RESUMEN
Through the analysis of immunoglobulin genes at the IGH, IGK, and IGL loci from four Gorilla gorilla gorilla genome assemblies, IMGT® provides an in-depth overview of these loci and their individual variations in a species closely related to humans. The similarity between gorilla and human IG gene organization allowed the assignment of gorilla IG gene names based on their human counterparts. This study revealed significant findings, including variability in the IGH locus, the presence of known and new copy number variations (CNVs), and the accurate estimation of IGHG genes. The IGK locus displayed remarkable homogeneity and lacked the gene duplication seen in humans, while the IGL locus showed a previously unconfirmed CNV in the J-C cluster. The curated data from these analyses, available on the IMGT website, enhance our understanding of gorilla immunogenetics and provide valuable insights into primate evolution.
Asunto(s)
Variaciones en el Número de Copia de ADN , Gorilla gorilla , Animales , Gorilla gorilla/genética , Humanos , Genoma , Filogenia , Sitios Genéticos , Genes de Inmunoglobulinas , Evolución Molecular , InmunogenéticaRESUMEN
Long-standing, continuous blurring and controversies in the field of phylogenetic interspecies relations, associated with insufficient explanations for dynamics and variability of speeds of evolution in mammals, hint at a crucial missing link. It has been suggested that transgenerational epigenetic inheritance and the concealed mechanisms behind play a distinct role in mammalian evolution. Here, a comprehensive sequence alignment approach in hominid species, i.e., Homo sapiens, Homo neanderthalensis, Denisovan human, Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus, comprising conserved CpG islands of housekeeping genes, uncover evidence for a distinct variability of CpG dinucleotides. Applying solely these evolutionary consistent and inconsistent CpG sites in a classic phylogenetic analysis, calibrated by the divergence time point of the common chimpanzee (P. troglodytes) and the bonobo or pygmy chimpanzee (P. paniscus), a "phylo-epigenetic" tree has been generated, which precisely recapitulates branch points and branch lengths, i.e., divergence events and relations, as they have been broadly suggested in the current literature, based on comprehensive molecular phylogenomics and fossil records of many decades. It is suggested here that CpG dinucleotide changes at CpG islands are of superior importance for evolutionary developments. These changes are successfully inherited through the germ line, determining emerging methylation profiles, and they are a central component of transgenerational epigenetic inheritance. It is hidden in the DNA, what will happen on it later.
Asunto(s)
Islas de CpG , Epigénesis Genética , Evolución Molecular , Filogenia , Animales , Humanos , Islas de CpG/genética , Hominidae/genética , Pan troglodytes/genética , Metilación de ADN/genética , Gorilla gorilla/genéticaRESUMEN
Sequence alignment is an essential method in bioinformatics and the basis of many analyses, including phylogenetic inference, ancestral sequence reconstruction, and gene annotation. Sequencing artifacts and errors made during genome assembly, such as abiological frameshifts and incorrect early stop codons, can impact downstream analyses leading to erroneous conclusions in comparative and functional genomic studies. More significantly, while indels can occur both within and between codons in natural sequences, most amino-acid- and codon-based aligners assume that indels only occur between codons. This mismatch between biology and alignment algorithms produces suboptimal alignments and errors in downstream analyses. To address these issues, we present COATi, a statistical, codon-aware pairwise aligner that supports complex insertion-deletion models and can handle artifacts present in genomic data. COATi allows users to reduce the amount of discarded data while generating more accurate sequence alignments. COATi can infer indels both within and between codons, leading to improved sequence alignments. We applied COATi to a dataset containing orthologous protein-coding sequences from humans and gorillas and conclude that 41% of indels occurred between codons, agreeing with previous work in other species. We also applied COATi to semiempirical benchmark alignments and find that it outperforms several popular alignment programs on several measures of alignment quality and accuracy.
Asunto(s)
Mutación INDEL , Alineación de Secuencia , Alineación de Secuencia/métodos , Humanos , Animales , Programas Informáticos , Algoritmos , Codón , Gorilla gorilla/genética , Biología Computacional/métodos , Sistemas de Lectura Abierta , FilogeniaRESUMEN
We identified five distinct full-length human mineralocorticoid receptor (MR) genes containing either 984 amino acids (MR-984) or 988 amino acids (MR-988), which can be distinguished by the presence or absence of Lys, Cys, Ser, and Trp (KCSW) in their DNA-binding domain (DBD) and mutations at codons 180 and 241 in their amino-terminal domain (NTD). Two human MR-KCSW genes contain either (Val-180, Val-241) or (Ile-180, Val-241) in their NTD, and three human MR-984 genes contain either (Ile-180, Ala-241), (Val-180, Val-241), or (Ile-180, Val-241). Human MR-KCSW with (Ile-180, Ala-241) has not been cloned. In contrast, chimpanzees contain four MRs: two MR-988s with KCSW in their DBD, or two MR-984s without KCSW in their DBD. Chimpanzee MRs only contain (Ile180, Val-241) in their NTD. A chimpanzee MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Gorillas and orangutans each contain one MR-988 with KCSW in the DBD and one MR-984 without KCSW, and these MRs only contain (Ile-180, Val-241) in their NTD. A gorilla MR or orangutan MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Together, these data suggest that human MRs with (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD evolved after humans and chimpanzees diverged from their common ancestor. Considering the multiple functions in human development of the MR in kidney, brain, heart, skin, and lungs, as well as MR activity in interaction with the glucocorticoid receptor, we suggest that the evolution of human MRs that are absent in chimpanzees may have been important in the evolution of humans from chimpanzees. Investigation of the physiological responses to corticosteroids mediated by the MR in humans, chimpanzees, gorillas, and orangutans may provide insights into the evolution of humans and their closest relatives.
Asunto(s)
Evolución Molecular , Gorilla gorilla , Pan troglodytes , Receptores de Mineralocorticoides , Animales , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Humanos , Pan troglodytes/genética , Gorilla gorilla/genética , Filogenia , Pongo/genética , Secuencia de Aminoácidos , Dominios ProteicosRESUMEN
Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.
Asunto(s)
Hominidae , Cromosoma X , Cromosoma Y , Animales , Femenino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/clasificación , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética , Evolución Molecular , Variaciones en el Número de Copia de ADN/genética , Humanos , Especies en Peligro de Extinción , Estándares de ReferenciaRESUMEN
Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.
Asunto(s)
Encéfalo , Primates , ARN Largo no Codificante , Animales , Humanos , Encéfalo/metabolismo , Gorilla gorilla/genética , Hylobates/genética , Pan troglodytes/genética , Primates/genética , ARN Largo no Codificante/genética , Especificidad de la EspecieRESUMEN
Genome sequencing is a powerful tool to understand species evolutionary history, uncover genes under selection, which could be informative of local adaptation, and infer measures of genetic diversity, inbreeding and mutational load that could be used to inform conservation efforts. Gorillas, critically endangered primates, have received considerable attention and with the recently sequenced Bwindi mountain gorilla population, genomic data is now available from all gorilla subspecies and both mountain gorilla populations. Here, we reanalysed this rich dataset with a focus on evolutionary history, local adaptation and genomic parameters relevant for conservation. We estimate a recent split between western and eastern gorillas of 150,000-180,000 years ago, with gene flow around 20,000 years ago, primarily between the Cross River and Grauer's gorilla subspecies. This gene flow event likely obscures evolutionary relationships within eastern gorillas: after excluding putatively introgressed genomic regions, we uncover a sister relationship between Virunga mountain gorillas and Grauer's gorillas to the exclusion of Bwindi mountain gorillas. This makes mountain gorillas paraphyletic. Eastern gorillas are less genetically diverse and more inbred than western gorillas, yet we detected lower genetic load in the eastern species. Analyses of indels fit remarkably well with differences in genetic diversity across gorilla taxa as recovered with nucleotide diversity measures. We also identified genes under selection and unique gene variants specific for each gorilla subspecies, encoding, among others, traits involved in immunity, diet, muscular development, hair morphology and behavior. The presence of this functional variation suggests that the subspecies may be locally adapted. In conclusion, using extensive genomic resources we provide a comprehensive overview of gorilla genomic diversity, including a so-far understudied Bwindi mountain gorilla population, identify putative genes involved in local adaptation, and detect population-specific gene flow across gorilla species.
Asunto(s)
Evolución Biológica , Gorilla gorilla , Animales , Gorilla gorilla/genética , Gorilla gorilla/anatomía & histología , Genoma/genética , Mutación , GenómicaRESUMEN
The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.
Asunto(s)
Cognición , Hominidae , Neocórtex , Lóbulo Temporal , Animales , Humanos , Perfilación de la Expresión Génica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiología , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiología , Especificidad de la Especie , Lóbulo Temporal/fisiologíaRESUMEN
Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.
Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Humanos , Gorilla gorilla/genética , Pan paniscus/genética , Teorema de Bayes , Hominidae/genética , Pan troglodytes , Hombre de Neandertal/genéticaRESUMEN
BACKGROUND: As a significant process of post-transcriptional gene expression regulation in eukaryotic cells, alternative splicing (AS) of exons greatly contributes to the complexity of the transcriptome and indirectly enriches the protein repertoires. A large number of studies have focused on the splicing inclusion of alternative exons and have revealed the roles of AS in organ development and maturation. Notably, AS takes place through a change in the relative abundance of the transcript isoforms produced by a single gene, meaning that exons can have complex splicing patterns. However, the commonly used percent spliced-in (Ψ) values only define the usage rate of exons, but lose information about the complexity of exons' linkage pattern. To date, the extent and functional consequence of splicing complexity of alternative exons in development and evolution is poorly understood. RESULTS: By comparing splicing complexity of exons in six tissues (brain, cerebellum, heart, liver, kidney, and testis) from six mammalian species (human, chimpanzee, gorilla, macaque, mouse, opossum) and an outgroup species (chicken), we revealed that exons with high splicing complexity are prevalent in mammals and are closely related to features of genes. Using traditional machine learning and deep learning methods, we found that the splicing complexity of exons can be moderately predicted with features derived from exons, among which length of flanking exons and splicing strength of downstream/upstream splice sites are top predictors. Comparative analysis among human, chimpanzee, gorilla, macaque, and mouse revealed that, alternative exons tend to evolve to an increased level of splicing complexity and higher tissue specificity in splicing complexity. During organ development, not only developmentally regulated exons, but also 10-15% of non-developmentally regulated exons show dynamic splicing complexity. CONCLUSIONS: Our analysis revealed that splicing complexity is an important metric to characterize the splicing dynamics of alternative exons during the development and evolution of mammals.
Asunto(s)
Gorilla gorilla , Pan troglodytes , Masculino , Humanos , Animales , Ratones , Pan troglodytes/genética , Gorilla gorilla/genética , Exones/genética , Empalme Alternativo , Isoformas de Proteínas/genética , Mamíferos/genéticaRESUMEN
The critically endangered western gorillas (Gorilla gorilla) are divided into two subspecies: the western lowland (G. g. gorilla) and the Cross River (G. g. diehli) gorilla. Given the difficulty in sampling wild great ape populations and the small estimated size of the Cross River gorilla population, only one whole genome of a Cross River gorilla has been sequenced to date, hindering the study of this subspecies at the population level. In this study, we expand the number of whole genomes available for wild western gorillas, generating 41 new genomes (25 belonging to Cross River gorillas) using single shed hairs collected from gorilla nests. By combining these genomes with publicly available wild gorilla genomes, we confirm that Cross River gorillas form three population clusters. We also found little variation in genome-wide heterozygosity among them. Our analyses reveal long runs of homozygosity (>10 Mb), indicating recent inbreeding in Cross River gorillas. This is similar to that seen in mountain gorillas but with a much more recent bottleneck. We also detect past gene flow between two Cross River sites, Afi Mountain Wildlife Sanctuary and the Mbe Mountains. Furthermore, we observe past allele sharing between Cross River gorillas and the northern western lowland gorilla sites, as well as with the eastern gorilla species. This is the first study using single shed hairs from a wild species for whole genome sequencing to date. Taken together, our results highlight the importance of implementing conservation measures to increase connectivity among Cross River gorilla sites.
Asunto(s)
Gorilla gorilla , Hominidae , Animales , Humanos , Gorilla gorilla/genética , Endogamia , Hominidae/genética , Genoma/genética , Flujo GénicoRESUMEN
The growth hormone (GH) locus has experienced a dramatic evolution in primates, becoming multigenic and diverse in anthropoids. Despite sequence information from a vast number of primate species, it has remained unclear how the multigene family was favored. We compared the structure and composition of apes' GH loci as a prerequisite to understanding their origin and possible evolutionary role. These thorough analyses of the GH loci of the chimpanzee, gorilla, and orangutan were done by resorting to previously sequenced bacterial artificial chromosomes (BACs) harboring them, as well as to their respective genome projects data available in GenBank. The GH loci of modern man, Neanderthal, gibbon, and wild boar were retrieved from GenBank. Coding regions, regulatory elements, and repetitive sequences were identified and compared among species. The GH loci of all the analyzed species are flanked by the genes CD79B (5') and ICAM-1 (3'). In man, Neanderthal, and chimpanzee, the loci were integrated by five almost indistinguishable genes; however, in the former two, they rendered three different hormones, and in the latter, four different proteins were derived. Gorilla exhibited six genes, gibbon seven, and orangutan four. The sequences of the proximal promoters, enhancers, P-elements, and a locus control region (LCR) were highly conserved. The locus evolution might have implicated duplications of the ancestral pituitary gene (GH-N) and subsequent diversification of the copies, leading to the placental single GH-V gene and the multiple CSH genes.
Asunto(s)
Hominidae , Hormona de Crecimiento Humana , Hombre de Neandertal , Animales , Femenino , Embarazo , Hominidae/genética , Pan troglodytes/genética , Gorilla gorilla/genética , Hylobates/genética , Hombre de Neandertal/genética , Secuencia de Bases , Filogenia , Placenta , Hormona del Crecimiento , Hormona de Crecimiento Humana/genética , Primates/genética , Pongo/genéticaRESUMEN
The animal gut microbiome has been implicated in a number of key biological processes, ranging from digestion to behaviour, and has also been suggested to facilitate local adaptation. Yet studies in wild animals rarely compare multiple populations that differ ecologically, which is the level at which local adaptation may occur. Further, few studies simultaneously characterize diet and gut microbiome from the same sample, despite their probable interdependence. Here, we investigate the interplay between diet and gut microbiome in three geographically isolated populations of the critically endangered Grauer's gorilla (Gorilla beringei graueri), which we show to be genetically differentiated. We find population- and social group-specific dietary and gut microbial profiles and covariation between diet and gut microbiome, despite the presence of core microbial taxa. There was no detectable effect of age, and only marginal effects of sex and genetic relatedness on the microbiome. Diet differed considerably across populations, with the high-altitude population consuming a lower diversity of plants compared to low-altitude populations, consistent with plant availability constraining dietary choices. The observed pattern of covariation between diet and gut microbiome is probably a result of long-term social and environmental factors. Our study suggests that the gut microbiome is sufficiently plastic to support flexible food selection and hence contribute to local adaptation.
Asunto(s)
Microbioma Gastrointestinal , Gorilla gorilla , Animales , Gorilla gorilla/genética , Microbioma Gastrointestinal/genética , Animales Salvajes/genética , Dieta , Altitud , Plantas/genética , ARN Ribosómico 16S/genéticaRESUMEN
The endangered mountain gorilla (Gorilla beringei beringei) in Rwanda, Uganda, and the Democratic Republic of Congo is frequently in contact with humans through tourism, research activities, and illegal entry of people into protected gorilla habitat. Herpesviruses, which are ubiquitous in primates, have the potential to be shared in any setting where humans and gorillas share habitat. Based on serological findings and clinical observations of orofacial ulcerated lesions resembling herpetic lesions, an alpha-herpesvirus resembling human herpes simplex virus type 1 (HSV-1) has long been suspected to be present in human-habituated mountain gorillas in the wild. While the etiology of orofacial lesions in the wild has not been confirmed, HSV-1 has been suspected in captively-housed mountain gorillas and confirmed in a co-housed confiscated Grauer's gorilla (Gorilla beringei graueri). To better characterize herpesviruses infecting mountain gorillas and to determine the presence/absence of HSV-1 in the free-living population, we conducted a population-wide survey to test for the presence of orally shed herpesviruses. DNA was extracted from discarded chewed plants collected from 294 individuals from 26 groups, and samples were screened by polymerase chain reaction using pan-herpesvirus and HSV-1-specific assays. We found no evidence that human herpesviruses had infected free-ranging mountain gorillas. However, we found gorilla-specific homologs to human herpesviruses, including cytomegaloviruses (GbbCMV-1 and 2), a lymphocryptovirus (GbbLCV-1), and a new rhadinovirus (GbbRHV-1) with similar characteristics (i.e., timing of primary infection, shedding in multiple age groups, and potential modes of transmission) to their human counterparts, human cytomegalovirus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, respectively.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Gorilla gorilla , Humanos , Animales , Gorilla gorilla/genética , Herpesvirus Humano 4 , Rwanda/epidemiología , UgandaRESUMEN
BACKGROUND: While of predominant abundance across vertebrate genomes and significant biological implications, the relevance of short tandem repeats (STRs) (also known as microsatellites) to speciation remains largely elusive and attributed to random coincidence for the most part. Here we collected data on the whole-genome abundance of mono-, di-, and trinucleotide STRs in nine species, encompassing rodents and primates, including rat, mouse, olive baboon, gelada, macaque, gorilla, chimpanzee, bonobo, and human. The collected data were used to analyze hierarchical clustering of the STR abundances in the selected species. RESULTS: We found massive differential STR abundances between the rodent and primate orders. In addition, while numerous STRs had random abundance across the nine selected species, the global abundance conformed to three consistent < clusters>, as follows: <rat, mouse>, <gelada, macaque, olive baboon>, and <gorilla, chimpanzee, bonobo, human>, which coincided with the phylogenetic distances of the selected species (p < 4E-05). Exceptionally, in the trinucleotide STR compartment, human was significantly distant from all other species. CONCLUSION: Based on hierarchical clustering, we propose that the global abundance of STRs is non-random in rodents and primates, and probably had a determining impact on the speciation of the two orders. We also propose the STRs and STR lengths, which predominantly conformed to the phylogeny of the selected species, exemplified by (t)10, (ct)6, and (taa4). Phylogenetic and experimental platforms are warranted to further examine the observed patterns and the biological mechanisms associated with those STRs.
Asunto(s)
Gorilla gorilla , Roedores , Humanos , Ratones , Ratas , Animales , Roedores/genética , Gorilla gorilla/genética , Pan troglodytes/genética , Filogenia , Pan paniscus , Primates/genética , Repeticiones de Microsatélite/genética , MacacaRESUMEN
Unique aspects of human behavior are often attributed to differences in the relative size and organization of the human brain: these structural aspects originate during early development. Recent studies indicate that human neurodevelopment is considerably slower than that in other nonhuman primates, a finding that is termed neoteny. One aspect of neoteny is the slow onset of action potentials. However, which molecular mechanisms play a role in this process remain unclear. To examine the evolutionary constraints on the rate of neuronal maturation, we have generated transcriptional data tracking five time points, from the neural progenitor state to 8-week-old neurons, in primates spanning the catarrhine lineage, including Macaca mulatta, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens. Despite finding an overall similarity of many transcriptional signatures, species-specific and clade-specific distinctions were observed. Among the genes that exhibited human-specific regulation, we identified a key pioneer transcription factor, GATA3, that was uniquely upregulated in humans during the neuronal maturation process. We further examined the regulatory nature of GATA3 in human cells and observed that downregulation quickened the speed of developing spontaneous action potentials, thereby modulating the human neotenic phenotype. These results provide evidence for the divergence of gene regulation as a key molecular mechanism underlying human neoteny.
Asunto(s)
Hominidae , Transcriptoma , Animales , Humanos , Primates/genética , Hominidae/genética , Gorilla gorilla/genética , Pan troglodytes/genética , Pan paniscus , Macaca mulattaRESUMEN
In mammalian neonates, milk consumption provides nutrients, growth factors, immune molecules, and microbes. Milk microbiomes are increasingly recognized for their roles in seeding infant gut microbiomes and priming immune development. However, milk microbiome variation within and among individuals remains under investigation. We used 16S rRNA gene sequencing to investigate factors shaping milk microbiomes in three captive great ape species: Gorilla gorilla gorilla (individuals, N = 4; samples, n = 29), Pongo abelii (N = 2; n = 16), and Pongo pygmaeus (N = 1; n = 9). We demonstrate variation among host species, over lactation, and between housing facilities. In phylogenetic community composition, milk microbiomes were distinct among the three ape species. We found only a few shared, abundant bacterial taxa and suggest that they likely serve functional roles. The diversity and community composition of milk microbiomes showed gradual changes over time in gorillas and the Bornean orangutan, which was detectable with our comprehensive sampling over lactation stages (> 300-day span). In gorillas, milk microbiomes differed between housing facilities, but were similar between dams within a facility. These results support the strong influence of evolutionary history in shaping milk microbiomes, but also indicate that more proximate cues from mother, offspring, and the environment affect the distribution of rarer microbial taxa.
Asunto(s)
Hominidae , Microbiota , Animales , Femenino , Gorilla gorilla/genética , Hominidae/genética , Humanos , Recién Nacido , Mamíferos/genética , Leche , Filogenia , Pongo pygmaeus/genética , ARN Ribosómico 16S/genéticaRESUMEN
Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure is mounting to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from 20 phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights the complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, among great apes.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Bacteroidetes , Heces/microbiología , Microbioma Gastrointestinal/genética , Gorilla gorilla/genética , HumanosRESUMEN
BACKGROUND: The mitochondrial (mt) genomes of 15 species of sucking lice from seven families have been studied to date. These louse species have highly dynamic, fragmented mt genomes that differ in the number of minichromosomes, the gene content, and gene order in a minichromosome between families and even between species of the same genus. RESULTS: In the present study, we analyzed the publicly available data to understand mt genome fragmentation in seal lice (family Echinophthiriidae) and gorilla louse, Pthirus gorillae (family Pthiridae), in particular the role of minichromosome split and minichromosome merger in the evolution of fragmented mt genomes. We show that 1) at least three ancestral mt minichromosomes of sucking lice have split in the lineage leading to seal lice, 2) one minichromosome ancestral to primate lice has split in the lineage to the gorilla louse, and 3) two ancestral minichromosomes of seal lice have merged in the lineage to the northern fur seal louse. Minichromosome split occurred 15-16 times in total in the lineages leading to species in six families of sucking lice investigated. In contrast, minichromosome merger occurred only four times in the lineages leading to species in three families of sucking lice. Further, three ancestral mt minichromosomes of sucking lice have split multiple times independently in different lineages of sucking lice. Our analyses of mt karyotypes and gene sequences also indicate the possibility of a host switch of crabeater seal louse to Weddell seals. CONCLUSIONS: We conclude that: 1) minichromosome split contributes more than minichromosome merger in mt genome fragmentation of sucking lice, and 2) mt karyotype comparison helps understand the phylogenetic relationships between sucking louse species.
Asunto(s)
Anoplura , Genoma Mitocondrial , Animales , Anoplura/genética , Orden Génico , Gorilla gorilla/genética , FilogeniaRESUMEN
Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.