Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
BMC Plant Biol ; 24(1): 792, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169292

RESUMEN

BACKGROUND: With the progress of industrialization and urbanization, cadmium (Cd) pollution in farmland is increasingly severe, greatly affecting human health. Sunflowers possess high resistance to Cd stress and great potential for phytoremediation of Cd-contaminated soil. Previous studies have shown that humic acid (HA) effectively mitigates plant damage induced by Cd; however, its alleviating effects on sunflower plants under Cd stress remain largely unknown. RESULTS: We employed four different concentrations of HA (50, 100, 200, and 300 mg L-1) via foliar application to examine their ability to alleviate Cd stress on sunflower plants' growth, chlorophyll synthesis, and biochemical defense system. The results revealed that Cd stress not only reduced plant height, stem diameter, fresh and dry weight, and chlorophyll content in sunflower plants but also altered their chlorophyll fluorescence characteristics compared to the control group. After Cd stress, the photosynthetic structure was damaged and the number of PSII reactive centers per unit changed. Application of 200 mg L-1 HA promotes sunflower growth and increases chlorophyll content. HA significantly enhances antioxidant enzyme activities (SOD, POD, CAT, and APX) and reduces ROS content (O2 -, H2O2 and -OH). Totally, Application of 200 mg L-1 HA had the best effect than other concentrations to alleviate the Cd-induced stress in sunflower plants. CONCLUSIONS: The foliar application of certain HA concentration exhibited the most effective alleviation of Cd-induced stress on sunflower plants. It can enhance the light energy utilization and antioxidant enzyme activities, while reduce ROS contents in sunflower plants. These findings provide a theoretical basis for using HA to mitigate Cd stress in sunflowers.


Asunto(s)
Cadmio , Clorofila , Helianthus , Sustancias Húmicas , Clorofila/metabolismo , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Helianthus/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico , Biodegradación Ambiental , Contaminantes del Suelo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Theor Appl Genet ; 137(8): 184, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008128

RESUMEN

Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.


Asunto(s)
Cambio Climático , Helianthus , Fenotipo , Fitomejoramiento , Tolerancia a la Sal , Helianthus/genética , Helianthus/crecimiento & desarrollo , Helianthus/fisiología , Tolerancia a la Sal/genética , Salinidad , Sitios de Carácter Cuantitativo , Suelo/química , Estudios de Asociación Genética , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Selección Genética , Estudio de Asociación del Genoma Completo , Genotipo
3.
PeerJ ; 12: e17586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974413

RESUMEN

The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Helianthus , Proteínas de Dominio MADS , Proteínas de Plantas , Helianthus/genética , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936071

RESUMEN

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Asunto(s)
Antioxidantes , Carbón Orgánico , Helianthus , Microplásticos , Oryza , Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/efectos de los fármacos , Antioxidantes/metabolismo , Carbón Orgánico/farmacología , Helianthus/metabolismo , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Suelo/química , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Biomasa , Metabolismo Secundario , Prolina/metabolismo
5.
BMC Plant Biol ; 24(1): 592, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907232

RESUMEN

Drought stress poses a significant threat to agricultural productivity, especially in areas susceptible to water scarcity. Sunflower (Helianthus annuus L.) is a widely cultivated oilseed crop with considerable potential globally. Jasmonic acid, a plant growth regulator, plays a crucial role in alleviating the adverse impacts of drought stress on the morphological, biochemical, and physiological characteristics of crops. Experimental detail includes sunflower varieties (Armani Gold, KQS-HSF-1, Parsun, and ESFH-3391), four drought stress levels (0, 25%, 50%, and 75% drought stress), and three levels (0, 40ppm, 80ppm) of jasmonic acid. The 0% drought stress and 0ppm jasmonic acid were considered as control treatments. The experimental design was a completely randomized design with three replicates. Drought stress significantly reduced the growth in all varieties. However, the exogenous application of jasmonic acid at concentrations of 40ppm and 80ppm enhanced growth parameters, shoot and root length (1.93%, 19%), shoot and root fresh weight (18.5%, 25%), chlorophyll content (36%), photosynthetic rate (22%), transpiration rate (40%), WUE (20%), MDA (6.5%), Phenolics (19%), hydrogen peroxide (7%) proline (28%) and glycine betaine (15-30%) under water-stressed conditions, which was closely linked to the increase in stomatal activity stimulated by jasmonic acid. Furthermore, JA 80 ppm was found to be the most appropriate dose to reduce the effect of water stress in all sunflower varieties. It was concluded that the foliar application of JA has the potential to enhance drought tolerance by improving the morphological, biochemical, and physiological of sunflower.


Asunto(s)
Ciclopentanos , Sequías , Helianthus , Oxilipinas , Oxilipinas/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Helianthus/fisiología , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Fisiológico , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo
6.
Environ Pollut ; 356: 124316, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848955

RESUMEN

Soil heavy metal contamination is often an unintended byproduct of historic land-use. This contamination can negatively impact resident plants and their interactions with other organisms. Plant fitness in contaminated landscapes depends not only on plant growth, but also on the maintenance of interactions with pollinators. Cadmium (Cd) is a heavy metal that is commonly found in agricultural, urban, and industrial ecosystems as a legacy of historic land-use. It is a prioritized pollutant in soils because of its wide distribution and strong biotoxicity. To understand how Cd influences plant growth and pollinator interactions, we grew sunflowers in media with three different Cd concentrations to represent the range of Cd contamination faced by sunflowers growing on land recovering from past land-use. We measured Cd contamination effects on sunflower morphology and pollinator foraging behavior, specifically the number of visits and visit duration. We then measured seed number and weight to determine if contamination directly or indirectly, as mediated by pollinators, altered plant fitness. Plant height was negatively correlated with Cd concentration, but contamination alone (in the absence of pollinators) did not affect sunflower reproduction. Bumble bees visited sunflowers grown in Exceeding Threshold Cd concentrations less often and for shorter time compared to visits to Below Threshold Cd sunflowers, but honey bees and sweat bees showed similar foraging behavior across Cd contamination treatment levels. Sunflower seed set was positively correlated with the total number of pollinator visits, and sunflowers grown in Exceeding Threshold Cd soil had marginally lower seed set compared to those grown in Below Threshold Cd soil. Our results suggest that at Exceeding Threshold Cd contamination levels plant-pollinator interactions are negatively affected with consequences for plant fitness.


Asunto(s)
Cadmio , Helianthus , Polinización , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Cadmio/análisis , Abejas/fisiología , Abejas/efectos de los fármacos , Helianthus/efectos de los fármacos , Helianthus/fisiología , Helianthus/crecimiento & desarrollo , Animales , Suelo/química
7.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760671

RESUMEN

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Asunto(s)
Helianthus , Sulfuro de Hidrógeno , Osmorregulación , Fotosíntesis , Estrés Salino , Plantones , Helianthus/fisiología , Helianthus/efectos de los fármacos , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Fotosíntesis/efectos de los fármacos , Plantones/fisiología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Sulfuro de Hidrógeno/metabolismo , Cloroplastos/metabolismo , Salinidad
8.
PLoS One ; 19(5): e0301254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713689

RESUMEN

Oil seed crops are the second most important field crops after cereals in the agricultural economy globally. The use and demand for oilseed crops such as groundnut, soybean and sunflower have grown significantly, but climate change is expected to alter the agroecological conditions required for oilseed crop production. This study aims to present an approach that utilizes decision-making tools to assess the potential climate change impacts on groundnut, soybean and sunflower yields and the greenhouse gas emissions from the management of the crops. The Decision Support Tool for Agrotechnology Transfer (DSSAT v4.7), a dynamic crop model and the Cool Farm Tool, a GHG calculator, was used to simulate yields and estimate GHG emissions from these crops, respectively. Four representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5), three nitrogen (0, 75, and 150 kg/ha) and phosphorous (0, 30 and 60 P kg/ha) fertilizer rates at three sites in Limpopo, South Africa (Ofcolaco, Syferkuil and Punda Maria) were used in field trials for calibrating the models. The highest yield was achieved by sunflower across all crops, years and sites. Soybean yield is projected to decrease across all sites and scenarios by 2030 and 2050, except at Ofcolaco, where yield increases of at least 15.6% is projected under the RCP 4.5 scenario. Positive climate change impacts are predicted for groundnut at Ofcolaco and Syferkuil by 2030 and 2050, while negative impacts with losses of up to 50% are projected under RCP8.5 by 2050 at Punda Maria. Sunflower yield is projected to decrease across all sites and scenarios by 2030 and 2050. A comparison of the climate change impacts across sites shows that groundnut yield is projected to increase under climate change while notable yield losses are projected for sunflower and soybean. GHG emissions from the management of each crop showed that sunflower and groundnut production had the highest and lowest emissions across all sites respectively. With positive climate change impacts, a reduction of GHG emissions per ton per hectare was projected for groundnuts at Ofcolaco and Syferkuil and for sunflower in Ofcolaco in the future. However, the carbon footprint from groundnut is expected to increase by 40 to 107% in Punda Maria for the period up to 2030 and between 70-250% for 2050, with sunflower following a similar trend. We conclude that climate change will potentially reduce yield for oilseed crops while management will increase emissions. Therefore, in designing adaptation measures, there is a need to consider emission effects to gain a holistic understanding of how both climate change impacts on crops and mitigation efforts could be targeted.


Asunto(s)
Cambio Climático , Productos Agrícolas , Productos Agrícolas/crecimiento & desarrollo , Sudáfrica , Semillas/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Helianthus/crecimiento & desarrollo , Modelos Teóricos , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Aceites de Plantas , Agricultura/métodos
9.
Sci Rep ; 14(1): 9978, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693252

RESUMEN

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Asunto(s)
Germinación , Helianthus , Presión Osmótica , Semillas , Temperatura , Helianthus/crecimiento & desarrollo , Helianthus/fisiología , Semillas/crecimiento & desarrollo , Agua , Modelos Teóricos
10.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791426

RESUMEN

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Asunto(s)
Apoptosis , Helianthus , Tubérculos de la Planta , Poliaminas , Helianthus/metabolismo , Helianthus/crecimiento & desarrollo , Poliaminas/metabolismo , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo
11.
PLoS One ; 19(5): e0298299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722945

RESUMEN

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Asunto(s)
Agrobacterium tumefaciens , Helianthus , Plantas Modificadas Genéticamente , Transformación Genética , Helianthus/genética , Helianthus/microbiología , Helianthus/crecimiento & desarrollo , Agrobacterium tumefaciens/genética , Plantas Modificadas Genéticamente/genética , Técnicas de Cultivo de Tejidos/métodos , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Fitomejoramiento/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo
12.
Food Chem ; 454: 139790, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805931

RESUMEN

Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.


Asunto(s)
Antioxidantes , Germinación , Aceite de Linaza , Valor Nutritivo , Oxidación-Reducción , Aceites de Plantas , Semillas , Aceite de Girasol , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Aceite de Girasol/química , Aceite de Girasol/metabolismo , Aceite de Linaza/metabolismo , Aceite de Linaza/química , Aceites de Plantas/química , Aceites de Plantas/análisis , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Lino/química , Lino/crecimiento & desarrollo , Lino/metabolismo , Helianthus/crecimiento & desarrollo , Helianthus/química , Helianthus/metabolismo
13.
Environ Sci Pollut Res Int ; 29(38): 57669-57687, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35355176

RESUMEN

Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.


Asunto(s)
Carbón Orgánico , Helianthus , Contaminantes del Suelo , Carbón Orgánico/metabolismo , Helianthus/crecimiento & desarrollo , Metales/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Residuos Sólidos
14.
PLoS One ; 16(12): e0259585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882694

RESUMEN

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Asunto(s)
Helianthus/crecimiento & desarrollo , Metionina/farmacología , Estrés Oxidativo/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído , Peroxidasa/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
15.
BMC Microbiol ; 21(1): 337, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886803

RESUMEN

BACKGROUND: Microbial communities inhabiting the rhizosphere play pivotal roles in determining plant health and yield. Manipulation of the rhizosphere microbial community is a promising means to enhance the productivity of economically viable and important agricultural crops such as sunflower (Helianthus annuus). This study was designed to gain insights into the taxonomic and functional structures of sunflower rhizosphere and bulk soil microbiome at two different locations (Sheila and Itsoseng) in South Africa. RESULTS: Microbial DNA extracted from the sunflower rhizosphere and bulk soils was subjected to next-generation sequencing using 16S amplicon sequencing technique. Firmicutes, Actnobacteria and Proteobacteria predominated sunflower rhizosphere soils. Firmicutes, Cyanobacteria, Deinococcus-Thermus and Fibrobacteres were positively influenced by Na+ and clay content, while Actinobacteria, Thaumarchaeota, Bacteroidetes, Planctomycetes, Aquificae and Chloroflexi were positively influenced by soil resistivity (Res) and Mg2+. The community-level physiological profiling (CLPP) analysis showed that the microbial communities in SHR and ITR used the amino acids tryptophan and malic acid efficiently. The metabolisms of these carbon substrates may be due to the dominant nature of some of the organisms, such as Actinobacteria in the soils. CONCLUSION: The CLPP measurements of soil from sunflower rhizosphere were different from those of the bulk soil and the degree of the variations were based on the type of carbon substrates and the soil microbial composition. This study has shown the presence of certain taxa of rhizobacteria in sunflower rhizosphere which were positively influenced by Na+ and Mg2+, and taxa obtained from SHR and ITR were able to effectively utilized tryptophan and malic acid. Many unclassified microbial groups were also discovered and it is therefore recommended that efforts should further be made to isolate, characterize and identify these unclassified microbial species, as it might be plausible to discover new microbial candidates that can further be harnessed for biotechnological purpose.


Asunto(s)
Helianthus/microbiología , Microbiota/fisiología , Rizosfera , Aminoácidos/análisis , Aminoácidos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carbono/análisis , Carbono/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Helianthus/crecimiento & desarrollo , Suelo/química , Microbiología del Suelo
16.
PLoS One ; 16(12): e0260673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932582

RESUMEN

Sunflower production is significantly lower in arid and semi-arid regions due to various crop management problem. Conservation of tillage provides the most excellent opportunity to reduce degradation of soil reserves and increase soil productivity. The main objective of this study was to investigate the combined effects of conservation tillage and drought stress on growth and productivity of different sunflower hybrids. Experimental treatments included two sunflower hybrids ('NK-Senji' and 'S-278'), two drought stress treatments (i.e., well-watered and drought stress at flowering and grain filling stages) and three tillage practices (i.e., conservation, minimum and deep tillage). The results indicated that morphological and physiological parameters, and yield-related traits were significantly (P≤0.05) affected by all individual factors; however, their interactive effects were non-significant. Among sunflower hybrids, 'NK-Senji' performed better for morphological, physiological, and yield-related traits than 'S-278'. Similarly, conservation tillage observed better traits compared to the rest of the tillage practices included in the study. Nonetheless, conservation tillage improved growth and yield-related traits of hybrid 'NK-Senji' under drought stress. Hence, it is concluded that conservation tillage can improve the productivity of sunflower under low moisture availability. Therefore, conservation tillage could be suggested in the areas of lower water ability to improve sunflower production. Nonetheless, sunflower hybrids or varieties need thorough testing for their adaptability to conservation tillage and low moisture availability before making recommendations.


Asunto(s)
Adaptación Fisiológica , Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Helianthus/crecimiento & desarrollo , Suelo/química , Riego Agrícola/métodos , Quimera/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Clima Desértico , Sequías , Helianthus/genética , Helianthus/metabolismo , Humanos , Arena , Estrés Fisiológico , Agua/metabolismo
17.
Sci Rep ; 11(1): 23918, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907244

RESUMEN

The increasing demand on pollination services leads food industry to consider new strategies for management of pollinators to improve their efficiency in agroecosystems. Recently, it was demonstrated that feeding beehives food scented with an odorant mixture mimicking the floral scent of a crop (sunflower mimic, SM) enhanced foraging activity and improved recruitment to the target inflorescences, which led to higher density of bees on the crop and significantly increased yields. Besides, the oral administration of nonsugar compounds (NSC) naturally found in nectars (caffeine and arginine) improved short and long-term olfactory memory retention in conditioned bees under laboratory conditions. To test the effect of offering of SM-scented food supplemented with NSC on honeybees pollinating sunflower for hybrid seed production, in a commercial plantation we fed colonies SM-scented food (control), and SM-scented food supplemented with either caffeine, arginine, or a mixture of both, in field realistic concentrations. Their foraging activity was assessed at the hive and on the crop up to 90 h after treatment, and sunflower yield was estimated prior to harvest. Our field results show that SM + Mix-treated colonies exhibited the highest incoming rates and densities on the crop. Additionally, overall seed mass was significantly higher by 20% on inflorescences close to these colonies than control colonies. Such results suggest that combined NSC potentiate olfactory learning of a mimic floral odor inside the hive, promoting faster colony-level foraging responses and increasing crop production.


Asunto(s)
Abejas/fisiología , Producción de Cultivos , Conducta Alimentaria , Helianthus/crecimiento & desarrollo , Odorantes , Néctar de las Plantas , Animales , Polinización
18.
PLoS One ; 16(9): e0256075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543316

RESUMEN

Water scarcity is a major concern for sunflower production in the semi-arid and arid regions of the world. Potassium (K) application has been found effective to alleviate the influence of drought stress; however, the impact of drought stress on seed quality of sunflower has not been reported frequently. Therefore, a field experiment was performed to determine the optimum K requirement for mitigating the adverse effects of water stress and improving growth and seed quality of spring-planted sunflower. Sunflower plants were exposed to water stress at different growth stages, i.e., Io = no stress (normal irrigation), I1 = pre-anthesisi stress (irrigation skipped at pre-anthesis stage), I2 = anthesis stress (irrigation skipped at anthesis stage) and I3 = post-anthesis stress (irrigation skipped at post-anthesis stage). Potassium was applied at four different rates, i.e., Ko = 0, K1 = 50, K2 = 100 and K3 = 150 kg ha-1. The results revealed that water stress at pre- and post-anthesis stages significantly reduced plant height, head diameter, number of achenes, oleic acid contents, and phosphorus (P) uptake. However, pre-anthesis stress improved linoleic acid contents. Treatment IoK3 (stress-free with 150 kg ha-1 K) was optimum combination for 1000-achene weight, biological and achene yields, oil contents, protein contents, and N and P uptake. Results indicated that a higher amount of K and irrigation resulted in higher yield, whereas yield and yield components decreased with early-stage water stress. Nevertheless, potassium application lowered the impacts of waters stress compared to no application. Keeping in view these results, it is recommended that sunflower must be supplied 150 kg ha-1 K in arid and semi-arid regions to achieve higher yield and better seed quality.


Asunto(s)
Riego Agrícola/métodos , Sequías , Helianthus/crecimiento & desarrollo , Potasio/farmacología , Estaciones del Año , Semillas/crecimiento & desarrollo , Estrés Fisiológico , Clima Desértico , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Semillas/efectos de los fármacos , Semillas/metabolismo
19.
Plant Signal Behav ; 16(11): 1958129, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34429013

RESUMEN

Sunflower (Helianthus annuus L.) is one of the major oilseed crops cultivated world over for its high-quality oil rich in linoleic acid. It also has established applications in pharmaceutical and biotechnological industries, mainly through recombinant production of unique oil body (OB) membrane proteins-oleosins, which are used for producing a wide variety of vaccines, food products, cosmetics and nutraceuticals. The present review provides a critical analysis of the progress made in advancing our knowledge in sunflower biology, ranging from mechanisms of pollen-stigma interaction, seed development, physiology of seed germination and seedling growth under salt stress, and finally understanding the signaling routes associated with various biochemical pathways regulating seedling growth. Role of nitric oxide (NO) triggered post-translational modifications (PTMs), discovered in the recent past, have paved way for future research directions leading to further understanding of sunflower developmental physiology. Novel protocols recently developed to monitor temporal and spatial distributions of various biochemicals involved in above-stated developmental events in sunflower, will go a long way for similar applications in plant biology in future.


Asunto(s)
Comunicación Celular/fisiología , Flores/metabolismo , Helianthus/crecimiento & desarrollo , Helianthus/metabolismo , Polen/metabolismo , Tolerancia a la Sal/fisiología , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Comunicación Celular/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Helianthus/genética , Polen/genética , Estrés Salino/genética , Estrés Salino/fisiología , Tolerancia a la Sal/genética , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
PLoS One ; 16(4): e0250209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886610

RESUMEN

The European sunflower moth, Homoesoma nebulellum (Denis et Schiffermüller), emerged as a major new pest in Bayannur, China, in 2006. Insecticidal control with a single application is problematic because timing is critical, and multiple applications increase production and environmental costs. Management of H. nebulellum by planting date adjustment can be effective, but the optimal time window for late planting is unknown. Natural levels of H. nebulellum infestation were compared among sunflowers planted on five dates from April 25 to June 5 in two years, and the relationship between timing of adult abundance and flowering assessed. Delaying planting of sunflower from the traditional planting period of April 25 -May 5 to May 15 -June 5 significantly decreased damage by H. nebulellum. Seed infestation rate was 30-40 times higher, and number of larvae/head 75-100 times higher in the earliest two plantings than in the latest two. Within two years of implementing delayed planting in Bayannur city, infestation area decreased from 72% in 2006 to 1.5% in 2008, and production losses decreased from 4.5 ton/ha in 2006 to 0.36 ton/ha in 2008, a 97% decrease compared to 2006. Moreover, the infestation area caused by H. nebulellum was continuously controlled below 5.3% of the planting area since 2008. We found the overlap between the first two days of flowering and peak adult presence was the key factor influencing level of damage caused by H. nebulellum. Because the number of eggs laid in the first two days of flowering accounted for 68% of the total, and sunflower seed infestation rate was positively correlated with the number of trapped adults weighted by proportion of daily oviposition. Oviposition of the majority of eggs in the first two days of flowering suggests an evolutionary mechanism whereby females choose host plants most conducive to larval development, consistent with the preference-performance hypothesis.


Asunto(s)
Helianthus/crecimiento & desarrollo , Horticultura , Insecticidas , Mariposas Nocturnas , Animales , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA