Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
1.
Cell Biol Toxicol ; 40(1): 78, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289194

RESUMEN

The N7-methylguanosine (m7G) modification and circular RNAs (circRNAs) have been shown to play important roles in the development of lung cancer. However, the m7G modification of circRNAs has not been fully elucidated. This study revealed the presence of the m7G modification in circFAM126A. We propose the novel hypothesis that the methyltransferase TRMT10C mediates the m7G modification of circFAM126A and that the stability of m7G-modified circFAM126A is reduced. circFAM126A is downregulated in lung cancer and significantly inhibits lung cancer growth both in vitro and in vivo. The expression of circFAM126A correlates with the stage of lung cancer and with the tumour diameter, and circFAM126A can be used as a potential molecular target for lung cancer. The molecular mechanism by which circFAM126A increases HSP90 ubiquitination and suppresses AKT1 expression to regulate cellular glycolysis, ultimately inhibiting the progression of lung cancer, is elucidated. This study not only broadens the knowledge regarding the expression and regulatory mode of circRNAs but also provides new insights into the molecular mechanisms that regulate tumour cell metabolism and affect tumour cell fate from an epigenetic perspective. These findings will facilitate the development of new strategies for lung cancer prevention and treatment.


Asunto(s)
Proliferación Celular , Glucólisis , Neoplasias Pulmonares , Metiltransferasas , ARN Circular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Glucólisis/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Animales , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Células A549 , Guanosina/análogos & derivados , Guanosina/metabolismo , Masculino , Femenino , Ratones Endogámicos BALB C , Ubiquitinación
2.
Org Biomol Chem ; 22(33): 6763-6790, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39105613

RESUMEN

The trimethylguanosine (TMG) cap is a motif present inter alia at the 5' end of small nuclear RNAs, which are involved in RNA splicing. The TMG cap plays a crucial role in RNA processing and stability as it protects the RNA molecule from degradation by exonucleases and facilitates its export from the nucleus. Additionally, the TMG cap plays a role in the recognition of snRNA by snurportin, a protein that facilitates nuclear import. TMG cap analogs are used in biochemical experiments as molecular tools to substitute the natural TMG cap. To expand the range of available TMG-based tools, here we conjugated the TMG cap to Fluorescent Molecular Rotors (FMRs) to open the possibility of detecting protein-ligand interactions in vitro and, potentially, in vivo, particularly visualizing interactions with snurportin. Consequently, we report the synthesis of 34 differently modified TMG cap-FMR conjugates and their evaluation as molecular probes for snurportin. As FMRs we selected three GFP-like chromophores (derived from green fluorescent protein) and one julolidine derivative. The evaluation of binding affinities for snurportin showed unexpectedly a strong stabilizing effect for TMGpppG-derived dinucleotides containing the FMR at the 2'-O-position of guanosine. These newly discovered compounds are potent snurportin ligands with nanomolar KD (dissociation constant) values, which are two orders of magnitude lower than that of natural TMGpppG. The effect is diminished by ∼50-fold for the corresponding 3'-regioisomers. To deepen the understanding of the structure-activity relationship, we synthesized and tested FMR conjugates lacking the TMG cap moiety. These studies, supported by molecular docking, suggested that the enhanced affinity arises from additional hydrophobic contacts provided by the FMR moiety. The strongest snurportin ligand, which also gave the greatest fluorescence enhancement (Fm/F0) when saturated with the protein, were tested in living cells to detect interactions and visualize complexes by fluorescence lifetime monitoring. This approach has potential applications in the study of RNA processing and RNA-protein interactions.


Asunto(s)
Colorantes Fluorescentes , Guanosina , Ligandos , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Análogos de Caperuza de ARN/química , Análogos de Caperuza de ARN/síntesis química , Análogos de Caperuza de ARN/metabolismo , Células HeLa , Estructura Molecular
3.
PLoS Biol ; 22(8): e3002743, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190717

RESUMEN

Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.


Asunto(s)
Antivirales , Antivirales/farmacología , Antivirales/química , Humanos , Cristalografía por Rayos X , Modelos Moleculares , Nucleósido-Difosfato Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/química , Nucleósido-Difosfato Quinasa/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/química
4.
Nat Commun ; 15(1): 5713, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977661

RESUMEN

Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes. Mettl1/Wdr4 and m7G gradually diminish with senescence and aging. A decrease in METTL1 causes a reduction in tRNAs, especially those with the m7G modification, via the rapid tRNA degradation (RTD) pathway. The decreases cause ribosomes to stall at certain codons, impeding the translation of mRNA that is essential in pathways such as Wnt signaling and ribosome biogenesis. Furthermore, chronic ribosome stalling stimulates the ribotoxic and integrative stress responses, which induce senescence-associated secretory phenotype. Moreover, restoring eEF1A protein mitigates senescence phenotypes caused by METTL1 deficiency by reducing RTD. Our findings demonstrate that tRNA m7G modification is essential for preventing premature senescence and aging by enabling efficient mRNA translation.


Asunto(s)
Senescencia Celular , Guanosina , Metiltransferasas , Biosíntesis de Proteínas , ARN de Transferencia , Senescencia Celular/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Metilación , Humanos , Ribosomas/metabolismo , Envejecimiento/metabolismo , Envejecimiento/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , Estabilidad del ARN
5.
Cell Signal ; 121: 111288, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971569

RESUMEN

The dysregulation of N(7)-methylguanosine (m7G) modification is increasingly recognized as a key factor in the pathogenesis of cancers. Aberrant expression of these regulatory proteins in various cancers, including lung, liver, and bladder cancers, suggests a universal role in tumorigenesis. Studies have established a strong correlation between the expression levels of m7G regulatory proteins, such as Methyltransferase like 1 (METTL1) and WD repeat domain 4 (WDR4), and clinical parameters including tumor stage, grade, and patient prognosis. For example, in hepatocellular carcinoma, high METTL1 expression is associated with advanced tumor stage and poor prognosis. Similarly, WDR4 overexpression in colorectal cancer correlates with increased tumor invasiveness and reduced patient survival. This correlation underscores the potential of these proteins as valuable biomarkers for cancer diagnosis and prognosis. Additionally, m7G modification regulatory proteins influence cancer progression by modulating the expression of target genes involved in critical biological processes, including cell proliferation, apoptosis, migration, and invasion. Their ability to regulate these processes highlights their significance in the intricate network of molecular interactions driving tumor development and metastasis. Given their pivotal role in cancer biology, m7G modification regulatory proteins are emerging as promising therapeutic targets. Targeting these proteins could offer a novel approach to disrupt the malignant behavior of cancer cells and enhance treatment outcomes. Furthermore, their diagnostic and prognostic value could aid in the early detection of cancer and the selection of appropriate therapeutic strategies, ultimately enhancing patient management and survival rates. This review aims to explore the mechanisms of action of RNA m7G modification regulatory proteins in tumors and their potential applications in cancer progression and treatment. By delving into the roles of these regulatory proteins, we intend to provide a theoretical foundation for the development of novel cancer treatment strategies.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Biomarcadores de Tumor/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000531

RESUMEN

Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.


Asunto(s)
Adenosina Desaminasa , Neoplasias de la Mama , Edición de ARN , Proteínas de Unión al ARN , Humanos , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Resistencia a Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animales , Guanosina/metabolismo , Daño del ADN
7.
Microb Cell Fact ; 23(1): 182, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898430

RESUMEN

BACKGROUND: Guanosine is a purine nucleoside that is widely used as a raw material for food additives and pharmaceutical products. Microbial fermentation is the main production method of guanosine. However, the guanosine-producing strains possess multiple metabolic pathway interactions and complex regulatory mechanisms. The lack of strains with efficiently producing-guanosine greatly limited industrial application. RESULTS: We attempted to efficiently produce guanosine in Escherichia coli using systematic metabolic engineering. First, we overexpressed the purine synthesis pathway from Bacillus subtilis and the prs gene, and deleted three genes involved in guanosine catabolism to increase guanosine accumulation. Subsequently, we attenuated purA expression and eliminated feedback and transcription dual inhibition. Then, we modified the metabolic flux of the glycolysis and Entner-Doudoroff (ED) pathways and performed redox cofactors rebalancing. Finally, transporter engineering and enhancing the guanosine synthesis pathway further increased the guanosine titre to 134.9 mg/L. After 72 h of the fed-batch fermentation in shake-flask, the guanosine titre achieved 289.8 mg/L. CONCLUSIONS: Our results reveal that the guanosine synthesis pathway was successfully optimized by combinatorial metabolic engineering, which could be applicable to the efficient synthesis of other nucleoside products.


Asunto(s)
Escherichia coli , Fermentación , Guanosina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Guanosina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética
8.
Pharmacol Res ; 204: 107187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657843

RESUMEN

Cardiovascular diseases (CVD) persist as a prominent cause of mortality worldwide, with oxidative stress constituting a pivotal contributory element. The oxidative modification of guanosine, specifically 8-oxoguanine, has emerged as a crucial biomarker for oxidative stress, providing novel insights into the molecular underpinnings of CVD. 8-Oxoguanine can be directly generated at the DNA (8-oxo-dG) and RNA (8-oxo-G) levels, as well as at the free nucleotide level (8-oxo-dGTP or 8-oxo-GTP), which are produced and can be integrated through DNA replication or RNA transcription. When exposed to oxidative stress, guanine is more readily produced in RNA than in DNA. A burgeoning body of research surrounds 8-oxoguanine, exhibits its accumulation playing a pivotal role in the development of CVD. Therapeutic approaches targeting oxidative 8-Oxoguanine damage to DNA and RNA, encompassing the modulation of repair enzymes and the development of small molecule inhibitors, are anticipated to enhance CVD management. In conclusion, we explore the noteworthy elevation of 8-oxoguanine levels in patients with various cardiac conditions and deliberate upon the formation and regulation of 8-oxo-dG and 8-oxo-G under oxidative stress, as well as their function in CVD.


Asunto(s)
Enfermedades Cardiovasculares , ADN , Guanina , Guanosina , Oxidación-Reducción , Estrés Oxidativo , ARN , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética , ARN/metabolismo , ARN/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , ADN/metabolismo , Animales , Guanina/análogos & derivados , Guanina/metabolismo , Daño del ADN
9.
Sci Total Environ ; 926: 172027, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552982

RESUMEN

Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.


Asunto(s)
Contaminantes Atmosféricos , Lesión Pulmonar , Masculino , Ratones , Animales , Lesión Pulmonar/inducido químicamente , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/metabolismo , Triptófano , Multiómica , Espermidina/metabolismo , Espermidina/farmacología , Pulmón , Material Particulado/toxicidad , Material Particulado/metabolismo , Guanosina/metabolismo , Guanosina/farmacología , Hipoxantinas/metabolismo , Hipoxantinas/farmacología
10.
J Ethnopharmacol ; 325: 117817, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38316217

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps sobolifera (CS) has been traditionally utilized as an ethnic remedy for various health conditions, including chronic kidney diseases, anti-fatigue interventions, and management of chronic inflammation. Notably, CS is recognized for its substantial content of bioactive compounds, among which nucleosides prominently feature as constituents with diverse therapeutic advantages. AIM OF THE STUDY: This study aims to investigate the effects of CS on testosterone secretion in Leydig cells and explore the underlying mechanism. MATERIALS AND METHODS: Leydig cells were isolated from rat testes to establish a primary rat Leydig cells model. Cell proliferation and testosterone secretion were assessed via the methyl-piperidino-pyrazole (MTT) assay and enzyme-linked immunosorbent assay (ELISA), respectively. Samples earmarked for RNA sequencing (RNA-Seq) analysis facilitated the identification of significantly differentially expressed genes (DEGs), and we conducted Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and enrichment analyses. The veracity of our findings was validated through quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS: The results showed that CS and guanosine could promote Leydig cell proliferation and bolster testosterone secretion. Our integrative analysis of metabolomics and transcriptomics has unveiled the potential mechanisms governing testosterone synthesis. Specifically, metabolomics has illuminated striking correlations within cholesterol metabolism, and bile secretion. Concurrently, transcriptomics has underscored the pivotal roles played by the cyclic adenosine monophosphate (cAMP) signaling pathway and steroid hormone biosynthesis. Furthermore, our investigation has demonstrated CS's aptitude in elevating the expression of proteins and genes. Notably, our findings have elucidated that these effects can be mitigated by protein kinase A (PKA) and adenylate cyclase (AC) specific inhibitors. CONCLUSION: This study delineates the cAMP-PKA pathways as plausible mechanisms underpinning the testosterone-enhancing properties of CS, with guanosine emerging as a fundamental bioactive constituent.


Asunto(s)
Hypocreales , Células Intersticiales del Testículo , Testosterona , Masculino , Ratas , Animales , Testosterona/metabolismo , Multiómica , AMP Cíclico/metabolismo , Guanosina/metabolismo , Guanosina/farmacología
11.
Am J Physiol Renal Physiol ; 326(1): F30-F38, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916286

RESUMEN

Plasma nucleosides-pseudouridine (PU) and N2N2-dimethyl guanosine (DMG) predict the progression of type 2 diabetic kidney disease (DKD) to end-stage renal disease, but the mechanisms underlying this relationship are not well understood. We used a well-characterized model of type 2 diabetes (db/db mice) and control nondiabetic mice (db/m mice) to characterize the production and excretion of PU and DMG levels using liquid chromatography-mass spectrometry. The fractional excretion of PU and DMG was decreased in db/db mice compared with control mice at 24 wk before any changes to renal function. We then examined the dynamic changes in nucleoside metabolism using in vivo metabolic flux analysis with the injection of labeled nucleoside precursors. Metabolic flux analysis revealed significant decreases in the ratio of urine-to-plasma labeling of PU and DMG in db/db mice compared with db/m mice, indicating significant tubular dysfunction in diabetic kidney disease. We observed that the gene and protein expression of the renal tubular transporters involved with nucleoside transport in diabetic kidneys in mice and humans was reduced. In conclusion, this study strongly suggests that tubular handling of nucleosides is altered in early DKD, in part explaining the association of PU and DMG with human DKD progression observed in previous studies.NEW & NOTEWORTHY Tubular dysfunction explains the association between the nucleosides pseudouridine and N2N2-dimethyl guanosine and diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Seudouridina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nucleósidos/metabolismo , Eliminación Renal , Riñón/metabolismo , Guanosina/metabolismo
12.
Cancer Treat Res ; 190: 143-179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38113001

RESUMEN

RNA epigenetics, or epitranscriptome, is a growing group of RNA modifications historically classified into two categories: RNA editing and RNA modification. RNA editing is usually understood as post-transcriptional RNA processing (except capping, splicing and polyadenylation) that changes the RNA nucleotide sequence encoded by the genome. This processing can be achieved through the insertion or deletion of nucleotides or deamination of nucleobases, generating either standard nucleotides such as uridine (U) or the rare nucleotide inosine (I). Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent type of RNA modification in mammals and is catalyzed by adenosine deaminase acting on the RNA (ADAR) family of enzymes that recognize double-stranded RNAs (dsRNAs). Inosine mimics guanosine (G) in base pairing with cytidine (C), thereby A-to-I RNA editing alters dsRNA secondary structure. Inosine is also recognized as guanosine by the splicing and translation machineries, resulting in mRNA alternative splicing and protein recoding. Therefore, A-to-I RNA editing is an important mechanism that causes and regulates "RNA mutations" in both normal physiology and diseases including cancer. In this chapter, we reviewed current paradigms and developments in the field of A-to-I RNA editing in the context of cancer.


Asunto(s)
Neoplasias , ARN , Animales , Humanos , ARN/genética , ARN/metabolismo , Edición de ARN , Neoplasias/genética , Nucleótidos/metabolismo , Inosina/genética , Inosina/metabolismo , Adenosina/genética , Adenosina/metabolismo , Guanosina/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
13.
Acc Chem Res ; 56(21): 3033-3044, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37827987

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.


Asunto(s)
Edición de ARN , ARN Bicatenario , Humanos , ADN Complementario/genética , ADN Complementario/metabolismo , Inosina/metabolismo , Guanosina/metabolismo
14.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833910

RESUMEN

Both inosine and guanosine are precursors of uric acid that may cause the diseases of hyperuricemia and gout in humans. Here, a promising bacterial strain for efficiently biodegrading both inosine and guanosine was successfully isolated from a healthy human intestine and identified as Bacillus paranthracis YD01 with 16S rRNA analysis. An initial amount of 49.6 mg·L-1 of inosine or 49.9 mg·L-1 of guanosine was completely removed by YD01 within 12 h, which showed that YD01 had a strong ability to biodegrade inosine and guanosine. Furthermore, the initial amount of 49.2 mg·L-1 of inosine or 49.5 mg·L-1 of guanosine was totally catalyzed by the intracellular crude enzymes of YD01 within 6 h, and the initial inosine amount of 49.6 mg·L-1 or guanosine of 49.7 mg·L-1 was biodegraded by the extracellular crude enzymes of YD01 within 9 h. Illumina Hiseq sequencing and database gene annotation were used to elucidate the genomic characteristics of B. paranthracis YD01. Purine nucleoside phosphorylase, encoded by gene 1785, gene 3933, and gene 4403, was found in the KEEG database, which played a crucial role in the biodegradation of inosine and guanosine. The results of this study provide valuable insights into the mechanisms for biodegrading inosine and guanosine using B. paranthracis YD01.


Asunto(s)
Guanosina , Inosina , Humanos , Guanosina/metabolismo , ARN Ribosómico 16S/genética , Inosina/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo
15.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836603

RESUMEN

The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.


Asunto(s)
Antineoplásicos , Compuestos Organoplatinos , Humanos , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/metabolismo , Distribución Tisular , Platino (Metal) , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antivirales/farmacología , Eritrocitos/metabolismo , Guanosina/metabolismo
16.
Nucleic Acids Res ; 51(16): 8891-8907, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548413

RESUMEN

In eukaryotic messenger RNAs, the 5' cap structure binds to the translation initiation factor 4E to facilitate early stages of translation. Although many plant viruses lack the 5' cap structure, some contain cap-independent translation elements (CITEs) in their 3' untranslated region. The PTE (Panicum mosaic virus translation element) class of CITEs contains a G-rich asymmetric bulge and a C-rich helical junction that were proposed to interact via formation of a pseudoknot. SHAPE analysis of PTE homologs reveals a highly reactive guanosine residue within the G-rich region proposed to mediate eukaryotic initiation factor 4E (eIF4E) recognition. Here we have obtained the crystal structure of the PTE from Pea enation mosaic virus 2 (PEMV2) RNA in complex with our structural chaperone, Fab BL3-6. The structure reveals that the G-rich and C-rich regions interact through a complex network of interactions distinct from those expected for a pseudoknot. The motif, which contains a short parallel duplex, provides a structural mechanism for how the guanosine is extruded from the core stack to enable eIF4E recognition. Homologous PTE elements harbor a G-rich bulge and a three-way junction and exhibit covariation at crucial positions, suggesting that the PEMV2 tertiary architecture is conserved among these homologs.


Asunto(s)
Virus de Plantas , Secuencias Reguladoras de Ácido Ribonucleico , Tombusviridae , Factor 4E Eucariótico de Iniciación/metabolismo , Guanosina/metabolismo , Virus de Plantas/química , Biosíntesis de Proteínas , Caperuzas de ARN/genética , ARN Mensajero/metabolismo , Tombusviridae/química
17.
J Sci Food Agric ; 103(15): 7921-7931, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37490358

RESUMEN

BACKGROUND: As the important building blocks of nucleic acids, purines are alkaloids and responsible for hyperuricemia and gout. The purine content in Huangjiu is higher, and mainly exists in the form of free bases, which is easier to be absorbed by human body. However, the currently available reports on purine in Huangjiu mainly focus on detection methods and content survey. No studies on the regulation of the purine content in Huangjiu have been reported. RESULTS: Eighty-four strains, with the degradation capacity of purine, were screened from the fermentation broth of Huangjiu. In detail, the isolated lactic acid bacteria (LAB) strain 75 # showed the strongest degradation ability of guanosine, inosine and four purines, which reduce their levels by 83.4% (guanosine), 97.4% (inosine), 95.1% (adenine), 95.0% (guanine), 94.9% (hypoxanthine) and 65.9% (xanthine), respectively. Subsequently, the LAB strain 75# was identified to be Limosilactobacillus fermentum by 16S rRNA gene sequencing, which was named as Limosilactobacillus fermentum LF-1 and applied to the fermentation of Huangjiu in the laboratory. Compared with the fermentation broth of Huangjiu without adding L. fermentum LF-1, the content of purine compounds in the fermentation broth inoculated with L. fermentum LF-1 was reduced by 64.7%. In addition, the fermented Huangjiu had richer flavor compounds, and the physicochemical indices were in accordance with the national standard of Chinese Huangjiu. CONCLUSION: The screened strain L. fermentum LF-1 may be a promising probiotic for the development of a novel that can efficiently degrade purine in Huangjiu. © 2023 Society of Chemical Industry.


Asunto(s)
Lactobacillales , Limosilactobacillus fermentum , Humanos , Fermentación , ARN Ribosómico 16S/genética , Purinas , Lactobacillales/metabolismo , Guanosina/metabolismo , Inosina/metabolismo
18.
Clin Interv Aging ; 18: 987-997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377627

RESUMEN

Introduction: The guanine nucleotide pool (GTP, guanosine-5'-triphosphate; GDP, guanosine-5'-diphosphate, and GMP, guanosine-5'-monophosphate) is an essential energy donor in various biological processes (eg protein synthesis and gluconeogenesis) and secures several vital regulatory functions in the human body. The study aimed to predict the trends of age-related changes in erythrocyte guanine nucleotides and examine whether competitive sport and related physical training promote beneficial adaptations in erythrocyte guanylate concentrations. Methods: The study included 86 elite endurance runners (EN) aged 20-81 years, 58 sprint-trained athletes (SP) aged 21-90 years, and 62 untrained individuals (CO) aged 20-68 years. Results: The concentration of erythrocyte GTP and total guanine nucleotides (TGN) were highest in the SP group, lower in the EN group, and lowest in the CO group. Both athletic groups had higher guanylate energy charge (GEC) values than the CO group (p = 0.012). Concentrations of GTP, TGN, and GEC value significantly decreased, while GDP and GMP concentrations progressively increased with age. Conclusion: Such a profile of change suggests a deterioration of the GTP-related regulatory function in older individuals. Our study explicitly shows that lifelong sports participation, especially of sprint-oriented nature, allows for maintaining a higher erythrocyte guanylate pool concentration, supporting cells' energy metabolism, regulatory and transcription properties, and thus more efficient overall body functioning.


Asunto(s)
Nucleótidos , Deportes , Masculino , Humanos , Anciano , Nucleótidos/metabolismo , Nucleótidos de Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Atletas , Guanosina/metabolismo , Eritrocitos/metabolismo
19.
Cancer Gene Ther ; 30(9): 1274-1284, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386121

RESUMEN

Tri methylguanosine synthase 1 (TGS1) is the enzyme that hyper methylates the hallmark 7-methyl-guanosine cap (m7G-cap) appended to the transcription start site of RNAs. The m7G-cap and the eIF4E-cap binding protein guide canonical cap-dependent translation of mRNAs, whereas hyper methylated cap, m2,2,7G-cap (TMG) lacks adequate eIF4E affinity and licenses entry into a different translation initiation pathway. The potential role for TGS1 and TMG-capped mRNA in neoplastic growth is unknown. Canine sarcoma has high translational value to the human disease. Cumulative downregulation of protein synthesis in osteosarcoma OSCA-40 was achieved cooperatively by siTGS1 and Torin-1. Torin-1 inhibited the proliferation of three canine sarcoma explants in a reversible manner that was eliminated by siRNA-downregulation of TGS1. TGS1 failure prevented the anchorage-independent growth of osteo- and hemangio-sarcomas and curtailed sarcoma recovery from mTOR inhibition. RNA immunoprecipitation studies identified TMG-capped mRNAs encoding TGS1, DHX9 and JUND. TMG-tgs1 transcripts were downregulated by leptomycin B and TGS1 failure was compensated by eIF4E mRNP-dependent tgs1 mRNA translation affected by mTOR. The evidence documents TMG-capped mRNAs are hallmarks of the investigated neoplasms and synergy between TGS1 specialized translation and canonical translation is involved in sarcoma recovery from mTOR inhibition. Therapeutic targeting of TGS1 activity in cancer is ripe for future exploration.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Sarcoma , Animales , Perros , Humanos , Factor 4E Eucariótico de Iniciación/genética , ARN Mensajero/genética , ARN , Guanosina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sarcoma/genética , Caperuzas de ARN/genética
20.
Transfusion ; 63 Suppl 3: S199-S207, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37029665

RESUMEN

BACKGROUND: The risk of military and civilian radiation exposure is increasing, and determining the effects of exposure is a high priority. Irradiation of the nearby blood supply after a nuclear event may impede mobilization of blood products for resuscitation at a time of great need. RBCs are administered to patients with trauma and hemorrhage to transport and deliver oxygen and avoid tissue hypoxia. Here we determine the effects of ionizing radiation on the energy metabolome of RBCs isolated from cold stored whole blood to determine if their stability is compromised by radiation exposure. STUDY DESIGN AND METHODS: Whole blood from healthy volunteers was subjected to 0, 25, or 75 Gy of X-irradiation, and stored at 4°C. RBCs were isolated from stored WB at 0, 1, 7, 14, and 21 days of storage. The levels of extracted Krebs cycle intermediates, nicotinamide adenine dinucleotides, and phosphorylated derivatives of adenosine and guanosine were determined by tandem mass spectroscopy. RESULTS: Irradiation at either 25Gy or 75Gy had no significant effect on any parameter measured compared to control (0Gy). However, there was a significant change over time in storage for ATP, GDP, and guanosine. DISCUSSION: Irradiation at doses up to 75Gy had no effect on the energy metabolome of RBCs prepared from blood stored at 4°C for up to 21 days, suggesting that the RBC energy metabolome is not affected by radiation exposure and the blood can still be used for resuscitation in trauma patients.


Asunto(s)
Eritrocitos , Hemorragia , Humanos , Eritrocitos/metabolismo , Hemorragia/metabolismo , Guanosina/metabolismo , Conservación de la Sangre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA