Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.507
Filtrar
1.
PeerJ ; 12: e17348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770098

RESUMEN

Lake Baikal is one of the largest and oldest freshwater reservoirs on the planet with a huge endemic diversity of amphipods (Amphipoda, Crustacea). These crustaceans have various symbiotic relationships, including the rarely described phenomenon of leech parasitism on amphipods. It is known that leeches feeding on hemolymph of crustacean hosts can influence their physiology, especially under stressful conditions. Here we show that leeches Baicalobdella torquata (Grube, 1871) found on gills of Eulimnogammarus verrucosus (Gerstfeldt, 1858), one of the most abundant amphipods in the Baikal littoral zone, indeed feed on the hemolymph of their host. However, the leech infection had no effect on immune parameters such as hemocyte concentration or phenoloxidase activity and also did not affect glycogen content. The intensity of hemocyte reaction to foreign bodies in a primary culture was identical between leech-free and leech-infected animals. Artificial infection with leeches also had only a subtle effect on the course of a model microbial infection in terms of hemocyte concentration and composition. Despite we cannot fully exclude deleterious effects of the parasites, our study indicates a low influence of a few leeches on E. verrucosus and shows that leech-infected amphipods can be used at least for some types of ecophysiological experiments.


Asunto(s)
Anfípodos , Hemocitos , Hemolinfa , Lagos , Sanguijuelas , Animales , Anfípodos/inmunología , Anfípodos/parasitología , Hemolinfa/inmunología , Hemolinfa/parasitología , Sanguijuelas/inmunología , Lagos/parasitología , Hemocitos/inmunología , Inmunidad Celular , Siberia , Interacciones Huésped-Parásitos/inmunología
2.
Front Immunol ; 15: 1385863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774871

RESUMEN

Background: In response to the replace mammal research models with insects in preliminary immunological studies, interest has grown in invertebrate defense systems. The immunological response is regulated by cytokines; however, while their role in mammals is well understood, little is known of their function in insects. A suitable target for studies into insect immunology is Galleria mellonella (Lepidoptera), the wax moth: a common host for human fungal and bacterial pathogens. G. mellonella is also a perfect subject for studies into the presence of cytokine-like proteins. Specific objectives: The main goal of present research was detection in insect immunocompetent cells the 18 mammalian cytokines (IL-1α, IL-1ß, IL-2, IL-3, IL-6, IL-7, IL-8, IL-12, IL-13, IL-15, IL-17, IL-19, IFN-γ, TNF-α, TNF-ß, GM-CSF, M-CSF, G-CSF), which play important role in immunological response and indication how their level change after fungal infection. Methodology: The changes of cytokine-like proteins level were detected in hemocytes taken from G. mellonella larvae infected with entomopathogenic fungus, C. coronatus. The presence of cytokine-proteins was confirmed with using fluorescence microscopy (in cultured hemocytes) and flow cytometry (in freshly collected hemolymph). The ELISA test was used to detect changes in concentration of examined cytokine-like proteins. Results: Our findings indicated the presence of eighteen cytokine-like molecules in G. mellonella hemocytes during infection with C. coronatus. The hemocytes taken from infected larvae demonstrated higher fluorescence intensity for six cytokine-like proteins (GM-CSF, M-CSF, IL-3, IL-15, IL-1ß and IL-19) compared to untreated controls. ELISA test indicated significantly higher IL-3 and IL-15. M-CSF, IL-1α and IL-19 concentration in the hemolymph after fungal infection, and significantly lower TNF-ß and G-CSF. Conclusions: Our findings confirm that the selected cytokine-like molecules are present in insect hemocytes and that their concentrations change after fungal infection, which might suggest that they play a role in the anti-fungal immunological response.


Asunto(s)
Conidiobolus , Citocinas , Larva , Mariposas Nocturnas , Animales , Conidiobolus/inmunología , Larva/inmunología , Larva/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Cigomicosis/inmunología , Cigomicosis/metabolismo
3.
Fish Shellfish Immunol ; 149: 109612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705548

RESUMEN

SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.


Asunto(s)
Crassostrea , Regulación de la Expresión Génica , ARN Mensajero , Vibrio , Animales , Crassostrea/inmunología , Crassostrea/genética , Vibrio/fisiología , Regulación de la Expresión Génica/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Inmunidad Innata/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Filogenia , Secuencia de Aminoácidos , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Hemocitos/inmunología
4.
J Invertebr Pathol ; 204: 108109, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631557

RESUMEN

Varroa destructor is one of the most destructive enemies of the honey bee, Apis mellifera all around the world. Several control methods are known to control V. destructor, but the efficacy of several alternative control methods remains unexplored. Irradiation can be one of these unknown solutions but before practical application, the effectiveness, and the physiological effects of ionizing radiation on the host and the parasite are waiting to be tested. Therefore, the objective of our study was to investigate the effects of different doses (15, 50, 100, and 150 Gy) of high-energy X-ray irradiation through mortality rates and hemocyte composition changes in A. mellifera workers and record the mortality rates of the parasite. The mortality rate was recorded during short-term (12, 24, and 48 h) and long-term periods (3, 6, 12, 18, and 24d). The sensitivity of the host and the parasite in case of the higher doses of radiation tested (50, 100, and 150 Gy) been demonstrated by total mortality of the host and 90 % of its parasite has been observed on the 18th day after the irradiation. V. destructor showed higher sensitivity (1.52-times higher than the adult honey bee workers) at the lowest dose (15 Gy). A. mellifera hemocytes were influenced significantly by radiation dosage and the elapsed time after treatment. The higher radiation doses increased plasmatocyte numbers in parallel with the decrease in prohemocyte numbers. On the contrary, the numbers of granulocytes and oencoytes increased in the treated samples, but the putative effects of the different dosages on the recorded number of these hemocyte types could not be statistically proven. In summary, based on the outcome of our study X-ray irradiation can be deemed an effective tool for controlling phoretic V. destructor. However, further research is needed to understand the physiological response of the affected organisms.


Asunto(s)
Hemocitos , Hemolinfa , Varroidae , Animales , Abejas/parasitología , Abejas/efectos de la radiación , Abejas/inmunología , Varroidae/efectos de la radiación , Rayos X , Hemolinfa/efectos de la radiación , Hemolinfa/parasitología , Hemocitos/efectos de la radiación , Hemocitos/inmunología , Interacciones Huésped-Parásitos/efectos de la radiación
5.
Mol Immunol ; 170: 76-87, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640818

RESUMEN

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Asunto(s)
Hemocitos , Peróxido de Hidrógeno , Mariposas Nocturnas , Estrés Oxidativo , Peroxirredoxinas , Animales , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/inmunología , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Estrés Oxidativo/genética , Peróxido de Hidrógeno/farmacología , Hemocitos/metabolismo , Hemocitos/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Antioxidantes/metabolismo , Secuencia de Aminoácidos , Daño del ADN
6.
Fish Shellfish Immunol ; 149: 109548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588870

RESUMEN

Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Hemocitos , Penaeidae , Filogenia , Vibrio parahaemolyticus , Animales , Penaeidae/genética , Penaeidae/inmunología , Hemocitos/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/química , Proteínas de Artrópodos/inmunología , Vibrio parahaemolyticus/fisiología , Inmunidad Innata/genética , Alineación de Secuencia/veterinaria , Proteína C-Reactiva/genética , Proteína C-Reactiva/química , Proteína C-Reactiva/inmunología , Regulación de la Expresión Génica/inmunología , Roniviridae/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases
7.
Fish Shellfish Immunol ; 149: 109532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579977

RESUMEN

C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.


Asunto(s)
Aeromonas hydrophila , Secuencia de Aminoácidos , Proteínas de Artrópodos , Regulación de la Expresión Génica , Hemocitos , Inmunidad Innata , Lectinas Tipo C , Palaemonidae , Fagocitosis , Filogenia , Alineación de Secuencia , Animales , Palaemonidae/inmunología , Palaemonidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Hemocitos/inmunología , Inmunidad Innata/genética , Aeromonas hydrophila/fisiología , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases , Exoesqueleto/inmunología , Exoesqueleto/química
8.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644510

RESUMEN

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Asunto(s)
Hemocitos , Interacciones Huésped-Parásitos , Inmunidad Innata , Avispas , Animales , Avispas/fisiología , Interacciones Huésped-Parásitos/inmunología , Hemocitos/inmunología , Drosophila melanogaster/parasitología , Drosophila melanogaster/inmunología , Drosophila melanogaster/fisiología , Larva/inmunología , Larva/parasitología , Drosophila/parasitología , Drosophila/inmunología
9.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685211

RESUMEN

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Proteínas de Insectos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animales , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/inmunología , Tribolium/inmunología , Tribolium/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Hemocitos/inmunología , Hemocitos/metabolismo , Escherichia coli , Fagocitosis , Larva/inmunología , Larva/microbiología
10.
Dev Comp Immunol ; 156: 105171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537729

RESUMEN

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.


Asunto(s)
Crassostrea , Defensinas , Hemocitos , Lipopolisacáridos , Receptores Acoplados a Proteínas G , Vibrio , Animales , Crassostrea/inmunología , Hemocitos/inmunología , Hemocitos/metabolismo , Vibrio/inmunología , Vibrio/fisiología , Lipopolisacáridos/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Defensinas/genética , Defensinas/metabolismo , Inmunidad Innata , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Poli I-C/inmunología , ARN Interferente Pequeño/genética , Vibriosis/inmunología , Receptores Asociados a Trazas de Aminas
11.
Dev Comp Immunol ; 156: 105168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522715

RESUMEN

Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.


Asunto(s)
Crassostrea , Hemocitos , Mitofagia , Prohibitinas , Proteínas Represoras , Vibrio , Animales , Vibrio/inmunología , Vibrio/fisiología , Hemocitos/inmunología , Hemocitos/metabolismo , Crassostrea/inmunología , Crassostrea/microbiología , Mitofagia/inmunología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Vibriosis/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología , Simulación del Acoplamiento Molecular , Inmunidad Innata
12.
Dev Comp Immunol ; 156: 105172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537730

RESUMEN

Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.


Asunto(s)
Proliferación Celular , Crassostrea , Hemocitos , Factores Reguladores del Interferón , Lipopolisacáridos , Animales , Hemocitos/metabolismo , Hemocitos/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Crassostrea/inmunología , Lipopolisacáridos/inmunología , Inmunidad Innata , Humanos , Granulocitos/inmunología , Granulocitos/metabolismo , Células HEK293
13.
J Innate Immun ; 16(1): 173-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38387449

RESUMEN

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Asunto(s)
Bombyx , Encéfalo , Hemocitos , Inmunidad Innata , Larva , Muramidasa , Animales , Bombyx/inmunología , Bombyx/virología , Encéfalo/inmunología , Encéfalo/virología , Larva/inmunología , Larva/virología , Hemocitos/inmunología , Muramidasa/metabolismo , Muramidasa/genética , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/inmunología , Análisis de la Célula Individual , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
14.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323810

RESUMEN

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Asunto(s)
Proteínas de Artrópodos , Hemocitos , Interacciones Microbiota-Huesped , Penaeidae , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos/genética , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Regulación de la Expresión Génica , Hemocitos/citología , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Penaeidae/citología , Penaeidae/genética , Penaeidae/inmunología , Penaeidae/virología , Virus del Síndrome de la Mancha Blanca 1/genética , Virus del Síndrome de la Mancha Blanca 1/inmunología
15.
PeerJ ; 11: e15337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483985

RESUMEN

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Asunto(s)
Bacillus subtilis , Cuerpos Extraños , Arañas , Animales , Femenino , Bacillus subtilis/inmunología , Cuerpos Extraños/inmunología , Arañas/genética , Arañas/inmunología , Arañas/microbiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Factores de Edad , Regulación de la Expresión Génica/inmunología , Apoptosis/inmunología , Hemocitos/inmunología
16.
Fish Shellfish Immunol ; 127: 659-665, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779813

RESUMEN

The infection of the kinetoplastid flagellate Azumiobodo hoyamushi causes soft tunic syndrome that often results in mass mortality in the aquaculture of the edible ascidian Halocynthia roretzi. In the diseased ascidian individuals, the flagellates are exclusively found in the tunic matrix that entirely cover the epidermis, and never invade into internal tissues, such as a mantle. The present study for the first time demonstrated that the ascidian blood plasma and hemolymph have an activity to agglutinate and disintegrate the flagellates, suggesting the innate immunity protects the internal tissue from the invasion of A. hoyamushi. This activity is indifferent between the healthy and the diseased individuals. Allo-specific recognition and cytotoxic reaction among ascidian hemocytes, so-called contact reaction, occur among the individuals of healthy-healthy, healthy-diseased, and diseased-diseased combination, and therefore, the hemocytes from diseased individuals still retain the allo-reactivity. Moreover, the allo-reactive combinations are not changed under the presence of the flagellates, indicating the flagellates neither suppress nor induce the effector system of the contact reaction. These results suggest that the infection of A. hoyamushi does not impair the innate immunity in the ascidian hemolymph.


Asunto(s)
Hemocitos , Hemolinfa , Inmunidad Innata , Urocordados , Animales , Hemocitos/inmunología , Hemolinfa/inmunología , Urocordados/inmunología
17.
Dev Comp Immunol ; 129: 104349, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35007655

RESUMEN

The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.


Asunto(s)
Braquiuros/inmunología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Artrópodos/genética , Perfilación de la Expresión Génica , Hemocitos/inmunología , Inmunidad Innata/genética , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Filogenia , Virus del Síndrome de la Mancha Blanca 1/fisiología
18.
Fish Shellfish Immunol ; 121: 116-123, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34995768

RESUMEN

Molluscan bivalves secrete shell matrices into the extrapallial space (EPS) to guide the precipitation of rigid shells. Meanwhile, immune components are present in the EPS and shell matrices, which are pivotal in resistant to invaded pathogens, thus ensuring the shell formation process. However, the origin of these components remains unclear. In this study, we revealed numerous vesicles were secreted from the outer mantle epithelial cells by using light and electron microscopes. The secreted vesicles were isolated by gradient centrifugation and confirmed by transmission electron microscopy. Proteomics analysis showed that the secreted vesicles were composed of cytoplasmic and immune components, most of which do not have signal peptides, indicating that they were secreted by a non-classical pathway. Moreover, real-time PCR revealed that some immune components were highly expressed in the mantle tissue, compared to the hemocytes. FTIR analysis verified the presence of lipids in the shell matrices, indicating that the vesicles have integrated into the shell layers. Taken together, our results suggested that mantle epithelial cells secreted some important immune components into the EPS via secreted vesicle transportation, thus cooperating with the hemocytes to play a vital role in immunity during shell formation.


Asunto(s)
Exoesqueleto , Vesículas Extracelulares , Pinctada , Exoesqueleto/inmunología , Animales , Vesículas Extracelulares/inmunología , Hemocitos/inmunología , Microscopía Electrónica de Transmisión , Pinctada/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
J Neuroimmunol ; 363: 577801, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973473

RESUMEN

Huntington's disease (HD) is a late-onset; progressive, dominantly inherited neurological disorder marked by an abnormal expansion of polyglutamine (poly Q) repeats in Huntingtin (HTT) protein. The pathological effects of mutant Huntingtin (mHTT) are not restricted to the nervous system but systemic abnormalities including immune dysregulation have been evidenced in clinical and experimental settings of HD. Indeed, mHTT is ubiquitously expressed and could induce cellular toxicity by directly acting on immune cells. However, it is still unclear if selective expression of mHTT exon1 in neurons could induce immune responses and hemocytes' function. In the present study, we intended to monitor perturbations in the hemocytes' population and their physiological functions in Drosophila, caused by pan-neuronal expression of mHTT protein. A measure of hemocyte count and their physiological activities caused by pan-neuronal expression of mHTT protein highlighted the extent of immune dysregulation occurring with disease progression. We found that pan-neuronal expression of mHTT significantly alters crystal cells and plasmatocyte count in larvae and adults with disease progression. Interestingly, plasmatocytes isolated from diseased conditions exhibit a gradual decline in phagocytic activity ex vivo at progressive stages of the disease as compared to age-matched control groups. In addition, diseased flies displayed elevated reactive oxygen species (ROS) in circulating plasmatocytes at the larval stage and in sessile plasmatocytes of hematopoietic pockets at terminal stages of disease. These findings strongly implicate that neuronal expression of mHTT alone is sufficient to induce non-cell-autonomous immune dysregulation in vivo.


Asunto(s)
Hemocitos/inmunología , Proteína Huntingtina/genética , Enfermedad de Huntington/inmunología , Fagocitosis/inmunología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Mutación , Neuronas/metabolismo
20.
Emerg Microbes Infect ; 11(1): 136-146, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34890523

RESUMEN

Candida auris has globally emerged as a multidrug-resistant fungus linked to healthcare-associated outbreaks. There is still limited evidence on its virulence, pathogenicity determinants, and complex host-pathogen interactions. This study analyzes the in vivo fungal behaviour, immune response, and host-pathogen interactions upon C. auris infection compared to C. albicans and C. parapsilosis in G. mellonella. This was performed by immunolabelling fungal structures and larval plasmatocytes and using a quantitative approach incorporating bioinformatic morphometric techniques into the study of microbial pathogenesis. C. auris presents a remarkably higher immunogenic activity than expected at its moderate degree of tissue invasion. It induces a greater inflammatory response than C. albicans and C. parapsilosis at the expense of plasmatocyte nodule formation, especially in non-aggregative strains. It specifically invades the larval respiratory system, in a pattern not previously observed in other Candida species, and presents inter-phenotypic tissue tropism differences. C. auris filaments in vivo less frequently than C. albicans or C. parapsilosis mostly through pseudohyphal growth. Filamentation might not be a major pathogenic determinant in C. auris, as less virulent aggregative phenotypes form pseudohyphae to a greater extent. C. auris has important both interspecific and intraspecific virulence and phenotype heterogeneity, with aggregative phenotypes of C. auris sharing characteristics with low pathogenic species such as C. parapsilosis. Our work suggests that C. auris owns an important morphogenetic plasticity that distinguishes it from other yeasts of the genus. Routine phenotypic identification of aggregative or non-aggregative phenotypes should be performed in the clinical setting as it may impact patient management.


Asunto(s)
Candida auris/fisiología , Interacciones Huésped-Patógeno , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/microbiología , Animales , Candida albicans/inmunología , Candida albicans/patogenicidad , Candida albicans/fisiología , Candida auris/citología , Candida auris/inmunología , Candida auris/patogenicidad , Candida parapsilosis/inmunología , Candida parapsilosis/patogenicidad , Candida parapsilosis/fisiología , Hemocitos/inmunología , Hemocitos/fisiología , Hemolinfa/microbiología , Inmunidad , Larva/microbiología , Mariposas Nocturnas/fisiología , Sistema Respiratorio/inmunología , Sistema Respiratorio/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA