with higher sensitivity (7.49 µg/mL) than classical Coomassie brilliant blue (14.11 µg/mL). SIGNIFICANCE: The outstanding properties of p-TMA make it a promising multifunctional molecular tool for the highly selective detection of Cys over GSH and Hcy in various complex environments, including water solutions, zebrafish, and plants. Additionally, it has the potential to be developed as a fluorescent dye for a simple and fast SDS-PAGE fluorescence staining method.


Asunto(s)
Cisteína , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes , Glutatión , Homocisteína , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cisteína/análisis , Cisteína/química , Glutatión/análisis , Glutatión/química , Homocisteína/análisis , Homocisteína/química , Animales , Fotones , Imagen Óptica , Arabidopsis/química , Humanos , Ciclización , Pez Cebra
7.
ACS Sens ; 9(5): 2317-2324, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38752502

RESUMEN

Cu2+ accelerates the viral-like propagation of α-synuclein fibrils and plays a key role in the pathogenesis of Parkinson's disease (PD). Therefore, the accurate detection of Cu2+ is essential for the diagnosis of PD and other neurological diseases. The Cu2+ detection process is impeded by substances that have similar electrochemical properties. In this study, graphdiyne (GDY), a new kind of carbon allotrope with strong electron-donating ability, was utilized for the highly selective detection of Cu2+ by taking advantage of its outstanding adsorption capacity for Cu2+. Density functional theory (DFT) calculations show that Cu atoms are adsorbed in the cavity of GDY, and the absorption energy between Cu and C atoms is higher than that of graphene (GR), indicating that the cavity of GDY is favorable for the adsorption of Cu atoms and electrochemical sensing. The GDY-based electrochemical sensor can effectively avoid the interference of amino acids, metal ions and neurotransmitters and has a high sensitivity of 9.77 µA·µM-1·cm-2, with a minimum detectable concentration of 200 nM. During the investigating pathogenesis and therapeutic process of PD with α-synuclein as the diagnostic standard, the concentration of Cu2+ in cells before and after L-DOPA and GSH treatments were examined, and it was found that Cu2+ exhibits high potential as a biomarker for PD. This study not only harnesses the favorable adsorption of the GDY and Cu2+ to improve the specificity of ion detection but also provide clues for deeper understanding of the role of Cu2+ in neurobiology and neurological diseases.


Asunto(s)
Cobre , Técnicas Electroquímicas , Grafito , Enfermedad de Parkinson , alfa-Sinucleína , Cobre/química , Enfermedad de Parkinson/diagnóstico , Grafito/química , Humanos , Técnicas Electroquímicas/métodos , alfa-Sinucleína/análisis , alfa-Sinucleína/química , Teoría Funcional de la Densidad , Levodopa/química , Límite de Detección , Glutatión/química
8.
Protein J ; 43(3): 613-626, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38743189

RESUMEN

Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.


Asunto(s)
Clonación Molecular , Glutatión Transferasa , Proteínas Protozoarias , Proteínas Recombinantes , Tetrahymena thermophila , Glutatión Transferasa/genética , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Tetrahymena thermophila/enzimología , Tetrahymena thermophila/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Cinética , Dinitroclorobenceno/química , Dinitroclorobenceno/metabolismo , Expresión Génica , Glutatión/metabolismo , Glutatión/química
9.
Food Chem ; 452: 139569, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744131

RESUMEN

Given the potential dangers of thiram to food safety, constructing a facile sensor is significantly critical. Herein, we presented a colorimetric sensor based on glutathione­iron hybrid (GSH-Fe) nanozyme for specific and stable detection of thiram. The GSH-Fe nanozyme exhibits good peroxidase-mimicking activity with comparable Michaelis constant (Km = 0.551 mM) to the natural enzyme. Thiram pesticides can specifically limit the catalytic activity of GSH-Fe nanozyme via surface passivation, causing the change of colorimetric signal. It is worth mentioning that the platform was used to prepare a portable hydrogel kit for rapid qualitative monitoring of thiram. Coupling with an image-processing algorithm, the colorimetric image of the hydrogel reactor is converted into the data information for accurate quantification of thiram with a detection limit of 0.3 µg mL-1. The sensing system has good selectivity and high stability, with recovery rates in fruit juice samples ranging from 92.4% to 106.9%.


Asunto(s)
Colorimetría , Jugos de Frutas y Vegetales , Glutatión , Hierro , Tiram , Colorimetría/instrumentación , Jugos de Frutas y Vegetales/análisis , Hierro/química , Hierro/análisis , Glutatión/química , Glutatión/análisis , Tiram/análisis , Tiram/química , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Plaguicidas/química , Límite de Detección , Técnicas Biosensibles/instrumentación
10.
ACS Appl Mater Interfaces ; 16(20): 25788-25798, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716694

RESUMEN

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.


Asunto(s)
Glutatión , Liposomas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Xantonas , Liposomas/química , Glutatión/metabolismo , Glutatión/química , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Xantonas/química , Xantonas/farmacología , Animales , Ratones , Terapia Fototérmica , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Antineoplásicos/química , Antineoplásicos/farmacología
11.
Commun Biol ; 7(1): 672, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822018

RESUMEN

ATP-binding cassette transporter B6 (ABCB6), a protein essential for heme biosynthesis in mitochondria, also functions as a heavy metal efflux pump. Here, we present cryo-electron microscopy structures of human ABCB6 bound to a cadmium Cd(II) ion in the presence of antioxidant thiol peptides glutathione (GSH) and phytochelatin 2 (PC2) at resolutions of 3.2 and 3.1 Å, respectively. The overall folding of the two structures resembles the inward-facing apo state but with less separation between the two halves of the transporter. Two GSH molecules are symmetrically bound to the Cd(II) ion in a bent conformation, with the central cysteine protruding towards the metal. The N-terminal glutamate and C-terminal glycine of GSH do not directly interact with Cd(II) but contribute to neutralizing positive charges of the binding cavity by forming hydrogen bonds and van der Waals interactions with nearby residues. In the presence of PC2, Cd(II) binding to ABCB6 is similar to that observed with GSH, except that two cysteine residues of each PC2 molecule participate in Cd(II) coordination to form a tetrathiolate. Structural comparison of human ABCB6 and its homologous Atm-type transporters indicate that their distinct substrate specificity might be attributed to variations in the capping residues situated at the top of the substrate-binding cavity.


Asunto(s)
Cadmio , Microscopía por Crioelectrón , Glutatión , Humanos , Cadmio/metabolismo , Cadmio/química , Glutatión/metabolismo , Glutatión/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/ultraestructura , Unión Proteica , Modelos Moleculares , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Conformación Proteica , Sitios de Unión
12.
J Colloid Interface Sci ; 670: 279-287, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763024

RESUMEN

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.


Asunto(s)
Antineoplásicos , Glutatión , Nanopartículas , Fotoquimioterapia , Profármacos , Especies Reactivas de Oxígeno , Glutatión/metabolismo , Glutatión/química , Nanopartículas/química , Profármacos/farmacología , Profármacos/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Animales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Ratones , Ensayos de Selección de Medicamentos Antitumorales , Tamaño de la Partícula , Peróxido de Hidrógeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Propiedades de Superficie , Línea Celular Tumoral , Liberación de Fármacos , Microambiente Tumoral/efectos de los fármacos , Indolquinonas
13.
J Am Chem Soc ; 146(21): 14875-14888, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38750611

RESUMEN

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN5@PtN4/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity. This creates catalase-like activity and enhances oxidase-like activity to catalyze cascade enzymatic reactions (H2O2 → O2 → O2•-), which can overcome tumor hypoxia and accumulate cytotoxic superoxide radicals (O2•-). Significantly, H-MoN5@PtN4/C displays destructive d-π conjugation between the metal and substrate to attenuate the restriction of orbitals and electrons. This markedly improves enzymatic performance (catalase-like and oxidase-like activity) of a Mo single atom and peroxidase-like properties of a Pt single atom. Furthermore, the H-MoN5@PtN4/C can deplete overexpressed glutathione (GSH) through a redox reaction, which can avoid consumption of ROS (O2•- and •OH). As a result, H-MoN5@PtN4/C can overcome limitations of a complex tumor microenvironment (TME) for tumor-specific therapy based on TME-activated catalytic activity.


Asunto(s)
Electrones , Ligandos , Humanos , Platino (Metal)/química , Catalasa/química , Catalasa/metabolismo , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Glutatión/química , Glutatión/metabolismo , Nanoestructuras/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124410, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718745

RESUMEN

Tandem enzyme can catalyze some cascade reactions with high efficiency, and some few tandem enzyme-like mimics have been discovered recently. Further improving the catalytic efficiency of tandem nanoenzymes with facile method may undoubtedly promote and broaden their applications in various fields. In this work, cupric oxide nanoparticles (CuO NPs) with dual-functional enzyme mimics were synthesized using the rapid deposition method in advance, which simultaneously combined with lanthanide infinite coordination polymers (Ln ICPs) during the self-assemble of Tb3+, guanine-5'-triphosphate (GTP) and auxiliary ligand terephthalic acid (TA). Excitingly, the obtained Tb-GTP/TA@CuO ICPs, not only displayed obviously enhanced tandem catalytic activity compared with pure CuO NPs, but also provided a versatile ratiometric platform for ultrahigh selective and sensitive detection of glutathione (GSH) under single-wavelength excitation. A good linear relationship between the ratio signal and the GSH concentration was spanning from 0.001 to 20 µM with an impressive detection limit of 0.50 nM. This study opens a new and universal avenue for preparing integrated multifunctional probes by coupling of nanoenzyme catalytic activity with superior luminescent Ln ICPs through facile method.


Asunto(s)
Cobre , Glutatión , Elementos de la Serie de los Lantanoides , Polímeros , Espectrometría de Fluorescencia , Cobre/química , Glutatión/análisis , Glutatión/química , Polímeros/química , Elementos de la Serie de los Lantanoides/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Nanopartículas/química , Catálisis , Nanopartículas del Metal/química
15.
Biomed Mater ; 19(4)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38772383

RESUMEN

The traditional chemotherapeutic agents' disadvantages such as high toxicity, untargeting and poor water solubility lead to disappointing chemotherapy effects, which restricts its clinical application. In this work, novel size-appropriate and glutathione (GSH)-responsive nano-hydrogels were successfully prepared via the active ester method between chitosan (containing -NH2) and cross-linker (containing NHS). Especially, the cross-linker was elaborately designed to possess a disulfide linkage (SS) as well as two terminal NHS groups, namely NHS-SS-NHS. These functionalities endowed chitosan-based cross-linked scaffolds with capabilities for drug loading and delivery, as well as a GSH-responsive mechanism for drug release. The prepared nano-hydrogels demonstrated excellent performance applicable morphology, excellent drug loading efficiency (∼22.5%), suitable size (∼100 nm) and long-term stability. The prepared nano-hydrogels released over 80% doxorubicin (DOX) after incubation in 10 mM GSH while a minimal DOX release less than 25% was tested in normal physiological buffer (pH = 7.4). The unloaded nano-hydrogels did not show any apparent cytotoxicity to A 549 cells. In contrast, DOX-loaded nano-hydrogels exhibited marked anti-tumor activity against A 549 cells, especially in high GSH environment. Finally, through fluorescent imaging and flow cytometry analysis, fluorescein isothiocyanate-labeled nano-hydrogels show obvious specific binding to the GSH high-expressing A549 cells and nonspecific binding to the GSH low-expressing A549 cells. Therefore, with this cross-linking approach, our present finding suggests that cross-linked chitosan nano-hydrogel drug carrier improves the anti-tumor effect of the A 549 cells and may serve as a potential injectable delivery carrier.


Asunto(s)
Antineoplásicos , Quitosano , Reactivos de Enlaces Cruzados , Doxorrubicina , Glutatión , Hidrogeles , Quitosano/química , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Glutatión/química , Glutatión/metabolismo , Hidrogeles/química , Reactivos de Enlaces Cruzados/química , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Línea Celular Tumoral , Células A549 , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Disulfuros/química , Preparaciones de Acción Retardada/química
16.
Langmuir ; 40(21): 11098-11105, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739904

RESUMEN

Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.


Asunto(s)
Disulfuros , Doxorrubicina , Liberación de Fármacos , Glutatión , Profármacos , Profármacos/química , Profármacos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Concentración de Iones de Hidrógeno , Disulfuros/química , Glutatión/química , Amidas/química , Nanopartículas/química , Dimerización , Portadores de Fármacos/química
17.
J Mater Chem B ; 12(21): 5194-5206, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38690797

RESUMEN

Hypoxic microenvironment and glutathione (GSH) accumulation in tumours limit the efficacy of cytotoxic reactive oxygen species (ROS) anti-tumour therapy. To address this challenge, we increased the consumption of GSH and the production of ROS through a novel nanoplatform with the action of inorganic nanoenzymes. In this study, we prepared mesoporous FeS2 using a simple template method, efficiently loaded AIPH, and assembled Ti3C2/FeS2-AIPH@BSA (TFAB) nanocomposites through self-assembly with BSA and 2D Ti3C2. The constructed TFAB nanotherapeutic platform enhanced chemodynamic therapy (CDT) by generating toxic hydroxyl radicals (˙OH) via FeS2, while consuming GSH to reduce the loss of generated ˙OH via glutathione oxidase-like (GSH-OXD). In addition, TFAB is able to stimulate the decomposition of AIPH under 808 nm laser irradiation to produce oxygen-independent biotoxic alkyl radicals (˙R) for thermodynamic therapy (TDT). In conclusion, TFAB represents an innovative nanoplatform that effectively addresses the limitations of free radical-based treatment strategies. Through the synergistic therapeutic strategy of photothermal therapy (PTT), CDT, and TDT within the tumor microenvironment, TFAB nanoplatforms achieve controlled AIPH release, ROS generation, intracellular GSH consumption, and precise temperature elevation, resulting in enhanced intracellular oxidative stress, significant apoptotic cell death, and notable tumor growth inhibition. This comprehensive treatment strategy shows great promise in the field of tumor therapy.


Asunto(s)
Glutatión , Nanocompuestos , Terapia Fototérmica , Nanocompuestos/química , Glutatión/metabolismo , Glutatión/química , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Titanio/química , Titanio/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Ensayos de Selección de Medicamentos Antitumorales , Propiedades de Superficie , Microambiente Tumoral/efectos de los fármacos
18.
Anal Methods ; 16(22): 3530-3538, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38779841

RESUMEN

Biomolecules play vital roles in many biological processes and diseases, making their identification crucial. Herein, we present a colorimetric sensing method for detecting biomolecules like cysteine (Cys), homocysteine (Hcy), and glutathione (GSH). This approach is based on a reaction system whereby colorless 3,3',5,5'-tetramethylbenzidine (TMB) undergoes catalytic oxidation to form blue-colored oxidized TMB (ox-TMB) in the presence of hydrogen peroxide (H2O2), utilizing the peroxidase and catalase-mimicking activities of metal-phenolic coordination frameworks (MPNs) of Cu-TA, Co-TA, and Fe-TA nanospheres. The Fe-TA nanospheres demonstrated superior activity, more active sites and enhanced electron transport. Under optimal conditions, the Fe-TA nanospheres were used for the detection of biomolecules. When present, biomolecules inhibit the reaction between TMB and H2O2, causing various colorimetric responses at low detection limits of 0.382, 0.776 and 0.750 µM for Cys, Hcy and GSH. Furthermore, it was successfully applied to real water samples with good recovery results. The developed sensor not only offers a rapid, portable, and user-friendly technique for multi-target analysis of biomolecules at low concentrations but also expands the potential uses of MPNs for other targets in the environmental field.


Asunto(s)
Bencidinas , Colorimetría , Cisteína , Glutatión , Peróxido de Hidrógeno , Colorimetría/métodos , Peróxido de Hidrógeno/química , Glutatión/química , Glutatión/análisis , Cisteína/química , Cisteína/análisis , Bencidinas/química , Homocisteína/análisis , Homocisteína/química , Estructuras Metalorgánicas/química , Límite de Detección , Fenoles/química , Fenoles/análisis , Oxidación-Reducción , Catálisis , Peroxidasa/química , Catalasa/química
19.
Chem Commun (Camb) ; 60(47): 6059-6062, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38780054

RESUMEN

We developed a system to detect multiple target biomolecules through sensing motif-tethered oligodeoxynucleotides. DNA-based molecular probes gave the primary amine motif upon reaction with the target biomolecules, glutathione (GSH) and H2O2. After labelling with biotin, the product DNAs were selectively collected to be quantified by qPCR.


Asunto(s)
Biotina , Glutatión , Peróxido de Hidrógeno , Oligodesoxirribonucleótidos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Glutatión/química , Glutatión/análisis , Biotina/química , ADN/química , Técnicas Biosensibles/métodos
20.
J Agric Food Chem ; 72(22): 12489-12497, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38773677

RESUMEN

The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.


Asunto(s)
Glutatión Transferasa , Proteínas de Insectos , Insecticidas , Ivermectina , Mariposas Nocturnas , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Animales , Insecticidas/metabolismo , Insecticidas/farmacología , Insecticidas/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/enzimología , Ivermectina/análogos & derivados , Ivermectina/metabolismo , Ivermectina/farmacología , Ivermectina/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Cinética , Oryza/metabolismo , Oryza/parasitología , Oryza/química , Glutatión/metabolismo , Glutatión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA