Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Biol Chem ; 297(3): 101006, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34310946

RESUMEN

Heparan sulfate (HS), a highly sulfated linear polysaccharide, is involved in diverse biological functions in various tissues. Although previous studies have suggested a possible contribution of HS to the differentiation of white adipocytes, there has been no direct evidence supporting this. Here, we inhibited the synthesis of HS chains in 3T3-L1 cells using CRISPR-Cas9 technology, resulting in impaired differentiation of adipocytes with attenuated bone morphogenetic protein 4 (BMP4)-fibroblast growth factor 1 (FGF1) signaling pathways. HS reduction resulted in reduced glucose uptake and decreased insulin-dependent intracellular signaling. We then made heterozygous mutant mice for the Ext1 gene, which encodes an enzyme essential for the HS biosynthesis, specifically in the visceral white adipose tissue (Fabp4-Cre+::Ext1flox/WT mice, hereafter called Ext1Δ/WT) to confirm the importance of HS in vivo. The expression levels of transcription factors that control adipocyte differentiation, such as peroxisome proliferator-activated receptor gamma, were reduced in Ext1Δ/WT adipocytes, which contained smaller, unilocular lipid droplets, reduced levels of enzymes involved in lipid synthesis, and altered expression of BMP4-FGF1 signaling molecules. Furthermore, we examined the impact of HS reduction in visceral white adipose tissue on systemic glucose homeostasis. We observed that Ext1Δ/WT mice showed glucose intolerance because of insulin resistance. Our results demonstrate that HS plays a crucial role in the differentiation of white adipocytes through BMP4-FGF1 signaling pathways, thereby contributing to insulin sensitivity and glucose homeostasis.


Asunto(s)
Adipocitos Blancos/citología , Diferenciación Celular/fisiología , Glucosa/metabolismo , Heparitina Sulfato/fisiología , Homeostasis , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos Blancos/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Sistemas CRISPR-Cas , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Ratones , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33859044

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.


Asunto(s)
Factor H de Complemento/metabolismo , Heparitina Sulfato/metabolismo , Retina/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Factor H de Complemento/fisiología , Heparitina Sulfato/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/fisiopatología , Neuronas/metabolismo , Factores de Transcripción/metabolismo
3.
BMC Anesthesiol ; 21(1): 83, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740916

RESUMEN

BACKGROUND: The mechanisms of trauma induced coagulopathy (TIC) are considered multifactorial. Amongst others, however, shedding of the endothelial glycocalyx resulting in increased concentrations of glycocalyx fragments in plasma might also play a role. Thus, we hypothesized that shedded glycocalyx components affect coagulation and may act as humoral mediators of TIC. METHODS: To investigate effects of heparan sulfate, chondroitin sulfate, syndecan-1, versican, and thrombomodulin we added these fragments to in vitro assays of whole blood from healthy volunteers to yield concentrations observed in trauma patients. Platelet function, whole blood coagulation, and fibrinolysis were measured by standard coagulation tests, impedance aggregometry (IA), and viscoelastic tests (VET). To assess dose-response relationships, we performed IA with increasing concentrations of versican and VET with increasing concentrations of thrombomodulin. RESULTS: Intrinsically activated clotting times (i.e., activated partial thromboplastin time and intrinsically activated VET with and without heparinase) were unaffected by any glycocalyx fragment. Thrombomodulin, however, significantly and dose-dependently diminished fibrinolysis as assessed by VET with exogenously added rt-PA, and increased rt-PA-induced lysis Indices after 30 (up to 108% of control, p <  0,0001), 45 (up to 368% of control, p <  0,0001), and 60 min (up to 950% of control, p <  0,0001) in VET. Versican impaired platelet aggregation in response to arachidonic acid (up to - 37,6%, p <  0,0001), ADP (up to - 14,5%, p <  0,0001), and collagen (up to - 31,8%, p <  0,0001) in a dose-dependent manner, but did not affect TRAP-6 induced platelet aggregation. Clotting time in extrinsically activated VET was shortened by heparan sulfate (- 7,2%, p = 0,024), chondroitin sulfate (- 11,6%, p = 0,016), versican (- 13%, p = 0,012%), and when combined (- 7,2%, p = 0,007). CONCLUSIONS: Glycocalyx components exert distinct inhibitory effects on platelet function, coagulation, and fibrinolysis. These data do not support a 'heparin-like auto-anticoagulation' by shed glycosaminoglycans but suggest a possible role of versican in trauma-induced thrombocytopathy and of thrombomodulin in trauma-associated impairment of endogenous fibrinolysis.


Asunto(s)
Fibrinólisis/fisiología , Glicocálix/fisiología , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/fisiología , Adulto , Sulfatos de Condroitina/fisiología , Femenino , Heparitina Sulfato/fisiología , Humanos , Técnicas In Vitro , Masculino , Sindecano-1/fisiología , Trombomodulina/fisiología , Versicanos/fisiología
4.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164751

RESUMEN

Pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 19 disease (COVID-19) which presents a large spectrum of manifestations with fatal outcomes in vulnerable people over 70-years-old and with hypertension, diabetes, obesity, cardiovascular disease, COPD, and smoking status. Knowledge of the entry receptor is key to understand SARS-CoV-2 tropism, transmission and pathogenesis. Early evidence pointed to angiotensin-converting enzyme 2 (ACE2) as SARS-CoV-2 entry receptor. Here, we provide a critical summary of the current knowledge highlighting the limitations and remaining gaps that need to be addressed to fully characterize ACE2 function in SARS-CoV-2 infection and associated pathogenesis. We also discuss ACE2 expression and potential role in the context of comorbidities associated with poor COVID-19 outcomes. Finally, we discuss the potential co-receptors/attachment factors such as neuropilins, heparan sulfate and sialic acids and the putative alternative receptors, such as CD147 and GRP78.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/fisiología , Neumonía Viral/virología , Acoplamiento Viral , Enzima Convertidora de Angiotensina 2 , Basigina/fisiología , COVID-19 , Comorbilidad , Infecciones por Coronavirus/epidemiología , Chaperón BiP del Retículo Endoplásmico , Regulación Enzimológica de la Expresión Génica , Heparitina Sulfato/fisiología , Humanos , Hipertensión/epidemiología , Hipertensión/fisiopatología , Neuropilina-1/fisiología , Oligopéptidos/fisiología , Especificidad de Órganos , Pandemias , Neumonía Viral/epidemiología , Unión Proteica , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores Virales , Sistema Renina-Angiotensina/fisiología , Sistema Respiratorio/enzimología , SARS-CoV-2 , Ácidos Siálicos/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/fisiología , Internalización del Virus
5.
Cell Biol Int ; 44(3): 905-917, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31868274

RESUMEN

Tissue homeostasis is controlled by the differentiated progeny of residential progenitors (stem cells). Adult stem cells constantly adjust their proliferation/differentiation rates to respond to tissue damage and stresses. However, how differentiated cells maintain tissue homeostasis remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, protects differentiated cells from loss to maintain intestinal homeostasis. HS depletion in enterocytes (ECs) leads to intestinal homeostasis disruption, with accumulation of intestinal stem cell (ISC)-like cells and mis-differentiated progeny. HS-deficient ECs are prone to cell death/stress and induced cytokine and epidermal growth factor (EGF) expression, which, in turn, promote ISC proliferation and differentiation. Interestingly, HS depletion in ECs results in the inactivation of decapentaplegic (Dpp) signaling. Moreover, ectopic Dpp signaling completely rescued the defects caused by HS depletion. Together, our data demonstrate that HS is required for Dpp signal activation in ECs, thereby protecting ECs from ablation to maintain midgut homeostasis. Our data shed light into the regulatory mechanisms of how differentiated cells contribute to tissue homeostasis maintenance.


Asunto(s)
Drosophila/metabolismo , Enterocitos/metabolismo , Heparitina Sulfato/fisiología , Homeostasis , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Muerte Celular , Diferenciación Celular , Proliferación Celular , Citocinas/metabolismo , Proteínas de Drosophila/metabolismo , Enterocitos/citología , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Intestinos/citología
6.
Adv Exp Med Biol ; 1190: 107-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31760641

RESUMEN

Enriched Na+ channel clustering allows for rapid saltatory conduction at a specialized structure in myelinated axons, the node of Ranvier, where cations are exchanged across the axon membrane. In the extracellular matrix (ECM), highly negatively charged molecules accumulate and wrap around the nodal gaps creating an ECM dome, called the perinodal ECM. The perinodal ECM has different molecular compositions in the central nervous system (CNS) and peripheral nervous system (PNS). Chondroitin sulfate proteoglycans are abundant in the ECM at the CNS nodes, whereas heparan sulfate proteoglycans are abundant at the PNS nodes. The proteoglycans have glycosaminoglycan chains on their core proteins, which makes them electrostatically negative. They associate with other ECM molecules and form a huge stable ECM complex at the nodal gaps. The polyanionic molecular complexes have high affinity to cations and potentially contribute to preventing cation diffusion at the nodes.In this chapter, we describe the molecular composition of the perinodal ECM in the CNS and PNS, and discuss their physiological role at the node of Ranvier.


Asunto(s)
Sistema Nervioso Central/fisiología , Matriz Extracelular/fisiología , Sistema Nervioso Periférico/fisiología , Nódulos de Ranvier/fisiología , Axones/fisiología , Sulfatos de Condroitina/fisiología , Glicosaminoglicanos/fisiología , Heparitina Sulfato/fisiología , Humanos , Proteoglicanos/fisiología
7.
J Transl Med ; 17(1): 103, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30922347

RESUMEN

BACKGROUND: Heparanase (HPSE) is an endo-beta-glucuronidase that degrades heparan sulfate (HS) chains on proteoglycans. The oligosaccharides generated by HPSE promote angiogenesis, tumor growth and metastasis. Heparanase-2 (HPSE2), a close homolog of HPSE, does not exhibit catalytic activity. Previous studies have demonstrated that serum or plasma from breast cancer patients showed increased expression of both heparanases in circulating lymphocytes. The aim of this study was to better understand the mechanisms involved in the upregulation of heparanases in circulating lymphocytes. METHODS: Lymphocytes collected from healthy women were incubated in the presence of MCF-7 breast cancer cells (co-culture) to stimulate HPSE and HPSE2 overexpression. The protein level of heparanases was evaluated by immunocytochemistry, while mRNA expression was determined by quantitative RT-PCR. RESULTS: The medium obtained from co-culture of MCF-7 cells and circulating lymphocytes stimulated the expression of HPSE and HPSE2. Previous treatment of the co-culture medium with an anti-heparan sulfate proteoglycan antibody or heparitinase II inhibited the upregulation of heparanases in circulating lymphocytes. The addition of exogenous heparan sulfate (HS) enhanced the expression of both heparanases. Moreover, the co-cultured cells, as well as MCF-7 cells, secreted a higher number of exosomes expressing an increased level of HS compared to that of the exosomes secreted by circulating lymphocytes from women who were not affected by cancer. CONCLUSIONS: The results revealed that HS is likely responsible for mediating the expression of heparanases in circulating lymphocytes. HS secreted by tumor cells might be carried by exosome particles, confirming the key role of tumor cells, as well as secreted HS, in upregulating the expression of heparanases, suggesting a possible mechanism of crosstalk between tumor cells and circulating lymphocytes.


Asunto(s)
Neoplasias de la Mama/genética , Comunicación Celular/fisiología , Glucuronidasa/genética , Linfocitos/fisiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucuronidasa/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/fisiología , Humanos , Activación de Linfocitos/genética , Linfocitos/metabolismo , Células MCF-7 , Receptor Cross-Talk/efectos de los fármacos , Receptor Cross-Talk/inmunología
8.
Virology ; 529: 177-185, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30716579

RESUMEN

Variants of Ross River virus (RRV) that bind to heparan sulfate (HS) were previously selected by serial passaging in cell culture. To explore the effects of mutations that convey HS utilization, we pseudotyped Moloney murine leukemia virus (MoMLV), with the RRV envelope. We substituted amino-acid residues 216 and 218 on RRV-E2-envelope glycoprotein with basic amino-acid residues, because these mutations confer affinity for HS upon RRV. However, T216R-RRV- and N218R-RRV-pseudotyped viruses possessed lower transduction titers, and we demonstrated that HS-affinity impeded release of pseudotyped virus from producer cells. Addition of heparinase to HS-expressing target cells reduces the transduction efficiency of the T216R-RRV- and N218R-RRV-pseudotyped viruses, whereas no such effect is seen in cells lacking HS. Under appropriate conditions, these T216R-RRV- and N218R-RRV-pseudotyped viruses have enhanced capacities for transducing HS-expressing cells. General principles concerning viral adaptation to the use of attachment factors and design of pseudotyped viral vectors are discussed.


Asunto(s)
Heparitina Sulfato/fisiología , Virus de la Leucemia Murina de Moloney/fisiología , Virus del Río Ross/fisiología , Proteínas del Envoltorio Viral/fisiología , Liberación del Virus/fisiología , Animales , Línea Celular , Cricetinae , Ratones , Mutación , Unión Proteica , Internalización del Virus
9.
Biochem Soc Trans ; 46(4): 789-796, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29934302

RESUMEN

The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host-parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.


Asunto(s)
Heparitina Sulfato/fisiología , Leishmania/metabolismo , Leishmania/patogenicidad , Macrófagos/parasitología , Animales , Antiprotozoarios/uso terapéutico , Moléculas de Adhesión Celular/metabolismo , Proteoglicanos de Heparán Sulfato/biosíntesis , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/metabolismo , Interacciones Huésped-Parásitos , Humanos , Leishmaniasis/tratamiento farmacológico , Unión Proteica , Proteínas Protozoarias/metabolismo
10.
Nat Commun ; 8(1): 1973, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215008

RESUMEN

Wnt proteins direct embryonic patterning, but the regulatory basis of their distribution and signal reception remain unclear. Here, we show that endogenous Wnt8 protein is distributed in a graded manner in Xenopus embryo and accumulated on the cell surface in a punctate manner in association with "N-sulfo-rich heparan sulfate (HS)," not with "N-acetyl-rich HS". These two types of HS are differentially clustered by attaching to different glypicans as core proteins. N-sulfo-rich HS is frequently internalized and associated with the signaling vesicle, known as the Frizzled/Wnt/LRP6 signalosome, in the presence of Wnt8. Conversely, N-acetyl-rich HS is rarely internalized and accumulates Frzb, a secreted Wnt antagonist. Upon interaction with Frzb, Wnt8 associates with N-acetyl-rich HS, suggesting that N-acetyl-rich HS supports Frzb-mediated antagonism by sequestering Wnt8 from N-sulfo-rich HS. Thus, these two types of HS clusters may constitute a cellular platform for the distribution and signaling of Wnt8.


Asunto(s)
Heparitina Sulfato/fisiología , Transducción de Señal , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo , Animales , Embrión no Mamífero/metabolismo , Glicosaminoglicanos , Glipicanos/genética , Glipicanos/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
11.
Rev Neurol ; 65(10): 457-468, 2017 Nov 16.
Artículo en Español | MEDLINE | ID: mdl-29130469

RESUMEN

INTRODUCTION: A number of neurodegenerative disorders have been linked directly to the accumulation of amyloid fibres. These fibres are made up of proteins or peptides with altered structures and which join together in vivo in association with heparan sulphate-type polysaccharides. AIMS: To examine the most recent concepts in the biology of heparan sulphates and their role in the aggregation of the peptide Abeta, of tau protein, of alpha-synuclein and of prions. The study also seeks to analyse their implications in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and prion diseases. DEVELOPMENT: In vitro, heparan sulphates have played an important role in the process of oligomerisation and fibrillation of amyloidogenic proteins or peptides, in the stabilisation of these bodies and their resistance to proteolysis, thereby participating in the formation of a wide range of amyloid fibres. Heparan sulphates have also been related to the internalisation of pro-amyloid fibres during the process of intercellular propagation (spreading), which is considered to be crucial in the development of proteinopathies, the best example of which is Alzheimer's disease. CONCLUSION: This study suggests that the fine structures of heparan sulphates, their localisation in cells and tissues, together with their local concentration, may regulate the amyloidosis processes. The advances made in the understanding of this area of glyconeurobiology will make it possible to improve the understanding of the cell and molecular mechanisms underlying the neurodegenerative process.


TITLE: Heparan sulfatos, amiloidosis y neurodegeneracion.Introduccion. Numerosos trastornos neurodegenerativos se han asociado directamente a la acumulacion de fibras amiloides. Estas fibras estan formadas por proteinas o peptidos con conformaciones alteradas y que se agregan in vivo en asociacion con polisacaridos de tipo heparan sulfatos. Objetivos. Examinar los conceptos mas recientes sobre la biologia de los heparan sulfatos y su papel en la agregacion del peptido Abeta, de la proteina tau, de la alfa-sinucleina y de los priones, y analizar sus implicaciones en trastornos neurodegenerativos como las enfermedades de Alzheimer y de Parkinson y las enfermedades prionicas. Desarrollo. In vitro, los heparan sulfatos han desempeñado un papel importante en el proceso de oligomerizacion y fibrilacion de proteinas o peptidos amiloidogenos, en la estabilizacion de estos cuerpos y su resistencia a la proteolisis, participando asi en la formacion de una gran variedad de fibras amiloides. Los heparan sulfatos se han relacionado tambien con el proceso de internalizacion de fibras proamiloides durante el proceso de propagacion intercelular (spreading) considerado como central en la evolucion de las proteinopatias, cuyo mejor ejemplo es la enfermedad de Alzheimer. Conclusion. Este trabajo sugiere que las estructuras finas de los heparan sulfatos, sus localizaciones celulares y tisulares, asi como sus concentraciones locales, pueden regular los procesos de amiloidosis. Avances en la comprension de esta area de la gliconeurobiologia permitiran mejorar la comprension de los mecanismos celulares y moleculares del proceso neurodegenerativo.


Asunto(s)
Amiloidosis/etiología , Heparitina Sulfato/fisiología , Enfermedades Neurodegenerativas/etiología , Enfermedad de Alzheimer/etiología , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedad de Parkinson/etiología , Enfermedades por Prión/etiología
12.
Molecules ; 22(5)2017 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-28468283

RESUMEN

Of the circa 40 cytokines of the TGF-ß superfamily, around a third are currently known to bind to heparin and heparan sulphate. This includes TGF-ß1, TGF-ß2, certain bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), as well as GDNF and two of its close homologues. Experimental studies of their heparin/HS binding sites reveal a diversity of locations around the shared cystine-knot protein fold. The activities of the TGF-ß cytokines in controlling proliferation, differentiation and survival in a range of cell types are in part regulated by a number of specific, secreted BMP antagonist proteins. These vary in structure but seven belong to the CAN or DAN family, which shares the TGF-ß type cystine-knot domain. Other antagonists are more distant members of the TGF-ß superfamily. It is emerging that the majority, but not all, of the antagonists are also heparin binding proteins. Any future exploitation of the TGF-ß cytokines in the therapy of chronic diseases will need to fully consider their interactions with glycosaminoglycans and the implications of this in terms of their bioavailability and biological activity.


Asunto(s)
Heparina/fisiología , Heparitina Sulfato/fisiología , Proteínas de la Superfamilia TGF-beta/fisiología , Animales , Sitios de Unión , Heparina/química , Heparina/farmacología , Heparitina Sulfato/química , Heparitina Sulfato/farmacología , Humanos , Modelos Moleculares , Unión Proteica , Proteínas de la Superfamilia TGF-beta/química
13.
J Exp Med ; 214(3): 623-637, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28148688

RESUMEN

We studied three patients with severe skeletal dysplasia, T cell immunodeficiency, and developmental delay. Whole-exome sequencing revealed homozygous missense mutations affecting exostosin-like 3 (EXTL3), a glycosyltransferase involved in heparan sulfate (HS) biosynthesis. Patient-derived fibroblasts showed abnormal HS composition and altered fibroblast growth factor 2 signaling, which was rescued by overexpression of wild-type EXTL3 cDNA. Interleukin-2-mediated STAT5 phosphorylation in patients' lymphocytes was markedly reduced. Interbreeding of the extl3-mutant zebrafish (box) with Tg(rag2:green fluorescent protein) transgenic zebrafish revealed defective thymopoiesis, which was rescued by injection of wild-type human EXTL3 RNA. Targeted differentiation of patient-derived induced pluripotent stem cells showed a reduced expansion of lymphohematopoietic progenitor cells and defects of thymic epithelial progenitor cell differentiation. These data identify EXTL3 mutations as a novel cause of severe immune deficiency with skeletal dysplasia and developmental delay and underline a crucial role of HS in thymopoiesis and skeletal and brain development.


Asunto(s)
Enfermedades del Desarrollo Óseo/etiología , Discapacidades del Desarrollo/etiología , Síndromes de Inmunodeficiencia/etiología , Mutación , N-Acetilglucosaminiltransferasas/genética , Animales , Preescolar , Femenino , Heparitina Sulfato/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Lactante , Linfocitos/fisiología , Pez Cebra
14.
Cereb Cortex ; 27(2): 903-918, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119345

RESUMEN

Heparan sulfate (HS) proteoglycans represent a major component of the extracellular matrix and are critical for brain development. However, their function in the mature brain remains to be characterized. Here, acute enzymatic digestion of HS side chains was used to uncover how HSs support hippocampal function in vitro and in vivo. We found that long-term potentiation (LTP) of synaptic transmission at CA3-CA1 Schaffer collateral synapses was impaired after removal of highly sulfated HSs with heparinase 1. This reduction was associated with decreased Ca2+ influx during LTP induction, which was the consequence of a reduced excitability of CA1 pyramidal neurons. At the subcellular level, heparinase treatment resulted in reorganization of the distal axon initial segment, as detected by a reduction in ankyrin G expression. In vivo, digestion of HSs impaired context discrimination in a fear conditioning paradigm and oscillatory network activity in the low theta band after fear conditioning. Thus, HSs maintain neuronal excitability and, as a consequence, support synaptic plasticity and learning.


Asunto(s)
Discriminación en Psicología/fisiología , Heparitina Sulfato/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Animales , Ancirinas/biosíntesis , Ancirinas/genética , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Señalización del Calcio/fisiología , Condicionamiento Psicológico , Miedo/fisiología , Liasa de Heparina/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Ritmo Teta
15.
Matrix Biol ; 57-58: 311-323, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27609403

RESUMEN

Branching morphogenesis is a fundamental process in the development of diverse epithelial organs such as the lung, kidney, liver, pancreas, prostate, salivary, lacrimal and mammary glands. A unifying theme during organogenesis is the importance of epithelial cell interactions with the extracellular matrix (ECM) and growth factors (GFs). The diverse developmental mechanisms giving rise to these epithelial organs involve many organ-specific GFs, but a unifying paradigm during organogenesis is the regulation of GF activity by heparan sulfates (HS) on the cell surface and in the ECM. This primarily involves the interactions of GFs with the sulfated side-chains of HS proteoglycans. HS is one of the most diverse biopolymers and modulates GF binding and signaling at the cell surface and in the ECM of all tissues. Here, we review what is known about how HS regulates branching morphogenesis of epithelial organs with emphasis on the developing salivary gland, which is a classic model to investigate epithelial-ECM interactions. We also address the structure, biosynthesis, turnover and function of HS during organogenesis. Understanding the regulatory mechanisms that control HS dynamics may aid in the development of therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine.


Asunto(s)
Matriz Extracelular/fisiología , Heparitina Sulfato/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Organogénesis/fisiología , Proteoglicanos/fisiología , Animales , Células Epiteliales/química , Células Epiteliales/citología , Células Epiteliales/fisiología , Glándulas Exocrinas/crecimiento & desarrollo , Glándulas Exocrinas/metabolismo , Glándulas Exocrinas/ultraestructura , Matriz Extracelular/química , Femenino , Heparitina Sulfato/química , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Riñón/ultraestructura , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Hígado/ultraestructura , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/ultraestructura , Masculino , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Páncreas/ultraestructura , Próstata/crecimiento & desarrollo , Próstata/metabolismo , Próstata/ultraestructura , Proteoglicanos/química , Transducción de Señal
16.
Cell Death Differ ; 23(3): 417-29, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26250908

RESUMEN

Cellular senescence is considered as an important tumor-suppressive mechanism. Here, we demonstrated that heparan sulfate (HS) prevents cellular senescence by fine-tuning of the fibroblast growth factor receptor (FGFR) signaling pathway. We found that depletion of 3'-phosphoadenosine 5'-phosphosulfate synthetase 2 (PAPSS2), a synthetic enzyme of the sulfur donor PAPS, led to premature cell senescence in various cancer cells and in a xenograft tumor mouse model. Sodium chlorate, a metabolic inhibitor of HS sulfation also induced a cellular senescence phenotype. p53 and p21 accumulation was essential for PAPSS2-mediated cellular senescence. Such senescence phenotypes were closely correlated with cell surface HS levels in both cancer cells and human diploid fibroblasts. The determination of the activation of receptors such as FGFR1, Met, and insulin growth factor 1 receptor ß indicated that the augmented FGFR1/AKT signaling was specifically involved in premature senescence in a HS-dependent manner. Thus, blockade of either FGFR1 or AKT prohibited p53 and p21 accumulation and cell fate switched from cellular senescence to apoptosis. In particular, desulfation at the 2-O position in the HS chain contributed to the premature senescence via the augmented FGFR1 signaling. Taken together, we reveal, for the first time, that the proper status of HS is essential for the prevention of cellular senescence. These observations allowed us to hypothesize that the FGF/FGFR signaling system could initiate novel tumor defenses through regulating premature senescence.


Asunto(s)
Senescencia Celular , Heparitina Sulfato/fisiología , Animales , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Complejos Multienzimáticos/metabolismo , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Sulfato Adenililtransferasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
PLoS One ; 10(8): e0136518, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26295701

RESUMEN

Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Corazón/embriología , N-Acetilglucosaminiltransferasas/fisiología , Animales , Corazón/crecimiento & desarrollo , Heparitina Sulfato/biosíntesis , Heparitina Sulfato/fisiología , Hibridación in Situ , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Morfogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
18.
Int J Exp Pathol ; 96(4): 203-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26173450

RESUMEN

Heparan sulphate (HS) sits at the interface of the cell and the extracellular matrix. It is a member of the glycosaminoglycan family of anionic polysaccharides with unique structural features designed for protein interaction and regulation. Its client proteins include soluble effectors (e.g. growth factors, morphogens, chemokines), membrane receptors and cell adhesion proteins such as fibronectin, fibrillin and various types of collagen. The protein-binding properties of HS, together with its strategic positioning in the pericellular domain, are indicative of key roles in mediating the flow of regulatory signals between cells and their microenvironment. The control of transmembrane signalling is a fundamental element in the complex biology of HS. It seems likely that, in some way, HS orchestrates diverse signalling pathways to facilitate information processing inside the cell. A dictionary definition of an orchestra is 'a large group of musicians who play together on various instruments …' to paraphrase, the HS orchestra is 'a large group of proteins that play together on various receptors'. HS conducts this orchestra to ensure that proteins hit the right notes on their receptors but, in the manner of a true conductor, does it also set 'the musical pulse' and create rhythm and harmony attractive to the cell? This is too big a question to answer but fun to think about as you read this review.


Asunto(s)
Heparitina Sulfato/fisiología , Animales , Matriz Extracelular/metabolismo , Humanos , Transducción de Señal/fisiología
19.
FEBS J ; 281(22): 4993-5008, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25284049

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are the main components of the extracellular matrix, where they interact with a large number of physiologically important macromolecules. The sulfation pattern of heparan sulfate (HS) chains determines the interaction potential of the proteoglycans. Enzymes of the biosynthetic and degradation pathways for HS chains are thus important regulators in processes ranging from embryonic development to tissue homeostasis, but also for tumor development. Formation of the nervous system is also critically dependent on intact HSPGs, and several studies have outlined the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common malignant primary brain tumor among adults, and the outcome is poor. Neural stem cells and glioma stem cells have several common traits, such as sustained proliferation and a highly efficient migratory capacity in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside, and the tumorigenic niche. These include interactions with the extracellular matrix, and many of the matrix components are deregulated in glioma, e.g. HSPGs and enzymes implementing the biosynthesis and modification of HS. In this article, we will present how HS-regulated pathways are involved in neural differentiation, and discuss their impact on brain development. We will also review and critically discuss the important role of structural modifications of HS in glioma growth and invasion. We propose that targeting invasive mechanisms of glioma cells through modulation of HS structure and HS-mediated pathways may be an attractive alternative to other therapeutic attempts, which so far have only marginally increased survival for glioma patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Heparitina Sulfato/fisiología , Animales , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Carcinogénesis/metabolismo , Glioma/irrigación sanguínea , Glioma/patología , Humanos , Neovascularización Patológica/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Pronóstico , Transducción de Señal
20.
Int J Hematol ; 98(3): 293-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23982970

RESUMEN

In addition to reduced-intensity conditioning, which has expanded the eligibility for hematopoietic cell transplantation (HCT) to older patients, increased availability of alternative donors, including HLA-mismatched unrelated donors, has increased access to allogeneic HCT for more patients. However, acute graft-versus-host disease (GVHD) remains a lethal complication, even in HLA-matched donor-recipient pairs. The pathophysiology of GVHD depends on aspects of adaptive immunity and interactions between donor T-cells and host dendritic cells (DCs). Recent work has revealed that the role of other immune cells and endothelial cells and components of the innate immune response are also important. Tissue damage caused by the conditioning regimen leads to the release of exogenous and endogenous "danger signals". Exogenous danger signals called pathogen-associated molecular patterns and endogenous noninfectious molecules known as damage-associated molecular patterns (DAMPs) are responsible for initiating or amplifying acute GVHD by enhancing DC maturation and alloreactive T-cell responses. A significant association of innate immune receptor polymorphisms with outcomes, including GVHD severity, was observed in patients receiving allogeneic HCT. Understanding of the role of innate immunity in acute GVHD might offer new therapeutic approaches.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Isoantígenos/inmunología , Enfermedad Aguda , Adenosina Trifosfato/fisiología , Aloinjertos , Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/terapia , Proteína HMGB1/fisiología , Proteínas de Choque Térmico/fisiología , Heparitina Sulfato/fisiología , Humanos , Ácido Hialurónico/fisiología , Terapia Molecular Dirigida , Proteínas Adaptadoras de Señalización NOD/fisiología , Polimorfismo Genético , Proteínas S100/fisiología , Transducción de Señal , Linfocitos T/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Acondicionamiento Pretrasplante/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA