Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.197
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1426196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39421537

RESUMEN

Background: Chronic hepatitis B (CHB) and nucleotide analogues [entecavir (ETV) and tenofovir disoproxil fumarate (TDF)] used in its treatment have been shown to affect metabolic parameters in many studies. In this study, we aimed to investigate the effects of metabolic events associated with CHB and nucleotide analogues (NAs) used in CHB treatment on ischemic heart diseases (IHD) and cardiovascular diseases (CVD). Methods: This retrospective study was conducted between June 2022 and January 2024 with a total of 241 patients diagnosed with non-cirrhotic CHB in the gastroenterology outpatient clinic, 96 of whom did not receive hepatitis B treatment, 110 of whom received TDF, and 35 of whom received ETV treatment. Patients were evaluated in terms of metabolic, CVD, and hepatology depending on whether they received antiviral treatment or not. In our study, the triglyceride-glucose (TyG) index and triglyceride-to-high-density lipoprotein cholesterol ratio (TG/HDL-C) were calculated in patients to evaluate potential risk factors for CVD. Again, while the total cholesterol-to-HDL-C ratio (TC/HDL-C), which is associated with CVD\IHD, was evaluated, the '4-factor fibrosis index' (FIB-4) score, which is a non-invasive indicator of liver fibrosis, was also evaluated. Results: Diabetes mellitus (DM), fasting blood sugar (FBS), oral antidiabetic drug (OAD) usage rate, and insulin usage rate were high in patients receiving ETV treatment. The TyG index of patients receiving ETV was higher than patients in the other group (p = 0.035; p<0.05). It was determined that the probability of detecting ETV treatment in patients with a TG/HDL-C ratio of ≥1.82 cut-off value was 4.250 times higher. The odds ratio for TG/HDL-C measurements was 4.250 (95% CI: 1.384-13.054). FIB-4 score, which is a non-invasive indicator of liver fibrosis, was found to be higher in patients receiving ETV than in other groups. Conclusion: In patients with CHB, a relationship was observed between markers used to predict CVD risk, such as the TyG index and TG/HDL-C ratio. The group with high levels of these two markers and a high potential for developing CVD was patients receiving ETV treatment. In this first study in the literature showing the relationship between CHB and CVD, we found that the relative risk of CVD was increased in patients using ETV.


Asunto(s)
Antivirales , Enfermedades Cardiovasculares , Hepatitis B Crónica , Enfermedades Metabólicas , Humanos , Estudios Retrospectivos , Masculino , Femenino , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Persona de Mediana Edad , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Metabólicas/epidemiología , Adulto , Antivirales/uso terapéutico , Tenofovir/uso terapéutico , Factores de Riesgo , Guanina/análogos & derivados , Guanina/uso terapéutico
2.
J Obes ; 2024: 3008093, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39297082

RESUMEN

Objective: Obesity, chronic inflammation, and oxidative stress can influence mitochondrial DNA (mtDNA) content. Our objective was to evaluate the oxidation level and content of mtDNA and its relationship with metabolic parameters in metabolically healthy obese (MHO) compared to metabolically unhealthy obese (MUO) and normal weight (NW) controls. Materials and Methods: We studied 94 NW, 95 MHO, and 97 MUO individuals between 18 and 80 years old. Relative mtDNA content and mtDNA oxidation level (8-oxoguanine, 8-OxoG) were determined in peripheral blood leukocytes by the SYBR Green method of real-time PCR. One-way ANOVA and Tukey test were used to compare biochemical, clinical, and anthropometric characteristics, as well as mtDNA content and 8-OxoG. Results: A progressive decrease in mtDNA content was observed between NW, MHO, and MUO with significant differences in MUO vs. NW (p: 0.04). An increase in 8-OxoG was observed in MUO patients compared to the other groups (MUO vs. MHO p: 0.01; MUO vs. NW p: 0.04). mtDNA content was directly correlated with HDL-c (p < 0.01) and inversely with waist circumference (p: 0.01) and LDL-c (p: 0.05). mtDNA content decreased, and the oxidation level increased concomitantly with the presence of obesity, the number of MS components, higher coronary risk, and insulin resistance parameters. Conclusion: MHO presented a similar mtDNA oxidation level to NW and mtDNA content to the MUO, placing the MHO individuals as having an intermediate phenotype. Changes in mtDNA content and oxidation were correlated to the lipid profile related to obesity and/or MS presence, probably associated with oxidative stress and chronic low-grade inflammation.


Asunto(s)
ADN Mitocondrial , Síndrome Metabólico , Obesidad , Oxidación-Reducción , Estrés Oxidativo , Humanos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Anciano , Obesidad/complicaciones , Fenotipo , Enfermedades Cardiovasculares , Anciano de 80 o más Años , Adulto Joven , Adolescente , Factores de Riesgo de Enfermedad Cardiaca , Guanina/análogos & derivados
3.
RNA Biol ; 21(1): 8-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39233564

RESUMEN

In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)7box, which is composed of seven guanines, was found. Poly(G)7 can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)7box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)7box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)7 located on mRNA 5' and 3' box does not affect mRNA translation.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico 18S , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 18S/genética , Humanos , Animales , Conformación de Ácido Nucleico , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia de Bases , Guanina/metabolismo , Mamíferos/genética
4.
Commun Biol ; 7(1): 1202, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341999

RESUMEN

The human glycosylase OGG1 extrudes and excises the oxidized DNA base 8-oxoguanine (8-oxoG) to initiate base excision repair and plays important roles in many pathological conditions such as cancer, inflammation, and neurodegenerative diseases. Previous structural studies have used a truncated protein and short linear DNA, so it has been unclear how full-length OGG1 operates on longer DNA or on nucleosomes. Here we report cryo-EM structures of human OGG1 bound to a 35-bp long DNA containing an 8-oxoG within an unmethylated Cp-8-oxoG dinucleotide as well as to a nucleosome with an 8-oxoG at super-helical location (SHL)-5. The 8-oxoG in the linear DNA is flipped out by OGG1, consistent with previous crystallographic findings with a 15-bp DNA. OGG1 preferentially binds near dsDNA ends at the nucleosomal entry/exit sites. Such preference may underlie the enzyme's function in DNA double-strand break repair. Unexpectedly, we find that OGG1 bends the nucleosomal entry DNA, flips an undamaged guanine, and binds to internal nucleosomal DNA sites such as SHL-5 and SHL+6. We suggest that the DNA base search mechanism by OGG1 may be chromatin context-dependent and that OGG1 may partner with chromatin remodelers to excise 8-oxoG at the nucleosomal internal sites.


Asunto(s)
ADN Glicosilasas , ADN , Nucleosomas , ADN Glicosilasas/metabolismo , ADN Glicosilasas/química , Humanos , Nucleosomas/metabolismo , ADN/metabolismo , ADN/química , Unión Proteica , Guanina/análogos & derivados , Guanina/metabolismo , Reparación del ADN , Microscopía por Crioelectrón
5.
J Extracell Vesicles ; 13(9): e12505, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235072

RESUMEN

Reactive oxygen species (ROS)-induced oxidative DNA damages have been considered the main cause of mutations in genes, which are highly related to carcinogenesis and tumour progression. Extracellular vesicles play an important role in cancer metastasis. However, the precise role of DNA oxidative damage in extracellular vesicles (EVs)-mediated cancer cell migration and invasion remains unclear. Here, we reveal that ROS-mediated DNA oxidative damage signalling promotes tumour metastasis through increasing EVs release. Mechanistically, 8-oxoguanine DNA glycosylase (OGG1) recognises and binds to its substrate 8-oxo-7,8-dihydroguanine (8-oxoG), recruiting NF-κB to the synaptotagmin 7 (SYT7) promoter and thereby triggering SYT7 transcription. The upregulation of SYT7 expression leads to increased release of E-cadherin-loaded EVs, which depletes intracellular E-cadherin, thereby inducing epithelial-mesenchymal transition (EMT). Notably, Th5487, the inhibitor of DNA binding activity of OGG1, blocks the recognition and transmission of oxidative signals, alleviates SYT7 expression and suppresses EVs release, thereby preventing tumour progression in vitro and in vivo. Collectively, our study illuminates the significance of 8-oxoG/OGG1/SYT7 axis-driven EVs release in oxidative stress-induced tumour metastasis. These findings provide a deeper understanding of the molecular basis of cancer progression and offer potential avenues for therapeutic intervention.


Asunto(s)
ADN Glicosilasas , Vesículas Extracelulares , Metástasis de la Neoplasia , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Daño del ADN , ADN Glicosilasas/metabolismo , Transición Epitelial-Mesenquimal , Vesículas Extracelulares/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
Biomater Sci ; 12(20): 5266-5273, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39238274

RESUMEN

Rapid and accurate detection of 7-methylguanine (m7Gua), a biomarker reflecting the degree of DNA methylation that occurs before or in the early stage of cancer, is of particular significance but remains a great challenge. Herein, a luminescent lanthanide-based covalent organic framework (Ln-COF) probe, namely DPA/Eu@ETTA-DHTA, is designed for the first time for the identification of m7Gua by assembling pyridine-2,6-dicarboxylic acid (DPA) as both an energy donor and a recognition molecule and Eu3+ ions as signal reporters into a stable COF matrix with high porosity and available binding sites. Significantly, the characteristic luminescence of Eu3+ ions can be turned on by the grafted DPA in the COF probe and effectively quenched by the addition of m7Gua via a competitive absorption process, thus achieving the sensing of m7Gua. Such a Ln-COF-based fluorescent platform presents high selectivity and a rapid response (<1 min) to m7Gua with a low detection limit (µM level) even in the presence of the main coexisting species in urine, allowing it to serve as a potentially practical probe for point-of-care monitoring of the level of m7Gua in human urine specimens. This study provides a convenient, time-saving, and economical approach for visual detection of m7Gua, and opens up new perspectives for the design of a luminescent COF-based probe for DNA methylation evaluation in diagnostics.


Asunto(s)
Metilación de ADN , Guanina , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Humanos , Elementos de la Serie de los Lantanoides/química , Estructuras Metalorgánicas/química , Guanina/química , Guanina/análogos & derivados , Europio/química , Luminiscencia , Límite de Detección , Colorantes Fluorescentes/química
7.
J Am Chem Soc ; 146(38): 26034-26040, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39276075

RESUMEN

G-quadruplexes are noncanonical structures of nucleic acids formed mainly by G-rich sequences and play crucial roles in important cellular processes. They are also increasingly used in nanotechnology for their valuable properties. Various unexpected structures of G-quadruplexes have been solved recently, including a stable G-quadruplex lacking one guanine in the G-tetrad core, harboring a vacant site. In this study, we demonstrate the interlocking of two intramolecular G-quadruplexes: one containing a vacant site (4n - 1) and the other with an unbound guanine (4n + 1). These G-quadruplexes interact through a G-triad-G connection with unprecedented 5'-3' stacking. Using these interconnection properties, we have identified a sequence capable of self-assembling into G-wires in K+ solutions with potential nanotechnological applications.


Asunto(s)
G-Cuádruplex , Guanina , Guanina/química , Modelos Moleculares , ADN/química
8.
Microbiology (Reading) ; 170(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234940

RESUMEN

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, MS analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 confers fitness advantages when B. henselae is growing outside a mammalian host.


Asunto(s)
Bartonella henselae , Nucleósido Q , Nucleósido Q/metabolismo , Nucleósido Q/genética , Bartonella henselae/genética , Bartonella henselae/metabolismo , Bartonella henselae/enzimología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Especificidad por Sustrato , Guanina/análogos & derivados
9.
J Chem Phys ; 161(12)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39319660

RESUMEN

As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.


Asunto(s)
Cationes , Electrones , Guanina , Óxido Nítrico , Guanina/química , Guanina/análogos & derivados , Óxido Nítrico/química , Cinética , Radicales Libres/química , Cationes/química , Teoría Funcional de la Densidad
10.
Sci Rep ; 14(1): 22652, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349636

RESUMEN

The metabolic syndrome is characterized by obesity, insulin resistance, dyslipidemia and hypertension and predisposes to cardiorenal injury. Here, we tested our hypothesis that 8-aminoguanine, an endogenous purine, exerts beneficial effects in Zucker Diabetic-Sprague Dawley (ZDSD) rats, a preclinical model of the metabolic syndrome. ZDSD rats were instrumented for blood pressure radiotelemetry and randomized to vehicle or 8-aminoguanine (10 mg/kg/day, po). The protocol was divided into four phases: Phase 1: 17 days of tap water/normal diet; Phase 2: 30 days of 1% saline/normal diet; Phase 3: 28 days of 1% saline/diabetogenic diet; Phase 4: acute/terminal measurements. 8-Aminoguanine: (1) decreased mean arterial blood pressure (P = 0.0004; 119.5 ± 1.0 (vehicle) versus 116.3 ± 1.0 (treated) mmHg) throughout all three phases of the radiotelemetry study; (2) rebalanced the purine metabolome away from hypoxanthine (pro-inflammatory) and towards inosine (anti-inflammatory); (3) reduced by 71% circulating IL-1ß, a cytokine that contributes to hypertension-induced adverse cardiovascular events and type 2 diabetes; (4) attenuated renovascular responses to angiotensin II; (5) improved cardiac and renal histopathology; (6) attenuated diet-induced polydipsia/polyuria; and (7) reduced HbA1c. In the metabolic syndrome, 8-aminoguanine lowers blood pressure, improves diabetes and reduces organ damage, likely by rebalancing the purine metabolome leading to reductions in injurious cytokines such as IL-1ß.


Asunto(s)
Síndrome Metabólico , Ratas Zucker , Animales , Síndrome Metabólico/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Ratas , Masculino , Presión Sanguínea/efectos de los fármacos , Ratas Sprague-Dawley , Guanina/análogos & derivados , Guanina/metabolismo , Guanina/farmacología , Modelos Animales de Enfermedad
11.
Langmuir ; 40(36): 18950-18960, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39177475

RESUMEN

The human telomeric DNA 3' single-stranded overhang comprises tandem repeats of the sequence d(TTAGGG), which can fold into the stable secondary structure G-quadruplex (G4) and is susceptible to oxidative damage due to the enrichment of G bases. 8-Oxoguanine (8-oxoG) formed in telomeric DNA destabilizes G4 secondary structures and then inhibits telomere functions such as the binding of G4 proteins and the regulation of the length of telomeres. In this work, we developed a G4-DNA self-assembled monolayer electrochemical sensing interface using copper-free click chemistry based on the reaction of dibenzocyclooctyl with azide, resulting in a high yield of DNA tethers with order and homogeneity surfaces, that is more suitable for G-quadruplex DNA charge transport (CT) research. At high DNA coverage density surfaces, G-quadruplex DNA is 4 times more conductive than double-stranded DNA owing to the well-stacked aromatic rings of G-quartets acting as good charge transfer channels. The effect of telomeric oxidative damage on G-quadruplex-mediated CT is investigated. The accommodation of 8-oxoG at G sites originally in the syn or anti conformation around the glycosyl bond in the nonsubstituted hTel G-quadruplex causes structural perturbation and a conformational shift, which disrupts the π-stack, affecting the charge transfer and attenuating the electrochemical signal. The current intensity was found to correlate with the amount of 8-oxodG, and the detection limit was estimated to be approximately one lesion in 286 DNA bases, which can be converted into 64.7 fmol on the basis of the total surface DNA coverage. The improved G4-DNA order and homogeneity sensing interface represent a major step forward in this regard, providing a reliable and controlled electrochemical platform for the accurate measurement and diagnosis of G4-DNA oxidative damage.


Asunto(s)
Daño del ADN , ADN , G-Cuádruplex , Guanina , Telómero , Telómero/química , ADN/química , Guanina/química , Guanina/análogos & derivados , Humanos , Estrés Oxidativo , Técnicas Electroquímicas/métodos , Oxidación-Reducción , Química Clic
12.
Adv Mater ; 36(38): e2408060, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39087402

RESUMEN

Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them ß-guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free-electron-rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in-depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light-manipulating materials.


Asunto(s)
Cristalización , Animales , Luz , Fenómenos Ópticos , Guanina/química , Refractometría , Compuestos Orgánicos/química
13.
DNA Repair (Amst) ; 142: 103755, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216121

RESUMEN

By replicating damaged nucleotides, error-prone DNA translesion synthesis (TLS) enables the completion of replication, albeit at the expense of fidelity. TLS of helix-distorting DNA lesions, that usually have reduced capacity of basepairing, comprises insertion opposite the lesion followed by extension, the latter in particular by polymerase ζ (Pol ζ). However, little is known about involvement of Pol ζ in TLS of non- or poorly-distorting, but miscoding, lesions such as O6-methyldeoxyguanosine (O6-medG). Using purified Pol ζ we describe that the enzyme can misincorporate thymidine opposite O6-medG and efficiently extend from terminal mismatches, suggesting its involvement in the mutagenicity of O6-medG. Surprisingly, O6-medG lesions induced by the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) appeared more, rather than less, mutagenic in Pol ζ-deficient mouse embryonic fibroblasts (MEFs) than in wild type MEFs. This suggested that in vivo Pol ζ participates in non-mutagenic TLS of O6-medG. However, we found that the Pol ζ-dependent misinsertions at O6-medG lesions are efficiently corrected by DNA mismatch repair (MMR), which masks the error-proneness of Pol ζ. We also found that the MNNG-induced mutational signature is determined by the adduct spectrum, and modulated by MMR. The signature mimicked single base substitution signature 11 in the catalogue of somatic mutations in cancer, associated with treatment with the methylating drug temozolomide. Our results unravel the individual roles of the major contributors to methylating drug-induced mutagenesis. Moreover, these results warrant caution as to the classification of TLS as mutagenic or error-free based on in vitro data or on the analysis of mutations induced in MMR-proficient cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa Dirigida por ADN , Metilnitronitrosoguanidina , Animales , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Ratones , Metilnitronitrosoguanidina/toxicidad , Mutagénesis , Guanina/análogos & derivados , Guanina/metabolismo , Daño del ADN , Metilación de ADN , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Replicación del ADN , ADN/metabolismo , Síntesis Translesional de ADN
14.
J Am Chem Soc ; 146(32): 22553-22562, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101269

RESUMEN

N2-Alkyl-2'-deoxyguanosine (N2-alkyl-dG) is a major type of minor-groove DNA lesions arising from endogenous metabolic processes and exogenous exposure to environmental contaminants. The N2-alkyl-dG lesions, if left unrepaired, can block DNA replication and transcription and induce mutations in these processes. Nevertheless, the repair pathways for N2-alkyl-dG lesions remain incompletely elucidated. By utilizing a photo-cross-linking coupled with mass spectrometry-based quantitative proteomic analysis, we identified a series of candidate N2-alkyl-dG-binding proteins. We found that two of these proteins, i.e., high-mobility group protein B3 (HMGB3) and SUB1, could bind directly to N2-nBu-dG-containing duplex DNA in vitro and promote the repair of this lesion in cultured human cells. In addition, HMGB3 and SUB1 protected cells against benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). SUB1 exhibits preferential binding to both the cis and trans diastereomers of N2-BPDE-dG over unmodified dG. On the other hand, HMGB3 binds favorably to trans-N2-BPDE-dG; the protein, however, does not distinguish cis-N2-BPDE-dG from unmodified dG. Consistently, genetic ablation of HMGB3 conferred diminished repair of trans-N2-BPDE-dG, but not its cis counterpart, whereas loss of SUB1 conferred attenuated repair of both diastereomers. Together, we identified proteins involved in the cellular sensing and repair of minor-groove N2-alkyl-dG lesions and documented a unique role of HMGB3 in the stereospecific recognition and repair of N2-BPDE-dG.


Asunto(s)
Reparación del ADN , ADN , Proteína HMGB3 , Humanos , ADN/química , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Guanina/química , Guanina/metabolismo , Proteína HMGB3/metabolismo , Proteína HMGB3/química , Unión Proteica
15.
New Phytol ; 244(2): 694-707, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39166427

RESUMEN

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.


Asunto(s)
Embryophyta , Transferencia de Gen Horizontal , Genes de Plantas , Guanina , Intrones , Embryophyta/genética , Intrones/genética , Guanina/metabolismo , Filogenia , Adaptación Fisiológica/genética , Genoma de Planta , Evolución Molecular
16.
J Enzyme Inhib Med Chem ; 39(1): 2388207, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39140692

RESUMEN

The crystallographic structure of the FolB enzyme from Mycobacterium tuberculosis (MtFolB), complexed with its inhibitor 8-mercaptoguanine (8-MG), was elucidated at a resolution of 1.95 Å. A novel series of S8-functionalized 8-MG derivatives were synthesised and evaluated as in vitro inhibitors of dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of MtFolB. These compounds exhibited IC50 values in the submicromolar range. Evaluation of the activity for five compounds indicated their inhibition mode and inhibition constants. Molecular docking analyses were performed to determine the enzyme-inhibitor intermolecular interactions and ligand conformations upon complex formation. The inhibitory activities of all compounds against the M. tuberculosis H37Rv strain were evaluated. Compound 3e exhibited a minimum inhibitory concentration in the micromolar range. Finally, Compound 3e showed no apparent toxicity in both HepG2 and Vero cells. The findings presented herein will advance the quest for novel, specific inhibitors targeting MtFolB, an attractive molecular target for TB drug development.


Asunto(s)
Aldehído-Liasas , Antituberculosos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Relación Estructura-Actividad , Aldehído-Liasas/antagonistas & inhibidores , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Células Vero , Estructura Molecular , Cristalografía por Rayos X , Chlorocebus aethiops , Animales , Guanina/farmacología , Guanina/química , Guanina/análogos & derivados , Guanina/síntesis química , Simulación del Acoplamiento Molecular , Células Hep G2 , Modelos Moleculares
17.
Front Cell Infect Microbiol ; 14: 1413589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170987

RESUMEN

Background: About 20% of on-treatment patients with chronic hepatitis B (CHB) experienced low-level viraemia (LLV), which is associated with persistent low-grade inflammation, fibrosis progression, and increased risk of hepatocellular carcinoma. We aimed to investigate the high-risk factors related to LLV. Methods: In this retrospective study, patients receiving entecavir (ETV) treatment from January 2018 to January 2023 were enrolled, and were divided into a LLV (HBV DNA 20-2000 IU/mL) cohort and a complete virological response (CVR) (HBV DNA < 20 IU/mL) cohort according to the virological response at week 48 posttreatment. Treatment baseline characteristics were retrieved from electronic medical records. Multivariate logistic regression was performed. Results: Totally, 1653 patients were enrolled, male patients accounted for 73.0%; the median age was 44 years; the mean HBV DNA level was 5.9 Log10 IU/ml. Among them, 472 (28.6%) experienced LLV. Multivariate analysis showed that HBeAg positivity (OR = 2.650, 95% CI: 2.000-3.511, p < 0.001), HBV DNA ≥ 6.0 Log10 IU/mL (OR = 1.370, 95% CI: 1.054-1.780, p = 0.019), qHBsAg ≥ 9000 IU/mL (OR = 4.472, 95% CI: 3.410-5.866, p < 0.001), cirrhosis (OR = 1.650, 95% CI: 1.234-2.207, P = 0.001), LSM ≥ 13.0 kPa (OR = 1.644, 95% CI: 1.203-2.246, p = 0.002), and PLT < 100×109/L (OR = 1.450, 95% CI: 1.094-1.922, p = 0.010) at baseline were related to the development of LLV. Conclusions: High HBV DNA/HBsAg quantification/LSM, low PLT, HBeAg positivity, and liver cirrhosis were high-risk factors associated with LLV in patients receiving entecavir treatment.


Asunto(s)
Antivirales , ADN Viral , Guanina , Virus de la Hepatitis B , Hepatitis B Crónica , Viremia , Humanos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Masculino , Guanina/análogos & derivados , Guanina/uso terapéutico , Femenino , Adulto , Factores de Riesgo , Antivirales/uso terapéutico , Estudios Retrospectivos , Persona de Mediana Edad , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , ADN Viral/sangre , Antígenos e de la Hepatitis B/sangre , Cirrosis Hepática/virología , Carga Viral/efectos de los fármacos
18.
J Phys Chem B ; 128(32): 7803-7812, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106822

RESUMEN

The DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn (1) or a hooked bdppz (2) benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution. Transient visible absorption (TrA) spectroscopy reveals that 400 nm excitation of 1 yields a dppn-based metal-to-ligand charge-transfer (MLCT) state, which in turn populates a dppn intraligand (3IL) state. In contrast, photoexcitation of 2 results in an MLCT state on the TAP ligand and not the intercalating bdppz ligand. Both 1 and 2 bind strongly to double-stranded guanine-rich DNA with a loss of emission. Combined TrA and time-resolved infrared (TRIR) spectroscopy confirms formation of the guanine radical cation when 2 is bound to the d(G5C5)2 duplex, which is not the case when 1 is bound to the same duplex and indicates a different mechanism of action in DNA. Utilizing the long-lived triplet excited lifetime, we show good uptake and localization of 2 in live cells as well as isolated chromosomes. The observed shortening of the excited-state lifetime of 2 when internalized in cell chromosomes is consistent with DNA binding and luminescent quenching due to guanine photo-oxidation.


Asunto(s)
ADN , Guanina , Sustancias Intercalantes , Rutenio , ADN/química , ADN/metabolismo , Guanina/química , Rutenio/química , Ligandos , Sustancias Intercalantes/química , Humanos , Isomerismo , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Piridinas/química , Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Estructura Molecular , Células HeLa
19.
Biophys J ; 123(18): 3100-3106, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38988071

RESUMEN

Guanine radical cations are precursors to oxidatively induced DNA lesions, and the determination of oxidative DNA hot spots beyond oligonucleotides remains a current challenge. In order to rationalize the finetuned ionization properties of the ∼60 guanines in a nucleosome core particle, we report a robust molecular dynamics-then-FO-DFTB/MM (fragment-orbital tight-binding density functional theory/molecular mechanics) simulation protocol spanning 20 µs. Our work allows us to identify several factors governing guanine ionization potential and map oxidative hotspots. Our results highlight the predominant role of the proximity of positively charged histone residues in the modulation of the guanine ionization potential up to 0.6 eV. Consequently, fast, long-range hole transfer in nucleosomal DNA could be tuned by the proximity of histone tails, which differs, from a biological point of view, on the chromatin state.


Asunto(s)
Guanina , Simulación de Dinámica Molecular , Nucleosomas , Nucleosomas/química , Nucleosomas/metabolismo , Guanina/química , Guanina/metabolismo , Teoría Funcional de la Densidad , Histonas/química , Histonas/metabolismo , ADN/química
20.
J Clin Virol ; 174: 105711, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991458

RESUMEN

BACKGROUND: As nucleos/tide analogue (NA) therapy (e.g. entecavir and tenofovir) for chronic Hepatitis B virus (HBV) infection becomes more widely indicated and available, understanding drug resistance is essential. A systematic review to quantify resistance to these agents has not previously been undertaken. METHODS: We performed a systematic review and random-effects meta-analysis to estimate the risk of HBV resistance to entecavir and tenofovir. We searched nine databases up to 29-Aug-23. We included studies of HBV infection featuring >10 individuals, written in English, reporting treatment ≥48 weeks, with assessment of HBV resistance based on viral sequence data. Data were analysed according to prior exposure history to NA, and choice of NA agent. Analyses were performed in R. FINDINGS: 62 studies involving a total of 12,358 participants were included. For entecavir, in treatment-naive individuals (22 studies; 4326 individuals), resistance increased over time to 0.9 % at ≥5 years (95 %CI 0.1-2.3 %), and resistance was increased in NA-experienced individuals (18 studies; 1112 individuals), to 20.1 % (95 %CI 1.6-50.1 %) at ≥5 years. For tenofovir, pooled resistance risk was 0.0 % at all time points, whether previously NA naive (11 studies; 3778 individuals) or experienced (19 studies; 2059 individuals). There was a lack of consistent definitions, poor global representation and insufficient metadata to support subgroup analysis. INTERPRETATION: We have generated the first pooled estimates of HBV entecavir and tenofovir resistance over time. HBV resistance to entecavir in treatment-experienced groups in particular may represent a clinical and public health challenge. To date, tenofovir appears to have an excellent resistance profile, but due to data gaps, we caution that existing studies under-estimate the true real-world risk of resistance. Robust prospective data collection is crucial to reduce health inequities and reduce blind-spots in surveillance as treatment is rolled out more widely.


Asunto(s)
Antivirales , Farmacorresistencia Viral , Guanina , Virus de la Hepatitis B , Hepatitis B Crónica , Tenofovir , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , Guanina/análogos & derivados , Guanina/uso terapéutico , Guanina/farmacología , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Tenofovir/farmacología , Tenofovir/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA