Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.630
Filtrar
1.
Phys Rev E ; 109(6-1): 064404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39020903

RESUMEN

Gramicidin A (gA) is a short hydrophobic ß-helical peptide that forms cation-selective channels in lipid membranes in the course of transbilayer dimerization. The length of the gA helix is smaller than the thickness of a typical lipid monolayer. Consequently, elastic deformations of the membrane arise in the configurations of gA monomers, conducting dimer, and the intermediate state of coaxial pair, where gA monomers from opposing membrane monolayers are located one on top of the other. The gA channel is characterized by the average lifetime of the conducting state. The elastic properties of the membrane influence the average lifetime, thus making gA a convenient sensor of membrane elasticity. However, the utilization of gA to investigate the elastic properties of mixed membranes comprising two or more components frequently relies on the assumption of ideality, namely that the elastic parameters of mixed-lipid bilayers depend linearly on the concentrations of the components. Here, we developed a general approach that does not rely on the aforementioned assumption. Instead, we explicitly accounted for the possibility of inhomogeneous lateral distribution of all lipid components, as well as for membrane-mediated lateral interactions of gA monomers, dimer, coaxial pair, and minor lipid components. This approach enabled us to derive unknown elastic parameters of lipid monolayer from experimentally determined lifetimes of gA channel in mixed-lipid bilayers. A general algorithm was formulated that allows the unknown elastic parameters of a lipid monolayer to be obtained using gA as a mechanical sensor.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Gramicidina/química , Gramicidina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Elasticidad , Modelos Moleculares , Fenómenos Mecánicos
2.
J Med Chem ; 67(13): 10774-10782, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38900970

RESUMEN

Antibiotic resistance is an urgent threat to global health, with the decreasing efficacy of conventional drugs underscoring the urgency for innovative therapeutic strategies. Antimicrobial peptides present as promising alternatives to conventional antibiotics. Gramicidin S is one such naturally occurring antimicrobial peptide that is effective against Staphylococcus aureus, with a minimum inhibitory concentration (MIC) of 4 µg/mL (3.6 µM). Despite this potent activity, its significant hemolytic toxicity restricts its clinical use to topical applications. Herein, we present rational modifications to the key ß-strand and ß-turn regions of gramicidin S to concurrently mitigate hemolytic effects, while maintaining potency. Critically, peptide 9 displayed negligible hemolytic toxicity, while possessing significant antibacterial potency against a panel of methicillin-sensitive and methicillin-resistant S. aureus clinical isolates (MIC of 8 µg/mL, 7.2 µM). Given the substantial antibacterial activity and near absence of cytotoxicity, 9 presents as a potential candidate for systemic administration in the treatment of S. aureus bacteremia/sepsis.


Asunto(s)
Antibacterianos , Gramicidina , Hemólisis , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hemólisis/efectos de los fármacos , Gramicidina/farmacología , Gramicidina/análogos & derivados , Humanos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Relación Estructura-Actividad , Eritrocitos/efectos de los fármacos , Animales
3.
Bioelectrochemistry ; 159: 108757, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38851026

RESUMEN

The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Poliésteres , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Gramicidina/química , Gramicidina/metabolismo , Poliésteres/química , Colesterol/química , Tecnicas de Microbalanza del Cristal de Cuarzo , Polietilenglicoles/química , Materiales Biocompatibles/química , Espectroscopía Dieléctrica
4.
Chemphyschem ; 25(13): e202400101, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563617

RESUMEN

Spectrally-resolved single-molecule localization microscopy (srSMLM) has emerged as a powerful tool for exploring the spectral properties of single emitters in localization microscopy. By simultaneously capturing the spatial positions and spectroscopic signatures of individual fluorescent molecules, srSMLM opens up the possibility of investigating an additional dimension in super-resolution imaging. However, appropriate and dedicated tools are required to fully capitalize on the spectral dimension. Here, we propose the application of the spectral phasor analysis as an effective method for summarizing and analyzing the spectral information obtained from srSMLM experiments. The spectral phasor condenses the complete spectrum of a single emitter into a two-dimensional space, preserving key spectral characteristics for single-molecule spectral exploration. We demonstrate the effectiveness of spectral phasor in efficiently classifying single Nile Red fluorescence emissions from largely overlapping cyanine fluorescence signals in dual-color PAINT experiments. Additionally, we employed spectral phasor with srSMLM to reveal subtle alterations occurring in the membrane of Gram-positive Enterococcus hirae in response to gramicidin exposure, a membrane-perturbing antibiotic treatment. Spectral phasor provides a robust, model-free analytic tool for the detailed analysis of the spectral component of srSMLM, enhancing the capabilities of multi-color spectrally-resolved single-molecule imaging.


Asunto(s)
Microscopía Fluorescente , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química , Gramicidina/química , Oxazinas/química
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474005

RESUMEN

Perturbations in bilayer material properties (thickness, lipid intrinsic curvature and elastic moduli) modulate the free energy difference between different membrane protein conformations, thereby leading to changes in the conformational preferences of bilayer-spanning proteins. To further explore the relative importance of curvature and elasticity in determining the changes in bilayer properties that underlie the modulation of channel function, we investigated how the micelle-forming amphiphiles Triton X-100, reduced Triton X-100 and the HII lipid phase promoter capsaicin modulate the function of alamethicin and gramicidin channels. Whether the amphiphile-induced changes in intrinsic curvature were negative or positive, amphiphile addition increased gramicidin channel appearance rates and lifetimes and stabilized the higher conductance states in alamethicin channels. When the intrinsic curvature was modulated by altering phospholipid head group interactions, however, maneuvers that promote a negative-going curvature stabilized the higher conductance states in alamethicin channels but destabilized gramicidin channels. Using gramicidin channels of different lengths to probe for changes in bilayer elasticity, we found that amphiphile adsorption increases bilayer elasticity, whereas altering head group interactions does not. We draw the following conclusions: first, confirming previous studies, both alamethicin and gramicidin channels are modulated by changes in lipid bilayer material properties, the changes occurring in parallel yet differing dependent on the property that is being changed; second, isolated, negative-going changes in curvature stabilize the higher current levels in alamethicin channels and destabilize gramicidin channels; third, increases in bilayer elasticity stabilize the higher current levels in alamethicin channels and stabilize gramicidin channels; and fourth, the energetic consequences of changes in elasticity tend to dominate over changes in curvature.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Octoxinol , Gramicidina/farmacología , Membrana Dobles de Lípidos/metabolismo , Elasticidad , Peptaiboles
6.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396879

RESUMEN

Using the gramicidin A channel as a molecular probe, we show that tubulin binding to planar lipid membranes changes the channel kinetics-seen as an increase in the lifetime of the channel dimer-and thus points towards modification of the membrane's mechanical properties. The effect is more pronounced in the presence of non-lamellar lipids in the lipid mixture used for membrane formation. To interpret these findings, we propose that tubulin binding redistributes the lateral pressure of lipid packing along the membrane depth, making it closer to the profile expected for lamellar lipids. This redistribution happens because tubulin perturbs the lipid headgroup spacing to reach the membrane's hydrophobic core via its amphiphilic α-helical domain. Specifically, it increases the forces of repulsion between the lipid headgroups and reduces such forces in the hydrophobic region. We suggest that the effect is reciprocal, meaning that alterations in lipid bilayer mechanics caused by membrane remodeling during cell proliferation in disease and development may also modulate tubulin membrane binding, thus exerting regulatory functions. One of those functions includes the regulation of protein-protein interactions at the membrane surface, as exemplified by VDAC complexation with tubulin.


Asunto(s)
Membrana Dobles de Lípidos , Tubulina (Proteína) , Membrana Dobles de Lípidos/química , Tubulina (Proteína)/metabolismo , Gramicidina/química
7.
ACS Appl Mater Interfaces ; 16(6): 7480-7488, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295806

RESUMEN

Ion channels are membrane proteins that allow ionic signals to pass through channel pores for biofunctional modulations. However, biodevices that integrate bidirectional biological signal transmission between a device and biological converter through supported lipid bilayers (SLBs) while simultaneously controlling the process are lacking. Therefore, in this study, we aimed to develop a hybrid biotransducer composed of ATP synthase and proton channel gramicidin A (gA), controlled by a sulfonated polyaniline (SPA) conducting polymer layer deposited on a microelectrode, and to simulate a model circuit for this system. We controlled proton transport across the gA channel using both electrical and chemical input signals by applying voltage to the SPA or introducing calcium ions (inhibitor) and ethylenediaminetetraacetic acid molecules (inhibitor remover). The insertion of gA and ATP synthase into SLBs on microelectrodes resulted in an integrated biotransducer, in which the proton current was controlled by the flux of adenosine diphosphate molecules and calcium ions. Lastly, we created an XOR logic gate as an enzymatic logic system where the output proton current was controlled by Input A (ATP synthase) and Input B (calcium ions), making use of the unidirectional and bidirectional transmission of protons in ATP synthase and gA, respectively. We combined gA, ATP synthase, and SPA as a hybrid bioiontronics system to control bidirectional or unidirectional ion transport across SLBs in biotransducers. Thus, our findings are potentially relevant for a range of advanced biological and medical applications.


Asunto(s)
Gramicidina , Protones , Gramicidina/química , Gramicidina/metabolismo , Calcio , Potenciales de la Membrana , Iones , Membrana Dobles de Lípidos/química , Adenosina Trifosfato
8.
Chem Pharm Bull (Tokyo) ; 72(2): 149-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296556

RESUMEN

Antimicrobial peptides (AMPs) are promising therapeutic agents against bacteria. We have previously reported an amphipathic AMP Stripe composed of cationic L-Lys and hydrophobic L-Leu/L-Ala residues, and Stripe exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria. Gramicidin A (GA), composed of repeating sequences of L- and D-amino acids, has a unique ß6.3-helix structure and exhibits broad antimicrobial activity. Inspired by the structural properties and antimicrobial activities of LD-alternating peptides such as GA, in this study, we designed Stripe derivatives with LD-alternating sequences. We found that simply alternating L- and D-amino acids in the Stripe sequence to give StripeLD caused a reduction in antimicrobial activity. In contrast, AltStripeLD, with cationic and hydrophobic amino acids rearranged to yield an amphipathic distribution when the peptide adopts a ß6.3-helix, displayed higher antimicrobial activity than AltStripe. These results suggest that alternating L-/D-cationic and L-/D-hydrophobic amino acids in accordance with the helical structure of an AMP may be a useful way to improve antimicrobial activity and develop new AMP drugs.


Asunto(s)
Aminoácidos , Antibacterianos , Aminoácidos/farmacología , Antibacterianos/química , Péptidos Antimicrobianos , Bacterias Gramnegativas , Relación Estructura-Actividad , Bacterias Grampositivas , Estructura Secundaria de Proteína , Gramicidina/química , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana
9.
Nat Chem ; 16(2): 259-268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38049653

RESUMEN

Many peptide-derived natural products are produced by non-ribosomal peptide synthetases (NRPSs) in an assembly-line fashion. Each amino acid is coupled to a designated peptidyl carrier protein (PCP) through two distinct reactions catalysed sequentially by the single active site of the adenylation domain (A-domain). Accumulating evidence suggests that large-amplitude structural changes occur in different NRPS states; yet how these molecular machines orchestrate such biochemical sequences has remained elusive. Here, using single-molecule Förster resonance energy transfer, we show that the A-domain of gramicidin S synthetase I adopts structurally extended and functionally obligatory conformations for alternating between adenylation and thioester-formation structures during enzymatic cycles. Complementary biochemical, computational and small-angle X-ray scattering studies reveal interconversion among these three conformations as intrinsic and hierarchical where intra-A-domain organizations propagate to remodel inter-A-PCP didomain configurations during catalysis. The tight kinetic coupling between structural transitions and enzymatic transformations is quantified, and how the gramicidin S synthetase I A-domain utilizes its inherent conformational dynamics to drive directional biosynthesis with a flexibly linked PCP domain is revealed.


Asunto(s)
Gramicidina , Péptido Sintasas , Estructura Terciaria de Proteína , Péptido Sintasas/química , Dominio Catalítico
10.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38138162

RESUMEN

Background and Objectives: Gramicidin, a bactericidal antibiotic used in dermatology and ophthalmology, has recently garnered attention for its inhibitory actions against cancer cell growth. However, the effects of gramicidin on ovarian cancer cells and the underlying mechanisms are still poorly understood. We aimed to elucidate the anticancer efficacy of gramicidin against ovarian cancer cells. Materials and Methods: The anticancer effect of gramicidin was investigated through an in vitro experiment. We analyzed cell proliferation, DNA fragmentation, cell cycle arrest and apoptosis in ovarian cancer cells using WST-1 assay, terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL), DNA agarose gel electrophoresis, flow cytometry and western blot. Results: Gramicidin treatment induces dose- and time-dependent decreases in OVCAR8, SKOV3, and A2780 ovarian cancer cell proliferation. TUNEL assay and DNA agarose gel electrophoresis showed that gramicidin caused DNA fragmentation in ovarian cancer cells. Flow cytometry demonstrated that gramicidin induced cell cycle arrest. Furthermore, we confirmed via Western blot that gramicidin triggered apoptosis in ovarian cancer cells. Conclusions: Our results strongly suggest that gramicidin exerts its inhibitory effect on cancer cell growth by triggering apoptosis. Conclusively, this study provides new insights into the previously unexplored anticancer properties of gramicidin against ovarian cancer cells.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Gramicidina/farmacología , Gramicidina/uso terapéutico , Línea Celular Tumoral , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Apoptosis , Proliferación Celular , ADN/farmacología
11.
Chembiochem ; 24(24): e202300680, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37804133

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are giant enzymatic assembly lines that deliver many pharmaceutically valuable natural products, including antibiotics. As the search for new antibiotics motivates attempts to redesign nonribosomal metabolic pathways, more robust and rapid sorting and screening platforms are needed. Here, we establish a microfluidic platform that reliably detects production of the model nonribosomal peptide gramicidin S. The detection is based on calcein-filled sensor liposomes yielding increased fluorescence upon permeabilization. From a library of NRPS mutants, the sorting platform enriches the gramicidin S producer 14.5-fold, decreases internal stop codons 250-fold, and generates enrichment factors correlating with enzyme activity. Screening for NRPS activity with a reliable non-binary sensor will enable more sophisticated structure-activity studies and new engineering applications in the future.


Asunto(s)
Gramicidina , Microfluídica , Antibacterianos , Péptidos , Biblioteca de Genes , Péptido Sintasas/genética , Péptido Sintasas/metabolismo
12.
Phys Chem Chem Phys ; 25(34): 23111-23124, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602684

RESUMEN

The membrane potential plays a significant role in various cellular processes while interacting with membrane active agents. So far, all the investigations of the interaction of nanoparticles (NPs) with lipid vesicles have been performed in the absence of membrane potential. In this study, the anionic magnetite NP-induced poration along with deformation of cell-mimetic giant unilamellar vesicles (GUVs) has been studied in the presence of various membrane potentials. Lipids 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and channel forming protein gramicidin A (GrA) are used to synthesize the DOPG/DOPC/GrA-GUVs. The static and dynamic nature of GUVs is investigated using phase contrast fluorescent microscopy. The presence of GrA in the membrane decreases the leakage constant of the encapsulating fluorescent probe (calcein) in the absence of membrane potential. With the increase of negative membrane potential, the leakage shifts from a single exponential to two exponential functions, obtaining two leakage constants. The leakage became faster at the initial stage, and at the final stage, it became slower with the increase in negative membrane potential. Both the fraction of poration and deformation increase with the increase of negative membrane potential. These results suggested that the membrane potential enhances the NP-induced poration along with the deformation of DOPG/DOPC/GrA-GUVs. The increase of the binding constant in the NPs with membrane potential is one of the important factors for increasing membrane permeation and vesicle deformation.


Asunto(s)
Colorantes Fluorescentes , Nanopartículas , Potenciales de la Membrana , Membranas , Glicerol , Gramicidina , Liposomas Unilamelares
13.
Chem Commun (Camb) ; 59(62): 9473-9476, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37477345

RESUMEN

We describe activity-based protein profiling for analyzing the adenylation domains of non-ribosomal peptide synthetases (ABPP-NRPS) in bacterial proteomes. Using a range of non-proteoinogenic amino acid sulfamoyladenosines, the competitive format of ABPP-NRPS provided substrate tolerance toward non-proteinogenic amino acids. When coupled with precursor-directed biosynthesis, a non-proteinogenic amino acid (O-allyl-L-serine) was successfully incorporated into gramicidin S.


Asunto(s)
Aminoácidos , Péptidos , Bacterias/metabolismo , Gramicidina , Péptido Sintasas/química , Especificidad por Sustrato
14.
Chemistry ; 29(46): e202301487, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37309073

RESUMEN

A novel strategy to treat Staphylococcus aureus (S. aureus) skin infections is presented, where UV light is used to facilitate concomitant light-controlled activation and delivery of an antimicrobial therapeutic agent. Specifically, a new photoswitchable gramicidin S analogue was immobilized onto a polymeric wearable patch via a photocleavable linker that undergoes photolysis at the same wavelength of light required for activation of the peptide. Unlike toxic gramicidin S, the liberated active photoswitchable peptide exhibits antimicrobial activity against S. aureus while being ostensibly non-haemolytic to red blood cells. Moreover, irradiation with visible light switches off the antimicrobial properties of the peptide within seconds, presenting an ideal strategy to regulate antibiotic activity for localized bacterial infections with the potential to mitigate resistance.


Asunto(s)
Antiinfecciosos , Dispositivos Electrónicos Vestibles , Gramicidina/química , Péptidos Antimicrobianos , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Péptidos , Antiinfecciosos/farmacología
15.
Bioorg Chem ; 138: 106641, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300963

RESUMEN

Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro ß-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.


Asunto(s)
Gramicidina , Prolina , Animales , Chlorocebus aethiops , Gramicidina/farmacología , Gramicidina/química , Prolina/farmacología , Prolina/química , Escherichia coli , Staphylococcus aureus , Células Vero , Antibacterianos/farmacología , Antibacterianos/química , Péptidos
16.
Methods Mol Biol ; 2670: 69-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184700

RESUMEN

Many amino acid-containing natural products are biosynthesized by large, multifunctional enzymes known as non-ribosomal peptide synthetases (NRPSs). Adenylation (A) domains in NRPSs are responsible for the incorporation of amino acid building blocks and can be considered as engineering domains; therefore, advanced techniques are required to not only rapidly verify expression and folding, but also accelerate the functional prediction of the A-domains in lysates from native and heterologous systems. We recently developed activity-based protein profiling (ABPP) of NRPSs that offers a simple and robust analytical platform for A-domains and provides insights into their enzyme-substrate specificity. In this chapter, we describe the design and synthesis of these ABPP probes and provide a summary of our work on the development of a series of protocols for labeling, visualizing, and analyzing endogenous NRPSs in complex biological systems.


Asunto(s)
Gramicidina , Péptido Sintasas , Péptido Sintasas/química , Especificidad por Sustrato , Aminoácidos
17.
J Phys Chem B ; 127(17): 3774-3786, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37125750

RESUMEN

We report on the structure of Gramicidin S (GS) in a model membrane mimetic environment represented by the amphipathic solvent 1-octanol using one-dimensional (1D) and two-dimensional (2D) IR spectroscopy. To explore potential structural changes of GS, we also performed a series of spectroscopic measurements at differing temperatures. By analyzing the amide I band and using 2D-IR spectral changes, results could be associated to the disruption of aggregates/oligomers, as well as structural and conformational changes happening in the concentrated solution of GS. The ability of 2D-IR to enable differentiation in melting transitions of oligomerized GS structures is attributed to the sensitivity of the technique to vibrational coupling. Two melting transition temperatures were identified; at Tm1 in the range 41-47 °C where the GS aggregates/oligomers disassemble and at Tm2 = 57 ± 2 °C where there is significant change involving GS ß-sheet-type hydrogen bonds, whereby it is proposed that there is loss of interpeptide hydrogen bonds and we are left with mainly intrapeptide ß-sheet and ß-turn hydrogen bonds of the smaller oligomers. Further analysis with quantum mechanical/molecular mechanics (QM/MM) simulations and second derivative results highlighted the participation of active GS side chains. Ultimately, this work contributes toward understanding the GS structure and the formulation of GS analogues with improved bioactivity.


Asunto(s)
Gramicidina , Simulación de Dinámica Molecular , Gramicidina/química , Temperatura , Conformación Proteica en Lámina beta , Solventes
18.
Chirality ; 35(8): 498-504, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36895102

RESUMEN

Membranes are important sites of intermolecular interactions in biological systems. However, they present significant analytical challenges as they contain multiple analytes and are dynamic in nature. In this work, we show how a Jasco J-1500 circular dichroism spectropolarimeter can be used with a microvolume Couette flow cell and appropriate cut-off filters to measure excitation fluorescence detected linear dichroism (FDLD) of fluorophores embedded in liposomal membranes. The result is a spectrum that selectively probes the fluorophore(s) and eliminates the scattering that is apparent in the corresponding flow linear dichroism (LD) spectrum. The FDLD spectrum is opposite in sign from the LD spectrum with relative magnitudes modified by the quantum yields of the transitions. FDLD thus enables analyte orientations to be identified in a membrane. Data for a membrane peptide, gramicidin, and two aromatic analytes, anthracene and pyrene, are presented. Issues with the "leakage" of photons by the long pass filters used is also discussed.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Estereoisomerismo , Dicroismo Circular , Gramicidina/química , Péptidos/química
19.
J Gen Physiol ; 155(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36763053

RESUMEN

A perennial problem encountered when using small molecules (drugs) to manipulate cell or protein function is to assess whether observed changes in function result from specific interactions with a desired target or from less specific off-target mechanisms. This is important in laboratory research as well as in drug development, where the goal is to identify molecules that are unlikely to be successful therapeutics early in the process, thereby avoiding costly mistakes. We pursued this challenge from the perspective that many bioactive molecules (drugs) are amphiphiles that alter lipid bilayer elastic properties, which may cause indiscriminate changes in membrane protein (and cell) function and, in turn, cytotoxicity. Such drug-induced changes in bilayer properties can be quantified as changes in the monomer↔dimer equilibrium for bilayer-spanning gramicidin channels. Using this approach, we tested whether molecules in the Pathogen Box (a library of 400 drugs and drug-like molecules with confirmed activity against tropical diseases released by Medicines for Malaria Venture to encourage the development of therapies for neglected tropical diseases) are bilayer modifiers. 32% of the molecules in the Pathogen Box were bilayer modifiers, defined as molecules that at 10 µM shifted the monomer↔dimer equilibrium toward the conducting dimers by at least 50%. Correlation analysis of the molecules' reported HepG2 cell cytotoxicity to bilayer-modifying potency, quantified as the shift in the gramicidin monomer↔dimer equilibrium, revealed that molecules producing <25% change in the equilibrium had significantly lower probability of being cytotoxic than molecules producing >50% change. Neither cytotoxicity nor bilayer-modifying potency (quantified as the shift in the gramicidin monomer↔dimer equilibrium) was well predicted by conventional physico-chemical descriptors (hydrophobicity, polar surface area, etc.). We conclude that drug-induced changes in lipid bilayer properties are robust predictors of the likelihood of membrane-mediated off-target effects, including cytotoxicity.


Asunto(s)
Gramicidina , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Gramicidina/farmacología , Gramicidina/metabolismo , Proteínas de la Membrana/metabolismo , Fenómenos Fisiológicos Celulares
20.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768280

RESUMEN

Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Gramicidina , Simulación del Acoplamiento Molecular , Bases de Datos Factuales , Inhibidores de Proteasas/farmacología , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA