Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.219
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731958

RESUMEN

While organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphonylaminium salts for the synthesis of novel mixed n-alkylphosphonate diesters or amino acid-derived n-alkylphosphonamidates. We successfully applied this methodology for the synthesis of novel N-acyl homoserine lactone analogues with varying alkyl chains and ester groups in the phosphorus moiety. Finally, we developed a rapid, quantitative and high-throughput bioassay to screen a selection of these compounds for their herbicidal activity. Together, these results will aid future research in phosphorus chemistry, agrochemistry and the synthesis of bioactive targets.


Asunto(s)
Aminoácidos , Ésteres , Herbicidas , Organofosfonatos , Herbicidas/síntesis química , Herbicidas/química , Organofosfonatos/química , Organofosfonatos/síntesis química , Aminoácidos/química , Ésteres/química , Ésteres/síntesis química
2.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38714361

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Simulación del Acoplamiento Molecular , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Relación Estructura-Actividad , Estructura Molecular , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Ciclohexanonas/química , Ciclohexanonas/farmacología , Ciclohexanonas/síntesis química , Triticum/química , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
3.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752706

RESUMEN

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Asunto(s)
Acetil-CoA Carboxilasa , Inhibidores Enzimáticos , Resistencia a los Herbicidas , Herbicidas , Mutación , Oryza , Proteínas de Plantas , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/química , Oryza/genética , Oryza/enzimología , Herbicidas/farmacología , Herbicidas/química , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Malezas/efectos de los fármacos , Malezas/genética , Malezas/enzimología
4.
Anal Methods ; 16(21): 3364-3371, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38742948

RESUMEN

Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 µM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.


Asunto(s)
Cobre , Colorantes Fluorescentes , Glicina , Glifosato , Herbicidas , Glicina/análogos & derivados , Glicina/química , Colorantes Fluorescentes/química , Humanos , Cobre/química , Cobre/análisis , Herbicidas/análisis , Herbicidas/química , Límite de Detección , Espectrometría de Fluorescencia/métodos , Imagen Óptica/métodos , Contaminación de Alimentos/análisis , Teléfono Inteligente , Análisis de los Alimentos/métodos
5.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792109

RESUMEN

This review article is a comprehensive and current overview on chalcones, covering their sources, identification methods, and properties with a particular focus on their applications in the agricultural sector. The widespread use of synthetic pesticides has not only led to increased resistance among weeds and pests, resulting in economic losses, but it has also raised significant health concerns due to the overuse of these chemicals. In line with the European Green Deal 2030 and its Farm to Fork strategy, there is a targeted 50% reduction in the use of chemical pesticides by 2030, emphasizing a shift towards natural alternatives that are more environmentally sustainable and help in the restoration of natural resources. Chalcones and their derivatives, with their herbicidal, fungicidal, bactericidal, and antiviral properties, appear to be ideal candidates. These naturally occurring compounds have been recognized for their beneficial health effects for many years and have applications across multiple areas. This review not only complements the previous literature on the agricultural use of chalcones but also provides updates and introduces methods of detection such as chromatography and MALDI technique.


Asunto(s)
Agricultura , Chalconas , Chalconas/química , Chalconas/farmacología , Plaguicidas/química , Plaguicidas/análisis , Plaguicidas/farmacología , Herbicidas/química , Herbicidas/farmacología
6.
J Environ Sci (China) ; 144: 45-54, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802237

RESUMEN

Atrazine causes concern due to its resistant to biodegradation and could be accumulated in aquatic organisms, causing pollution in lakes. This study measured the concentration of atrazine in ice and the water under ice through a simulated icing experiment and calculated the distribution coefficient K to characterize its migration ability in the freezing process. Furthermore, density functional theory (DFT) calculations were employed to expatiate the migration law of atrazine during icing process. According to the results, it could release more energy into the environment when atrazine staying in water phase (-15.077 kcal/mol) than staying in ice phase (-14.388 kcal/mol), therefore it was beneficial for the migration of atrazine from ice to water. This explains that during the freezing process, the concentration of atrazine in the ice was lower than that in the water. Thermodynamic calculations indicated that when the temperature decreases from 268 to 248 K, the internal energy contribution of the compound of atrazine and ice molecule (water cluster) decreases at the same vibrational frequency, resulting in an increase in the free energy difference of the compound from -167.946 to -165.390 kcal/mol. This demonstrated the diminished migratory capacity of atrazine. This study revealed the environmental behavior of atrazine during lake freezing, which was beneficial for the management of atrazine and other pollutants during freezing and environmental protection.


Asunto(s)
Atrazina , Congelación , Lagos , Contaminantes Químicos del Agua , Atrazina/química , Lagos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Modelos Químicos , Teoría Funcional de la Densidad , Herbicidas/química
7.
J Agric Food Chem ; 72(22): 12425-12433, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781442

RESUMEN

Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 µg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.


Asunto(s)
Echinochloa , Herbicidas , Oxidorreductasas , Proteínas de Plantas , Malezas , Piridazinas , Herbicidas/farmacología , Herbicidas/química , Piridazinas/farmacología , Piridazinas/química , Echinochloa/efectos de los fármacos , Echinochloa/enzimología , Echinochloa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Malezas/efectos de los fármacos , Malezas/enzimología , Malezas/genética , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Estructura Molecular
8.
Int J Biol Macromol ; 270(Pt 2): 132471, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763235

RESUMEN

Enantioselective antibodies have emerged as great potential biomaterials in the fields of immunoassays and chiral separation. However, cross-reactivity of antibodies to the distomer may severely restrict the application. Comprehending the interaction mechanism between antibodies and enantiomers could be beneficial to produce superior enantioselective antibodies. In this study, a pair of recombinant antibodies (RAbs) against metolachlor enantiomers at chiral carbon (αSS-MET and αSR-MET) were generated and characterized. The αSS-MET-RAb and αSR-MET-RAb showed comparable sensitivity and specificity to the parental monoclonal antibodies by icELISA, with IC50 values of 3.45 and 223.77 ng/mL, respectively. Moreover, the complex structures of RAbs and corresponding eutomer were constructed and analyzed, and site-specific mutagenesis was utilized to verify the reliability of the enantioselective mechanism elucidated. It demonstrated that the strength of the interaction between the chiral center region of eutomer and the antibody was the key factor for the enantioselectivity of antibody. Increasing this interaction could limit the conformational adjustment of the distomer in a specific chiral recognition cavity, thus decreasing the affinity of the antibody to the distomer. This work provided the in-depth analysis of enantioselective mechanism for two RAbs and paved the way to regulate antibody enantioselective performance for immunoassays of chiral compounds.


Asunto(s)
Acetamidas , Herbicidas , Estereoisomerismo , Herbicidas/química , Acetamidas/química , Anticuerpos Monoclonales/química , Animales , Proteínas Recombinantes/química
9.
J Agric Food Chem ; 72(19): 10772-10780, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703122

RESUMEN

Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4) plays a pivotal role in chlorophyll biosynthesis in plants, making it a prime target for herbicide development. In this study, we conducted an investigation aimed at discovering PPO-inhibiting herbicides. Through this endeavor, we successfully identified a series of novel compounds based on the pyridazinone scaffold. Following structural optimization and biological assessment, compound 10ae, known as ethyl 3-((6-fluoro-5-(6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate, emerged as a standout performer. It exhibited robust activity against Nicotiana tabacum PPO (NtPPO) with an inhibition constant (Ki) value of 0.0338 µM. Concurrently, we employed molecular simulations to obtain further insight into the binding mechanism with NtPPO. Additionally, another compound, namely, ethyl 2-((6-fluoro-5-(5-methyl-6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate (10bh), demonstrated broad-spectrum and highly effective herbicidal properties against all six tested weeds (Leaf mustard, Chickweed, Chenopodium serotinum, Alopecurus aequalis, Poa annua, and Polypogon fugax) at the dosage of 150 g a.i./ha through postemergence application in a greenhouse. This work identified a novel lead compound (10bh) that showed good activity in vitro and excellent herbicidal activity in vivo and had promising prospects as a new PPO-inhibiting herbicide lead.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Nicotiana , Proteínas de Plantas , Protoporfirinógeno-Oxidasa , Piridazinas , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/metabolismo , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/genética , Piridazinas/química , Piridazinas/farmacología , Herbicidas/farmacología , Herbicidas/química , Herbicidas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Nicotiana/metabolismo , Nicotiana/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Simulación del Acoplamiento Molecular , Estructura Molecular , Malezas/efectos de los fármacos , Malezas/enzimología , Cinética
10.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735117

RESUMEN

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Asunto(s)
Carbono , Jugos de Frutas y Vegetales , Herbicidas , Límite de Detección , Polímeros Impresos Molecularmente , Puntos Cuánticos , Triazinas , Puntos Cuánticos/química , Triazinas/química , Triazinas/análisis , Triazinas/aislamiento & purificación , Herbicidas/análisis , Herbicidas/aislamiento & purificación , Herbicidas/química , Jugos de Frutas y Vegetales/análisis , Adsorción , Polímeros Impresos Molecularmente/química , Carbono/química , Cromatografía Líquida de Alta Presión/métodos , Nanopartículas de Magnetita/química , Microextracción en Fase Sólida/métodos , Impresión Molecular/métodos , Porosidad , Grafito/química
11.
J Environ Manage ; 357: 120767, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560953

RESUMEN

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Asunto(s)
Atrazina , Herbicidas , Contaminantes del Suelo , Sustancias Húmicas/análisis , Suelo/química , Microbiología del Suelo , Herbicidas/química , Contaminantes del Suelo/química
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 789-796, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646767

RESUMEN

We established the optimal model by using the automatic machine learning method to predict the degradation efficiency of herbicide atrazine in soil, which could be used to assess the residual risk of atrazine in soil. We collected 494 pairs of data from 49 published articles, and selected seven factors as input features, including soil pH, organic matter content, saturated hydraulic conductivity, soil moisture, initial concentration of atrazine, incubation time, and inoculation dose. Using the first-order reaction rate constant of atrazine in soil as the output feature, we established six models to predict the degradation efficiency of atrazine in soil, and conducted comprehensive analysis of model performance through linear regression and related evaluation indicators. The results showed that the XGBoost model had the best performance in predicting the first-order reaction rate constant (k). Based on the prediction model, the feature importance ranking of each factor was in an order of soil moisture > incubation time > pH > organic matter > initial concentration of atrazine > saturated hydraulic conductivity > inoculation dose. We used SHAP to explain the potential relationship between each feature and the degradation ability of atrazine in soil, as well as the relative contribution of each feature. Results of SHAP showed that time had a negative contribution and saturated hydraulic conductivity had a positive contribution. High values of soil moisture, initial concentration of atrazine, pH, inoculation dose and organic matter content were generally distributed on both sides of SHAP=0, indicating their complex contributions to the degradation of atrazine in soil. The XGBoost model method combined with the SHAP method had high accuracy in predicting the performance and interpretability of the k model. By using machine learning method to fully explore the value of historical experimental data and predict the degradation efficiency of atrazine using environmental parameters, it is of great significance to set the threshold for atrazine application, reduce the residual and diffusion risks of atrazine in soil, and ensure the safety of soil environment.


Asunto(s)
Atrazina , Herbicidas , Modelos Teóricos , Contaminantes del Suelo , Suelo , Atrazina/análisis , Atrazina/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Herbicidas/análisis , Herbicidas/química , Suelo/química , Biodegradación Ambiental , Aprendizaje Automático , Predicción
13.
PLoS One ; 19(4): e0301104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593133

RESUMEN

This study aimed to isolate actinomycetes that exhibit strong herbicidal activity, identify compounds active against weeds, and researching methods to improve the production of these compounds through culture optimization to establish a foundation for the development of environmentally friendly bioherbicides. 334-W4, one of the herbicidal active substances isolated from the culture broth of Streptomyces sp. KRA16-334, exhibited herbicidal activity against various weeds. The molecular formula of 334-W4 was determined to be C16H26N2O6, based on ESI-MS (m/z) and 1H and 13C NMR spectral data. It had molecular weight 365.1689 [M+Na] and 343.1869 [M+H], indicating the presence of the epoxy-ß-aminoketone moiety based on HMBC correlations. Additionally, selective culture was possible depending on the addition of trifluoroacetic acid (TFA) during culture with GSS medium. Experiments confirmed that exposure of the KRA16-334 strain to UV irradiation (254 nm, height 17 cm) for 45 seconds improved the yield of the active substance (334-W4) by over 200%. As a result of examining yields of active materials of four mutants selected through optimization of culture conditions such as temperature, agitation, and initial pH, the yield of one mutant 0723-8 was 264.7 ± 12.82 mg/L, which was 2.8-fold higher than that of wild-type KRA16-334 at 92.8 ± 5.48 mg/L.


Asunto(s)
Actinobacteria , Herbicidas , Streptomyces , Herbicidas/química , Malezas
14.
Carbohydr Polym ; 336: 122114, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670775

RESUMEN

5-aminolevulinic acid (5-ALA) has been fully demonstrated as a biodegradable, without resistance, and pollution-free pesticide. However, the lack of targeting and the poor adhesion result in a low utilization rate, limiting its practical application. Herein, a dew-responsive polymer pro-pesticide Pec-hyd-ALA was successfully synthesized by grafting 5-ALA onto the pectin (PEC) backbone via acid-sensitive acylhydrazone bonds. When the pro-pesticide is exposed to acid dew on plant surfaces at night, 5-ALA is released and subsequently converted to photosensitize (Protoporphyrin IX, PpIX)in plant cells, leading to its accumulation and promoting photodynamic inactivation (PDI). An inverted fluorescence microscope has verified the accumulation of tetrapyrrole in plant cells. In addition, the highly bio-adhesive PEC backbone effectively improved the wetting and retention of 5-ALA on leaves. The pot experiment also demonstrated the system's control effect on barnyard grass. This work provides a promising approach to improving the herbicidal efficacy of 5-ALA.


Asunto(s)
Ácido Aminolevulínico , Herbicidas , Pectinas , Fármacos Fotosensibilizantes , Pectinas/química , Herbicidas/química , Herbicidas/farmacología , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Protoporfirinas/química , Protoporfirinas/farmacología , Hojas de la Planta/química , Humectabilidad
15.
J Nat Prod ; 87(4): 914-923, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38587866

RESUMEN

Fungal 10-membered lactones (TMLs), such as stagonolide A, herbarumin I, pinolidoxin, and putaminoxin, are promising candidates for the development of nature-derived herbicides. The aim of this study was to analyze the structure-activity relationships (SAR) of C-9-methyl-substituted TMLs with a multitarget bioassay approach to reveal compounds with useful (phytotoxic, entomotoxic, antimicrobial) or undesirable (cytotoxic) bioactivities. A new TML, stagonolide L (1), along with five known compounds (stagonolides D (2) and E (3), curvulides A (4) and B1/B2 (5a,b), and pyrenolide C (6)), were purified from cultures of the phytopathogenic fungus Stagonospora cirsii, and five semisynthetic derivatives of 3 and 4 (7-11) were obtained. The absolute configuration of 4 was revised to 2Z, 4S, 5S, 6R, and 9R. The identity of 5a,b and stagonolide H is discussed. The phytotoxicity of compound 4, the entomotoxicity of 5a,b, and nonselective toxicity of compound 6 are demonstrated. The latter confirms the hypothesis that the α,ß-unsaturated carbonyl group is associated with the high general toxicity of TML, regardless of its position in the ring and other substituents. The epoxide in compound 4 is important for phytotoxicity. The revealed SAR patterns will be useful for further rational design of TML-based herbicides including curvulide A analogs with a 4,5-epoxy group.


Asunto(s)
Herbicidas , Lactonas , Relación Estructura-Actividad , Estructura Molecular , Lactonas/química , Lactonas/farmacología , Herbicidas/farmacología , Herbicidas/química , Animales , Ascomicetos/química
16.
J Agric Food Chem ; 72(15): 8401-8414, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587493

RESUMEN

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is a promising target for green herbicide discovery. However, the ligand configuration effects on PPO activity were still poorly understood. Herein, we designed 3-(N-phenyluracil)but-2-enoates using our previously developed active fragments exchange and link (AFEL) approach and synthesized a series of novel compounds with nanomolar ranges of Nicotiana tabacum PPO (NtPPO) inhibitory potency and promising herbicidal potency. Our systematic structure-activity relationship investigations showed that the E isomers of 3-(N-phenyluracil)but-2-enoates displayed improved bioactivity than their corresponding Z isomers. Using molecular simulation studies, we found that the E isomers showed a relatively lower entropy change and could sample more stable binding conformation to the receptor than the Z isomers. Our density functional theory (DFT) calculations showed that the E isomers showed higher chemical reactivity and lower electronic chemical potential than their corresponding Z isomers. Compound E-Ic emerged as the optimal compound with a Ki value of 3.0 nM against NtPPO, exhibiting a broader spectrum of weed control than saflufenacil at 37.5-75 g ai/ha and also safe to maize at 75 g ai/ha, which could be considered as a promising lead herbicide for further development.


Asunto(s)
Inhibidores Enzimáticos , Herbicidas , Protoporfirinógeno-Oxidasa , Ligandos , Inhibidores Enzimáticos/química , Control de Malezas , Herbicidas/farmacología , Herbicidas/química , Nicotiana
17.
J Agric Food Chem ; 72(17): 10055-10064, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634336

RESUMEN

Enantioselective antibodies have emerged as efficient tools in the field of chiral chemical detection and separation. However, it is complicated to obtain a highly stereoselective antibody due to the unclear recognition mechanism. In this study, the hapten of metolachlor was synthesized and enantio-separated. The absolute configuration of the four haptens obtained was identified by the computed and experimental electronic circular dichroism comparison. Five polyclonal antibodies against the Rac-metolachlor and its enantiomers were generated by immunization. The cross-activity of all the 5 antibodies with 44 structural analogues, including metolachlor enantiomers, was tested. It demonstrated that antibodies have higher specificity to recognize central chirality than axial chirality. Especially, αRR-MET-Ab exhibited excellent specificity and stereoselectivity. Accordingly, 3D-QSAR models were constructed and revealed that paired stereoisomers exhibited opposite interactions with the antibodies. It is the first time that the antibodies against four stereoisomers were prepared and analyzed, which will be conducive to the rational design of the stereoselective antibodies.


Asunto(s)
Acetamidas , Anticuerpos , Herbicidas , Herbicidas/química , Herbicidas/inmunología , Estereoisomerismo , Animales , Anticuerpos/química , Anticuerpos/inmunología , Acetamidas/química , Relación Estructura-Actividad Cuantitativa , Haptenos/química , Haptenos/inmunología , Conejos
18.
Biochemistry ; 63(9): 1206-1213, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38587893

RESUMEN

Quinone analogue molecules, functioning as herbicides, bind to the secondary quinone site, QB, in type-II photosynthetic reaction centers, including those from purple bacteria (PbRC). Here, we investigated the impact of herbicide binding on electron transfer branches, using herbicide-bound PbRC crystal structures and employing the linear Poisson-Boltzmann equation. In contrast to urea and phenolic herbicides [Fufezan, C. Biochemistry 2005, 44, 12780-12789], binding of atrazine and triazine did not cause significant changes in the redox-potential (Em) values of the primary quinone (QA) in these crystal structures. However, a slight Em difference at the bacteriopheophytin in the electron transfer inactive branch (HM) was observed between the S(-)- and R(+)-triazine-bound PbRC structures. This discrepancy is linked to variations in the protonation pattern of the tightly coupled Glu-L212 and Glu-H177 pairs, crucial components of the proton uptake pathway in native PbRC. These findings suggest the existence of a QB-mediated link between the electron transfer inactive HM and the proton uptake pathway in PbRCs.


Asunto(s)
Atrazina , Herbicidas , Proteínas del Complejo del Centro de Reacción Fotosintética , Triazinas , Herbicidas/química , Herbicidas/metabolismo , Atrazina/química , Atrazina/metabolismo , Transporte de Electrón , Triazinas/química , Triazinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Oxidación-Reducción , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo , Cristalografía por Rayos X
19.
Chemosphere ; 357: 141912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582166

RESUMEN

The efficiency of the Fenton reaction is markedly contingent upon the operational pH related to iron solubility. Therefore, a heterogeneous Fenton reaction has been developed to function at neutral pH. In the present study, the Bio-Fenton reaction was carried out using magnetite (Fe(II)Fe(III)2O4) and H2O2 generated by a newly isolated H2O2-producing bacterium, Desemzia sp. strain C1 at pH 6.8 to degrade chloroacetanilide herbicides. The optimal conditions for an efficient Bio-Fenton reaction were 10 mM of lactate, 0.5% (w/v) of magnetite, and resting-cells (O.D.600 = 1) of strain C1. During the Bio-Fenton reaction, 1.8-2.0 mM of H2O2 was generated by strain C1 and promptly consumed by the Fenton reaction with magnetite, maintaining stable pH conditions. Approximately, 40-50% of the herbicides underwent oxidation through non-specific reactions of •OH, leading to dealkylation, dechlorination, and hydroxylation via hydrogen atom abstraction. These findings will contribute to advancing the Bio-Fenton system for non-specific oxidative degradation of diverse organic pollutants under in-situ environmental conditions with bacteria producing high amount of H2O2 and magnetite under a neutral pH condition.


Asunto(s)
Acetamidas , Biodegradación Ambiental , Óxido Ferrosoférrico , Herbicidas , Peróxido de Hidrógeno , Hierro , Herbicidas/metabolismo , Herbicidas/química , Peróxido de Hidrógeno/metabolismo , Óxido Ferrosoférrico/metabolismo , Óxido Ferrosoférrico/química , Hierro/metabolismo , Hierro/química , Acetamidas/metabolismo , Acetamidas/química , Oxidación-Reducción , Concentración de Iones de Hidrógeno
20.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640665

RESUMEN

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Asunto(s)
Atrazina , Biodegradación Ambiental , Herbicidas , Piridinas , Streptomyces , Compuestos de Sulfonilurea , Atrazina/metabolismo , Atrazina/química , Streptomyces/metabolismo , Streptomyces/genética , Herbicidas/metabolismo , Herbicidas/química , Compuestos de Sulfonilurea/metabolismo , Compuestos de Sulfonilurea/química , Piridinas/metabolismo , Piridinas/química , Contaminantes del Suelo/metabolismo , Genes Bacterianos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA