Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.569
Filtrar
1.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704134

RESUMEN

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Asunto(s)
Células Progenitoras Endoteliales , Hematopoyesis , PPAR delta , Especies Reactivas de Oxígeno , Humanos , PPAR delta/metabolismo , PPAR delta/genética , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Hematopoyesis/efectos de los fármacos , Masculino , Femenino , Fluorouracilo/farmacología , Persona de Mediana Edad , Ratones , Tiazoles/farmacología , NADPH Oxidasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/tratamiento farmacológico
2.
Sci Total Environ ; 937: 173482, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38795982

RESUMEN

Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.


Asunto(s)
Europio , Hematopoyesis , Lisosomas , Nanopartículas del Metal , Óxidos , Animales , Europio/toxicidad , Ratones , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Óxidos/toxicidad , Hematopoyesis/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Bazo/efectos de los fármacos , Nanopartículas/toxicidad
3.
Radiat Res ; 201(5): 449-459, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373011

RESUMEN

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.


Asunto(s)
Síndrome de Radiación Aguda , Modelos Animales de Enfermedad , Oligopéptidos , Irradiación Corporal Total , Animales , Ratones , Síndrome de Radiación Aguda/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Ratones Endogámicos C57BL , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Irradiación Corporal Total/efectos adversos
4.
Blood Adv ; 8(9): 2312-2325, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295283

RESUMEN

ABSTRACT: Hyperproliferation of myeloid and erythroid cells in myeloproliferative neoplasms (MPN) driven by the JAK2-V617F mutation is associated with altered metabolism. Given the central role of glutamine in anabolic and catabolic pathways, we examined the effects of pharmacologically inhibiting glutaminolysis, that is, the conversion of glutamine (Gln) to glutamate (Glu), using CB-839, a small molecular inhibitor of the enzyme glutaminase (GLS). We show that CB-839 strongly reduced the mitochondrial respiration rate of bone marrow cells from JAK2-V617F mutant (VF) mice, demonstrating a marked dependence of these cells on Gln-derived ATP production. Consistently, in vivo treatment with CB-839 normalized blood glucose levels, reduced splenomegaly and decreased erythrocytosis in VF mice. These effects were more pronounced when CB-839 was combined with the JAK1/2 inhibitor ruxolitinib or the glycolysis inhibitor 3PO, indicating possible synergies when cotargeting different metabolic and oncogenic pathways. Furthermore, we show that the inhibition of glutaminolysis with CB-839 preferentially lowered the proportion of JAK2-mutant hematopoietic stem cells (HSCs). The total number of HSCs was decreased by CB-839, primarily by reducing HSCs in the G1 phase of the cell cycle. CB-839 in combination with ruxolitinib also strongly reduced myelofibrosis at later stages of MPN. In line with the effects shown in mice, proliferation of CD34+ hematopoietic stem and progenitor cells from polycythemia vera patients was inhibited by CB-839 at nanomolar concentrations. These data suggest that inhibiting GLS alone or in combination with inhibitors of glycolysis or JAK2 inhibitors represents an attractive new therapeutic approach to MPN.


Asunto(s)
Bencenoacetamidas , Glutaminasa , Hematopoyesis , Janus Quinasa 2 , Trastornos Mieloproliferativos , Animales , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Hematopoyesis/efectos de los fármacos , Humanos , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Bencenoacetamidas/farmacología , Bencenoacetamidas/uso terapéutico , Mutación , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
5.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097188

RESUMEN

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Asunto(s)
Macrófagos Alveolares , Células Madre Pluripotentes , Porcinos , Animales , Endocitosis , Hematopoyesis/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos Alveolares/citología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Mesodermo/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Transducción de Señal/efectos de los fármacos , Porcinos/virología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factores de Tiempo
6.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047231

RESUMEN

The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 µM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.


Asunto(s)
Células de la Médula Ósea , Metilación de ADN , Expresión Génica , Insecticidas , Malatión , Organofosfatos , Permetrina , Expresión Génica/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Permetrina/toxicidad , Malatión/toxicidad , Insecticidas/toxicidad , Organofosfatos/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Humanos , Masculino , Adulto Joven , Células Cultivadas
7.
Int J Immunopathol Pharmacol ; 36: 3946320221145520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36565299

RESUMEN

OBJECTIVE: The haematopoietic cytopenia (HC) of the cyclin-dependent kinase (CDK)4/6 inhibitors was evaluated using the Food and Drug Administration Adverse Event Reporting System (FAERS). METHOD: Data from 1 January 2015 to 31 December 2021 has been retrieved from the FAERS database. Disproportionality analysis and Bayesian analysis were utilized in the data mining. The reporting odds ratio (ROR) with 95% confidence interval (CI) for HC was calculated for each CDK 4/6 inhibitor agent. Clinical features of the patients were collected and compared between death outcome and non-death outcome groups. Time to onset (TTO), proportion of deaths, life-threatening and hospitalizations of CDK 4/6 inhibitors-associated HC were also studied. RESULTS: A total of 17,235 cases of HC associated with CDK 4/6 inhibitors were identified with a median age of 65 years (interquartile range [IQR] 57-73). Palbociclib appeared the strongest signal, with the highest (ROR 9.64, 95% CI 9.46-9.83), followed by ribociclib (ROR 6.38, 95% CI 6.04-6.73) and then abemaciclib (ROR 2.72, 95% CI 2.49-2.97). Patients aged 18-64 had a higher proportion of deaths than those aged 65-84 (12.21% vs. 9.91%, p = 0.001). In Africa and Asia, the proportions of deaths were higher (31.65% and 26.13%, respectively). The median TTO was 26 days (IQR 14-65) for abemaciclib, 33 days (IQR 15-134) for palbociclib and 23 days (IQR 14-69) for ribociclib, respectively. The highest proportion of deaths, life-threatening and hospitalizations all occurred in abemaciclib (13.00%, 5.42% and 44.04%, respectively). CONCLUSIONS: Greater proportions of deaths occurred in Africa and Asia. HC may occur early in any CDK 4/6 inhibitor regimen. Abemaciclib had the highest proportion of deaths, life-threatening and hospitalizations. Health care workers should be more concerned about CDK 4/6 inhibitors. The higher proportions of serious events, including deaths, from Africa and Asia, as well as for abemaciclib, deserve further investigations through additional pharmacoepidemiological approaches.


Asunto(s)
Antineoplásicos , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Enfermedades Hematológicas , Hematopoyesis , Inhibidores de Proteínas Quinasas , Anciano , Humanos , Teorema de Bayes , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Estados Unidos/epidemiología , United States Food and Drug Administration , Enfermedades Hematológicas/inducido químicamente , Enfermedades Hematológicas/epidemiología , Enfermedades Hematológicas/mortalidad , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Hematopoyesis/efectos de los fármacos , África/epidemiología , Asia/epidemiología , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años
8.
Mar Drugs ; 20(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323500

RESUMEN

Hematopoietic damage is a serious side effect of cytotoxic drugs, and agents promoting hematopoiesis are quite important for decreasing the death rate in cancer patients. In our previous work, we prepared the simulated digestive product of fucoidan from Sargassum fusiforme, DSFF, and found that DSFF could activate macrophages. However, more investigations are needed to further evaluate whether DSFF could promote hematopoiesis in the chemotherapy process. In this study, the protective effect of DSFF (1.8-7.2 mg/kg, i.p.) on cyclophosphamide-induced hematopoietic damage in mice and the underlying mechanisms were investigated. Our results show that DSFF could restore the numbers of white blood cells, neutrophils, and platelets in the peripheral blood, and could also retard bone marrow cell decrease in mice with cyclophosphamide-induced hematopoietic damage. UPLC/Q-Extraction Orbitrap/MS/MS-based lipidomics results reveal 16 potential lipid biomarkers in a serum that responded to hematopoietic damage in mice. Among them, PC (20:1/14:0) and SM (18:0/22:0) were the key lipid molecules through which DSFF exerted protective actions. In a validation experiment, DSFF (6.25-100 µg/mL) could also promote K562 cell proliferation and differentiation in vitro. The current findings indicated that DSFF could affect the blood cells and bone marrow cells in vivo and thus showed good potential and application value in alleviating the hematopoietic damage caused by cyclophosphamide.


Asunto(s)
Ciclofosfamida/toxicidad , Hematopoyesis/efectos de los fármacos , Agonistas Mieloablativos/toxicidad , Polisacáridos/farmacología , Sustancias Protectoras/farmacología , Sargassum , Animales , Biomarcadores/sangre , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Humanos , Células K562 , Recuento de Leucocitos , Lipidómica , Ratones , Neutrófilos/efectos de los fármacos , Recuento de Plaquetas
9.
Exp Hematol ; 105: 22-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763024

RESUMEN

Exposure of young C57BL/6 (B6) mice to two courses of busulfan (BSF) injections or two rounds of sublethal total-body irradiation (TBI) induced significant damage to the function of hematopoietic stem and progenitor cells (HSPCs). Fifteen weeks after treatment, BSF- and TBI-treated mice had reduced white blood cells without significant change in red blood cells or platelets, indicating that BSF and TBI hematotoxicity was chronic, with leukocytes being the major targets. Hematopoietic damage induced by BSF or TBI persisted long term. Residual adverse effects were reflected by significantly decreased CD45R B cells and reduced recovery of total bone marrow cells, especially HSPCs carrying markers for KSL (Kit+Sca-1+Lin-) cells, multipotent progenitor (MPP) cells (KSLCD34+CD135+), myeloid progenitor (MP) cells (Kit+Sca-1-Lin-), and common lymphoid progenitor (CLP) cells 62 wk posttreatment. Transplantation of bone marrow (BM) cells from BSF and TBI donors at 49 weeks after treatment into lethally irradiated hosts resulted in decreased engraftment of CD45R B cells in blood and reduced reconstitution of BM HSPCs including KSL cells, short-term hematopoietic stem cells (KSLCD34+CD135-), MPP cells, and MP cell subsets. TBI donor had better reconstitution of CLP cells in recipients posttransplantation than did BSF donor, suggesting an impact of TBI and BSF on B cells at different development stages. In summary, BSF and TBI exposure produced long-lasting adverse effects on hematopoiesis with pronounced effects on mature B cells, immature ST-HSCs, and hematopoietic progenitor cells. Our results may have implications for therapy of human diseases.


Asunto(s)
Busulfano/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de la radiación , Agonistas Mieloablativos/farmacología , Animales , Células de la Médula Ósea , Trasplante de Médula Ósea , Femenino , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Irradiación Corporal Total
11.
Life Sci ; 289: 120190, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34883100

RESUMEN

AIMS: Hematopoietic acute radiation syndrome (H-ARS) can cause lethality, and therefore, the necessity of a safe radioprotector. The present study was focused on investigating the role of melatonin in granulocytes colony-stimulating factor (G-CSF) and related mechanisms underlying the reduction of DNA damage in hematopoietic system of irradiated mice. MAIN METHODS: C57BL/6 male mice were exposed to 2, 5, and 7.5Gy of whole-body irradiation (WBI), 30 min after intra-peritoneal administration of melatonin with different doses. Mice were sacrificed at different time intervals after WBI, and bone marrow, splenocytes, and peripheral blood lymphocytes were isolated for studying various parameters including micronuclei (MN), cell cycle, comet, γ-H2AX, gene expression, amino acid profiling, and hematology. KEY FINDINGS: Melatonin100mg/kg ameliorated radiation (7.5Gy and 5Gy) induced MN frequency and cell death in bone marrow without mortality. At 24 h of post-WBI (2Gy), the frequency of micronucleated polychromatic erythrocytes (mnPCE) with different melatonin doses revealed 20 mg/kg as optimal i.p. dose for protecting the hematopoietic system against radiation injury. In comet assay, a significant reduction in radiation-induced % DNA tail (p ≤ 0.05) was observed at this dose. Melatonin reduced γ-H2AX foci/cell and eventually reached to the control level. Melatonin also decreased blood arginine levels in mice after 24 h of WBI. The gene expression of G-CSF, Bcl-2-associated X protein (BAX), and Bcl2 indicated the role of melatonin in G-CSF regulation and downstream pro-survival pathways along with anti-apoptotic activity. SIGNIFICANCE: The results revealed that melatonin recovers the hematopoietic system of irradiated mice by inducing G-CSF mediated radioprotection.


Asunto(s)
Síndrome de Radiación Aguda/metabolismo , Rayos gamma/efectos adversos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis , Melatonina/farmacología , Traumatismos Experimentales por Radiación/metabolismo , Animales , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Masculino , Ratones , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/patología
12.
Blood Cancer J ; 11(12): 193, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34864823

RESUMEN

Blocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Hematopoyesis/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida/métodos , Mutación/efectos de los fármacos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología
13.
Sci Rep ; 11(1): 23250, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853370

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening systemic hyper-inflammatory disorder. The mortality of HLH is higher in the elderly than in young adults. Senescence-accelerated mice (SAMP1/TA-1) exhibit characteristic accelerated aging after 30 weeks of age, and HLH-like features, including hematopoietic organ damage, are seen after lipopolysaccharide (LPS) treatment. Thus, SAMP1/TA-1 is a useful model of hematological pathophysiology in the elderly with HLH. In this study, dosing of SAMP1/TA-1 mice with LPS revealed that the suppression of myelopoiesis and B-lymphopoiesis was more severe in aged mice than in young mice. The bone marrow (BM) expression of genes encoding positive regulators of myelopoiesis (G-CSF, GM-CSF, and IL-6) and of those encoding negative regulators of B cell lymphopoiesis (TNF-α) increased in both groups, while the expression of genes encoding positive-regulators of B cell lymphopoiesis (IL-7, SDF-1, and SCF) decreased. The expression of the GM-CSF-encoding transcript was lower in aged mice than in young animals. The production of GM-CSF by cultured stromal cells after LPS treatment was also lower in aged mice than in young mice. The accumulation of the TNF-α-encoding transcript and the depletion of the IL-7-encoding transcript were prolonged in aged mice compared to young animals. LPS dosing led to a prolonged increase in the proportion of BM M1 macrophages in aged mice compared to young animals. The expression of the gene encoding p16INK4a and the proportion of ß-galactosidase- and phosphorylated ribosomal protein S6-positive cells were increased in cultured stromal cells from aged mice compared to those from young animals, while the proportion of Ki67-positive cells was decreased in stromal cells from aged mice. Thus, age-related deterioration of stromal cells probably causes the suppression of hematopoiesis in aged mice. This age-related latent organ dysfunction may be exacerbated in elderly people with HLH, resulting in poor prognosis.


Asunto(s)
Envejecimiento/patología , Inflamación/patología , Linfohistiocitosis Hemofagocítica/patología , Células del Estroma/patología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hematopoyesis/efectos de los fármacos , Lipopolisacáridos/toxicidad , Masculino , Ratones
14.
Bull Exp Biol Med ; 172(2): 236-244, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34855080

RESUMEN

We studied the possibility of using sodium deoxyribonucleate (Derinat) for improving the efficiency of co-transplantation of mesenchymal (MSC) and hematopoietic stem cells (HSC) to female F1(CBA×C57BL/6) mice with bone marrow aplasia caused by exposure to γ-radiation. It was found that immunomodulator Derinat enhanced the effect of co-transplantation, in particular, triple post-irradiation administration of Derinat accelerated hematopoiesis recovery judging from the parameters of peripheral blood, total cellularity of the bone marrow and spleen, and animal survival. Single or double administration of Derinat prior to irradiation was ineffective. The optimal result was obtained when the following scheme was applied: MSC→HSC with an interval of 48 h starting during the first hours after irradiation and triple administration of Derinat (in 10-15 min, 3 and 7 days after irradiation) in a dose of 3 mg/mouse.


Asunto(s)
ADN/farmacología , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Traumatismos Experimentales por Radiación/terapia , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/terapia , Terapia Combinada , ADN/química , ADN/uso terapéutico , Femenino , Rayos gamma/efectos adversos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Traumatismos Experimentales por Radiación/etiología , Recuperación de la Función/efectos de los fármacos , Sodio/química , Sodio/farmacología , Irradiación Corporal Total/efectos adversos
15.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830256

RESUMEN

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Asunto(s)
Neoplasias Óseas/metabolismo , Resorción Ósea/metabolismo , Endocannabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporosis/metabolismo , Antineoplásicos/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Remodelación Ósea/fisiología , Resorción Ósea/genética , Resorción Ósea/patología , Resorción Ósea/prevención & control , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Regulación de la Expresión Génica , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Humanos , Metástasis de la Neoplasia , Osteoblastos/patología , Osteoclastos/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Osteoporosis/patología , Ligando RANK/genética , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Transducción de Señal
16.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681777

RESUMEN

Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.


Asunto(s)
Senescencia Celular/fisiología , Células Madre Hematopoyéticas/fisiología , Mitocondrias/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología
17.
Toxicology ; 464: 152990, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673135

RESUMEN

Benzene is a typical hematopoietic toxic substance, that can cause serious blood and circulatory system diseases such as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia, but the immunological mechanism by which this occurs is not clear. T helper cells play a key role in regulating the immune balance in the body. In this study, benzene-induced hematopoietic toxicity BALB/c mice model was established, and changes in immune organs and T helper cell subsets (Th1, Th2, Th17 and Treg cells) were explored. At 28 days after subcutaneous injection of 150 mg/kg benzene, mice showed pancytopenia and obvious pathological damage to the bone marrow, spleen, and thymus. Flow cytometry revealed that the number of CD4+CD25+Foxp3+ Treg cells in the spleen increased significantly. The level of IL-10 in the spleen, serum, and bone marrow increased, while the levels of IL-17 in the spleen and serum decreased. Furthermore, the levels of CD4 and CD8 proteins in the spleen decreased. Immunofluorescence results showed that levels of Foxp3, a specific transcription factor that induced the differentiation of Treg cells, increased after exposure to benzene. Our results demonstrate that immunosuppression occurred in the benzene-induced hematopoietic toxicity model mice, and Treg cells and secreted IL-10 may play a key role in the process.


Asunto(s)
Benceno/toxicidad , Hematopoyesis/efectos de los fármacos , Interleucina-10/inmunología , Linfocitos T Reguladores/inmunología , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Diferenciación Celular/efectos de los fármacos , Hematopoyesis/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Bazo/efectos de los fármacos , Bazo/patología , Linfocitos T Colaboradores-Inductores/inmunología , Timo/efectos de los fármacos , Timo/patología
18.
Cells ; 10(10)2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34685756

RESUMEN

Protein hydrolysate injection (PH) is a sterile solution of hydrolyzed protein and sorbitol that contains 17 amino acids and has a molecular mass of 185.0-622.0 g/mol. This study investigated the effect of PH on hematopoietic function in K562 cells and mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction. In these myelosuppressed mice, PH increased the number of hematopoietic cells in the bone marrow (BM) and regulated the concentration of several factors related to hematopoietic function. PH restored peripheral blood cell concentrations and increased the numbers of hematopoietic stem cells and progenitor cells (HSPCs), B lymphocytes, macrophages, and granulocytes in the BM of CTX-treated mice. Moreover, PH regulated the concentrations of macrophage colony stimulating factor (M-CSF), interleukin (IL)-2, and other hematopoiesis-related cytokines in the serum, spleen, femoral condyle, and sternum. In K562 cells, the PH-induced upregulation of hematopoiesis-related proteins was inhibited by transfection with M-CSF siRNA. Therefore, PH might benefit the BM hematopoietic system via the regulation of M-CSF expression, suggesting a potential role for PH in the treatment of hematopoietic dysfunction caused by cancer therapy.


Asunto(s)
Hematopoyesis/efectos de los fármacos , Factor Estimulante de Colonias de Macrófagos/farmacología , Hidrolisados de Proteína/administración & dosificación , Hidrolisados de Proteína/farmacología , Aminoácidos/análisis , Animales , Células de la Médula Ósea/efectos de los fármacos , Ciclofosfamida/farmacología , Fémur/efectos de los fármacos , Fémur/patología , Humanos , Células K562 , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Peso Molecular , Esternón/efectos de los fármacos , Esternón/patología
19.
Clin Sci (Lond) ; 135(20): 2377-2391, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34608942

RESUMEN

One of the health benefits of endurance exercise training (ET) is the stimulation of hematopoiesis. However, the mechanisms underlying ET-induced hematopoietic adaptations are understudied. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits proliferation of early hematopoietic progenitor cells. The angiotensin I-converting enzyme (ACE) NH2-terminal promotes hematopoiesis by inhibiting the anti-hematopoietic effect of Ac-SDKP. Here we demonstrate for the first time the role of ACE NH2-terminal in ET-induced hematopoietic adaptations. Wistar rats were subjected to 10 weeks of moderate-(T1) and high-(T2) volume swimming-training. Although both protocols induced classical ET-associated adaptations, only T2 increased plasma ACE NH2-domain activity (by 40%, P=0.0003) and reduced Ac-SDKP levels (by 50%, P<0.0001). T2 increased the number of hematopoietic stem cells (HSCs; ∼200%, P=0.0008), early erythroid progenitor colonies (∼300%, P<0.0001) and reticulocytes (∼500%, P=0.0007), and reduced erythrocyte lifespan (∼50%, P=0.022). Following, Wistar rats were subjected to T2 or T2 combined with ACE NH2-terminal inhibition (captopril (Cap) treatment: 10 mg.kg-1.day-1). T2 combined with ACE NH2-terminal inhibition prevented Ac-SDKP decrease and attenuated ET-induced hematopoietic adaptations. Altogether, our findings show that ET-induced hematopoiesis was at least partially associated with increased ACE NH2-terminal activity and reduction in the hematopoietic inhibitor Ac-SDKP.


Asunto(s)
Entrenamiento Aeróbico , Hematopoyesis , Células Madre Hematopoyéticas/enzimología , Peptidil-Dipeptidasa A/metabolismo , Resistencia Física , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Captopril/farmacología , Femenino , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Oligopéptidos/metabolismo , Condicionamiento Físico Animal , Dominios Proteicos , Ratas Wistar , Factores de Tiempo
20.
Int Immunopharmacol ; 100: 108114, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34492531

RESUMEN

Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas/tratamiento farmacológico , Hematopoyesis/efectos de los fármacos , Hematopoyesis/fisiología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/fisiología , Animales , Humanos , Leucemia/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA