Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Avian Dis ; 68(2): 117-128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885053

RESUMEN

Cytokines are co-administrated with vaccines or co-expressed in the vaccine virus genome to improve protective efficacy by stimulating immune responses. Using glycosylphosphatidylinositol (GPI) anchoring by attachment to the target cytokine, we constructed recombinant Marek's disease virus (MDV) vaccine strain 301B/1 (v301B/1-rtg-IL-15) that expresses chicken interleukin-15 (IL-15) as the membrane-bound form at the cell surface. We evaluated the vaccine efficacy of v301B/1-rtg-IL-15 given as a bivalent Marek's disease (MD) vaccine in combination with turkey herpesvirus (HVT) against a very virulent plus MDV strain 648A challenge. The efficacy was compared with that of conventional bivalent MD vaccine, as a mixture with HVT plus parental v301B/1 or v301B/1-IL-15, which expresses a natural form of IL-15. The membrane-bound IL-15 expression did not interfere with the virus growth of recombinant v301B/1-rtg-IL-15. However, the MD incidence in birds vaccinated with v301B/1-rtg-IL-15 was higher than that of birds given the conventional bivalent MD vaccine containing parental v301B/1 virus, although the v301B/1-rtg-IL-15 vaccinated group showed increased natural killer cell activation at day 5 postvaccination, the same day as challenge. Overall, the protection of v301B/1-rtg-IL-15 was not improved from that of v301B/1 against very virulent plus MDV challenge.


Eficacia de una vacuna contra el virus de la enfermedad de Marek cepa 301B/1 recombinante que expresa la interleucina-15 de pollo anclada a la membrana. Las citocinas se administran junto con vacunas o se co-expresan en el genoma del virus de la vacuna para mejorar la eficacia protectora mediante la estimulación de respuestas inmunitarias. Utilizando el anclaje de glicosilfosfatidilinositol (GPI) mediante unión a la citoquina objetivo, se construyó una cepa de vacuna recombinante del virus de la enfermedad de Marek (MDV) 301B/1 (v301B/1-rtg-IL-15) que expresa la interleucina-15 de pollo (IL-15) como la forma unida a la membrana en la superficie celular. Se evaluó la eficacia de la vacuna v301B/1-rtg-IL-15 administrada como vacuna bivalente en combinación con el herpesvirus del pavo (HVT) contra el desafío con un virus muy virulento cepa 648A de la enfermedad de Marek (MD). La eficacia se comparó con la de la vacuna bivalente convencional contra la enfermedad de Marek, como una mezcla con HVT más la cepa v301B/1 parental o con el virus recombinante v301B/1-IL-15, que expresa una forma natural de IL-15. La expresión de IL-15 unida a membrana no interfirió con el crecimiento del virus de v301B/1-rtg-IL-15 recombinante. Sin embargo, la incidencia de la enfermedad de Marek en aves vacunadas con v301B/1-rtg-IL-15 fue mayor que la de las aves que recibieron la vacuna de Marek bivalente convencional que contenía el virus v301B/1 parental, aunque el grupo vacunado con v301B/1-rtg-IL-15 mostró una mayor activación de las células asesinas naturales en el día 5 después de la vacunación, que fue el mismo día del desafío. En general, la protección por la vacuna v301B/1-rtg-IL-15 no mejoró con respecto a la conferida por v301B/1 contra un desafío muy virulento de la enfermedad de Marek.


Asunto(s)
Pollos , Herpesvirus Gallináceo 2 , Interleucina-15 , Vacunas contra la Enfermedad de Marek , Enfermedad de Marek , Vacunas Sintéticas , Animales , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Enfermedad de Marek/prevención & control , Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/genética , Vacunas Sintéticas/inmunología , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Meleágrido 1/genética , Herpesvirus Meleágrido 1/metabolismo
2.
PLoS Pathog ; 20(5): e1012261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805555

RESUMEN

Marek's disease virus (MDV) vaccines were the first vaccines that protected against cancer. The avirulent turkey herpesvirus (HVT) was widely employed and protected billions of chickens from a deadly MDV infection. It is also among the most common vaccine vectors providing protection against a plethora of pathogens. HVT establishes latency in T-cells, allowing the vaccine virus to persist in the host for life. Intriguingly, the HVT genome contains telomeric repeat arrays (TMRs) at both ends; however, their role in the HVT life cycle remains elusive. We have previously shown that similar TMRs in the MDV genome facilitate its integration into host telomeres, which ensures efficient maintenance of the virus genome during latency and tumorigenesis. In this study, we investigated the role of the TMRs in HVT genome integration, latency, and reactivation in vitro and in vivo. Additionally, we examined HVT infection of feather follicles. We generated an HVT mutant lacking both TMRs (vΔTMR) that efficiently replicated in cell culture. We could demonstrate that wild type HVT integrates at the ends of chromosomes containing the telomeres in T-cells, while integration was severely impaired in the absence of the TMRs. To assess the role of TMRs in vivo, we infected one-day-old chickens with HVT or vΔTMR. vΔTMR loads were significantly reduced in the blood and hardly any virus was transported to the feather follicle epithelium where the virus is commonly shed. Strikingly, latency in the spleen and reactivation of the virus were severely impaired in the absence of the TMRs, indicating that the TMRs are crucial for the establishment of latency and reactivation of HVT. Our findings revealed that the TMRs facilitate integration of the HVT genome into host chromosomes, which ensures efficient persistence in the host, reactivation, and transport of the virus to the skin.


Asunto(s)
Pollos , Enfermedad de Marek , Telómero , Integración Viral , Latencia del Virus , Animales , Pollos/virología , Telómero/genética , Telómero/virología , Enfermedad de Marek/virología , Enfermedad de Marek/inmunología , Enfermedad de Marek/prevención & control , Vectores Genéticos , Herpesvirus Meleágrido 1/genética , Herpesvirus Meleágrido 1/inmunología , Vacunas contra la Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/genética , Genoma Viral , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Secuencias Repetitivas de Ácidos Nucleicos , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control
3.
Viruses ; 14(1)2022 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-35062316

RESUMEN

Vaccines against Marek's disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek's disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and CD4+ transforming growth factor-beta (TGF-ß)+ T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory T cells. Furthermore, the expression of TGF-ß and programmed cell death receptor (PD)-1 increased considerably in the feathers of Marek's disease virus-infected chickens. The results of the present study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive strategies employed by MDV will facilitate the development of control measures to prevent viral replication and transmission.


Asunto(s)
Pollos/virología , Plumas/virología , Enfermedad de Marek/inmunología , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Expresión Génica , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/virología , Vacunas contra la Enfermedad de Marek/inmunología , Bazo/inmunología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vacunación , Carga Viral/veterinaria , Replicación Viral/fisiología
4.
Viruses ; 13(8)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34452364

RESUMEN

Due to the emergence of antibiotic resistance and new and more complex diseases that affect livestock animal health and food security, the control of epidemics has become a top priority worldwide. Vaccination represents the most important and cost-effective measure to control infectious diseases in animal health, but it represents only 23% of the total global animal health market, highlighting the need to develop new vaccines. A recent strategy in animal health vaccination is the use of extracellular vesicles (EVs), lipid bilayer nanovesicles produced by almost all living cells, including both prokaryotes and eukaryotes. EVs have been evaluated as a prominent source of viral antigens to elicit specific immune responses and to develop new vaccination platforms as viruses and EVs share biogenesis pathways. Preliminary trials with lymphocytic choriomeningitis virus infection (LCMV), porcine reproductive and respiratory syndrome virus (PRRSV), and Marek's disease virus (MDV) have demonstrated that EVs have a role in the activation of cellular and antibody immune responses. Moreover, in parasitic diseases such as Eimeria (chickens) and Plasmodium yoelii (mice) protection has been achieved. Research into EVs is therefore opening an opportunity for new strategies to overcome old problems affecting food security, animal health, and emerging diseases. Here, we review different conventional approaches for vaccine design and compare them with examples of EV-based vaccines that have already been tested in relation to animal health.


Asunto(s)
Exosomas/inmunología , Vacunación/veterinaria , Vacunas Virales/inmunología , Virosis/prevención & control , Virosis/veterinaria , Animales , Pollos/inmunología , Exosomas/genética , Herpesvirus Gallináceo 2/inmunología , Enfermedades de las Aves de Corral/clasificación , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Porcinos/inmunología , Enfermedades de los Porcinos/clasificación , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virosis/inmunología
5.
PLoS Biol ; 19(4): e3001057, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33901176

RESUMEN

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Asunto(s)
Pollos/inmunología , Herpesvirus Gallináceo 2/inmunología , Antígenos de Histocompatibilidad Clase II , Enfermedad de Marek/inmunología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Bolsa de Fabricio/inmunología , Células Cultivadas , Pollos/genética , Pollos/virología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Haplotipos , Herpesvirus Gallináceo 2/química , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/inmunología , Epítopos Inmunodominantes/metabolismo , Enfermedad de Marek/genética , Enfermedad de Marek/virología , Modelos Moleculares , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
6.
Front Immunol ; 12: 645426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659011

RESUMEN

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. The most efficacious vaccine, CVI988/Rispens (CVI988), against MD has been used for several decades. However, the mechanisms leading to protective immunity following vaccination are not fully understood. In this study, employing multi-parameter flow cytometry, we performed a comprehensive analysis of T cell responses in CVI988-vaccinated chickens. CVI988 vaccination induced significant expansion of γδ T cells and CD8α+ T cells but not CD4+ T cells in spleen, lung and blood at early time-points. The expansion of these cells was CVI988-specific as infection with very virulent MDV RB1B did not elicit expansion of either γδ or CD8α+ T cells. Phenotypic analysis showed that CVI988 vaccination elicited preferential proliferation of CD8α+ γδ T cells and CD8αα co-receptor expression was upregulated on γδ T cells and CD8α+ T cells after immunization. Additionally, cell sorting and quantitative RT-PCR showed that CVI988 vaccination activated γδ T cells and CD8α+ T cells which exhibited differential expression of cytotoxic and T cell-related cytokines. Lastly, secondary immunization with CVI988 induced the expansion of CD8+ T cells but not γδ T cells at higher magnitude, compared to primary immunization, suggesting CVI988 did induce memory CD8+ T cells but not γδ T cells in chickens. Our results, for the first time, reveal a potential role of γδ T cells in CVI988-induced immune protection and provide new insights into the mechanism of immune protection against oncogenic MDV.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/farmacología , Pollos , Herpesvirus Gallináceo 2/inmunología , Enfermedades de las Aves de Corral , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Vacunas Virales/farmacología , Animales , Pollos/inmunología , Pollos/virología , Enfermedad de Marek/inmunología , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Vacunación
7.
Dev Comp Immunol ; 119: 104048, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33609615

RESUMEN

DEAD-box helicase 5 (DDX5) plays a significant role in tumorigenesis and regulates viral replication of several viruses. An avian oncogenic herpesvirus, Marek's disease virus (MDV), is widely known to cause immunosuppression and lymphoma in chickens. However, the underlying mechanisms of how DDX5 plays a role in viral replication remain unclear. In this study, we show that MDV inhibits the production of interferon beta (IFN-ß) in chicken embryo fibroblasts (CEFs) by increasing the expression level and promoting the nuclear aggregation of DDX5. We further reveal how DDX5 down-regulates melanoma differentiation-associated gene 5/toll-like receptor 3 signaling through the fundamental transcription factor, interferon regulatory factor 1. MDV replication is suppressed, and the production of IFN-ß is promoted in the DDX5 absented CEFs. Taken together, our investigations demonstrate that MDV inhibits IFN-ß production by targeting DDX5-mediated signaling to facilitate viral replication, which offers a novel insight into the mechanism by which an avian oncogenic herpesvirus replicates in chicken cells.


Asunto(s)
Proteínas Aviares/inmunología , ARN Helicasas DEAD-box/inmunología , Fibroblastos/inmunología , Herpesvirus Gallináceo 2/inmunología , Interferón beta/inmunología , Replicación Viral/inmunología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Western Blotting , Células Cultivadas , Embrión de Pollo , Pollos/genética , Pollos/inmunología , Pollos/virología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica/inmunología , Herpesvirus Gallináceo 2/fisiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón beta/genética , Interferón beta/metabolismo , Enfermedad de Marek/genética , Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , RNA-Seq/métodos , Transcriptoma/inmunología
8.
Virology ; 553: 122-130, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33271490

RESUMEN

Marek's Disease Virus (MDV) infects chickens via respiratory route and causes lymphomas in internal organs including gastrointestinal tract. MDV infection causes a shift in the gut microbiota composition. However, interactions between the gut microbiota and immune responses against MDV infection are not well understood. Therefore, the current study was performed to understand the effect of the gut microbiota on Marek's disease (MD) pathogenesis. The findings showed that depletion of gut microbiota increased the severity of MD in infected chickens. In addition, an increase in the transcription of interferon (IFN)-α, IFN-ß and IFN-γ in the bursa of Fabricius at 4 days post-infection (dpi) was observed in the gut microbiota depleted chickens. The observations in this study shed more light on the association between the gut microbiota and MDV infection in chickens. More research is needed to explore the mechanisms of involvement of the gut microbiota in immunity against MD in chickens.


Asunto(s)
Pollos , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Herpesvirus Gallináceo 2/fisiología , Enfermedad de Marek/inmunología , Enfermedad de Marek/microbiología , Animales , Antibacterianos/farmacología , Bolsa de Fabricio/inmunología , Bolsa de Fabricio/metabolismo , Ciego/metabolismo , Ciego/microbiología , Plumas/virología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Expresión Génica , Genoma Viral , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Interferones/genética , Interleucinas/genética , Interleucinas/metabolismo , Enfermedad de Marek/virología , Índice de Severidad de la Enfermedad , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Interleucina-22
9.
Avian Pathol ; 50(1): 18-30, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33063529

RESUMEN

A double construct vaccine of turkey herpesvirus (HVT) was prepared that contains the fusion (F) gene from Newcastle disease virus (NDV) and the viral protein 2 (VP2) gene from infectious bursal disease virus (IBDV). Safety of the vaccine (HVT-ND-IBD) was confirmed and efficacy was evaluated after subcutaneous (SC) vaccination at 1 day of age or the in ovo route of vaccination. Challenges were performed with velogenic NDV strains (Texas GB and Herts Weybridge 33/56), with different strains of IBDV (classical strain STC; very virulent strain CS89 and variant E strain) and with Marek's disease virus (MDV) strain RB1B. Vaccination with HVT-ND-IBD induced a high level of protection against these challenges. Vaccination with HVT is often combined with Rispens CVI988 vaccine and live ND vaccines for higher and earlier, MD and ND protection, respectively. HVT-ND-IBD vaccination in combination with these vaccines showed MD protection as early as 4 days post vaccination and ND protection as early as 2 weeks post vaccination. The long protection as seen with HVT vaccination was confirmed by demonstrating protection against NDV up to 60 weeks. Finally, to evaluate the performance of the vaccine in commercial birds with maternally-derived antibodies, two field trials were performed, using in ovo vaccination in broilers and SC vaccination in combination with Rispens CVI988 vaccine in layer-type birds. The efficacy was confirmed for all components by challenges. These results demonstrate that HVT-ND-IBD is a safe and highly efficacious vaccine for simultaneous control of ND, IBD and MD. RESEARCH HIGHLIGHTS A double construct HVT vaccine with the NDV F and the IBDV VP2 genes was prepared. The vaccine protects against three important diseases: MDV, NDV and IBDV. In ovo and sub-cutaneous vaccination was evaluated in the field in commercial chickens.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/inmunología , Herpesvirus Gallináceo 2/inmunología , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedad de Marek/prevención & control , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/prevención & control , Animales , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/virología , Femenino , Masculino , Enfermedad de Marek/virología , Enfermedad de Newcastle/virología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
10.
Vet Microbiol ; 248: 108821, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32891023

RESUMEN

Marek's disease (MD) vaccines are unique in their capability to prevent MD lymphomas as early as a few days after vaccination, despite the fact that they do not eliminate virulent viruses from the host. To help understand the mechanism behind this unique MD vaccine effect, we compared the expression of MDV oncoprotein Meq among CD4+ T cells between vaccinated and unvaccinated birds. Chickens were vaccinated by an MD vaccine, herpesvirus of turkeys, and then challenged by a recombinant virulent MDV that expresses green fluorescent protein simultaneously with Meq. We found significantly fewer Meq-expressing CD4+ T cells appeared in peripheral blood mononuclear cells (PBMC) of the vaccinated birds compared to the unvaccinated birds as early as one week after the virulent virus challenge. In contrast, the quantity of virulent MDV genome remained similar in Meq- PBMC in both vaccinated and unvaccinated birds. Our results suggest that MD vaccination affects the dynamics of Meq-expressing, possibly transformed, cells while impact on the overall infection in the Meq- cells was not significant.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Herpesvirus Gallináceo 2/genética , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , Animales , Pollos/virología , Genoma Viral , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/administración & dosificación , Proteínas Oncogénicas Virales/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Latencia del Virus
11.
BMC Vet Res ; 16(1): 303, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831091

RESUMEN

BACKGROUND: Marek's disease (MD) is a chicken neoplastic disease, which brings huge economic losses to the global poultry industry. The wild type p53, a tumor suppressor gene, plays a key role in blocking cell cycle, promoting apoptosis, and maintaining the stability of the genome. However, the mutant p53 losses its tumor inhibitory role and become an oncogene when a mutation has happened. RESULTS: The mutation rate of p53 was 60% in the experimentally and naturally infected chickens. The mutations included point-mutations and deletions, and mostly located in the DNA-binding domain. The mutated p53 was expressed in various tumor tissues in an infected chicken. The mutant P53 proteins were notably accumulated in the cytoplasm due to the loss in the function of nuclear localization. Unlike the study on human cancer, the concentrations of P53 in the serums of MD infected chicken were significantly lower than the control group. CONCLUSIONS: The p53 mutations were apparent in the development of MD. P53 and P53 antibody level in serum could be a useful marker in the diagnosis and surveillance of MD.


Asunto(s)
Enfermedad de Marek/genética , Mutación , Enfermedades de las Aves de Corral/genética , Proteína p53 Supresora de Tumor/genética , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , Pollos , Femenino , Herpesvirus Gallináceo 2/inmunología , Herpesvirus Gallináceo 2/patogenicidad , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Proteína p53 Supresora de Tumor/sangre
12.
J Immunotoxicol ; 17(1): 86-93, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32233818

RESUMEN

Many persistent organic pollutants, such as polychlorinated biphenyls (PCBs), have high immunomodulating potentials. Exposure to them, in combination with virus infections, has been shown to aggravate outcomes of the infection, leading to increased viral titers and host mortality. Expression of immune-related microRNA (miR) signaling pathways (by host and/or virus) have been shown to be important in determining these outcomes; there is some evidence to suggest pollutants can cause dysregulation of miRNAs. It was thus hypothesized here that modulation of miRNAs (and associated cytokine genes) by pollutants exerts negative effects during viral infections. To test this, an in vitro study on chicken embryo fibroblasts (CEF) exposed to a PCB mixture (Aroclor 1260) and then stimulated with a synthetic RNA virus (poly(I:C)) or infected with a lymphoma-causing DNA virus (Gallid Herpes Virus 2 [GaHV-2]) was conducted. Using quantitative real-time PCR, expression patterns for mir-155, pro-inflammatory TNFα and IL-8, transcription factor NF-κB1, and anti-inflammatory IL-4 were investigated 8, 12, and 18 h after virus activation. The study showed that Aroclor1260 modulated mir-155 expression, such that a down-regulation of mir-155 in poly(I:C)-treated CEF was seen up to 12 h. Aroclor1260 exposure also increased the mRNA expression of pro-inflammatory genes after 8 h in poly(I:C)-treated cells, but levels in GaHV-2-infected cells were unaffected. In contrast to with Aroclor1260/poly(I:C), Aroclor1260/GaHV-2-infected cells displayed an increase in mir-155 levels after 12 h compared to levels seen with either individual treatment. While after 12 h expression of most evaluated genes was down-regulated (independent of treatment regimen), by 18 h, up-regulation was evident again. In conclusion, this study added evidence that mir-155 signaling represents a sensitive pathway to chemically-induced immunomodulation and indicated that PCBs can modulate highly-regulated innate immune system signaling pathways important in determining host immune response outcomes during viral infections.


Asunto(s)
Contaminantes Ambientales/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , MicroARNs/metabolismo , Virosis/inmunología , Animales , Arocloros/efectos adversos , Embrión de Pollo , Modelos Animales de Enfermedad , Fibroblastos , Regulación de la Expresión Génica/inmunología , Herpesvirus Gallináceo 2/inmunología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Poli I-C/inmunología , Bifenilos Policlorados/efectos adversos , Virosis/genética , Virosis/virología
13.
Poult Sci ; 99(4): 1939-1945, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32241474

RESUMEN

SC9-2 is a recombinant Marek's disease virus (MDV) strain lacking the meq oncogene. Previous study demonstrated that SC9-2 virus provides good protection against challenge with a very virulent MDV rMd5, but it induces immunosuppressive effects in specific pathogen-free (SPF) chickens. In the present study, SC9-2 was serially passaged on chicken embryo fibroblast (CEF) cell cultures. The pathogenicity and immune efficacy of SC9-2/10th and SC9-2/40th against rMd5 were evaluated. Animal experimental results showed that SC9-2/10th and SC9-2/40th showed no lethality or tumorigenicity in SPF chickens. Body weight of chickens inoculated with SC9-2/40th were significantly higher than that of the chickens inoculated with SC9-2/10th but lower than that of the uninoculated controls. The severity of bursa and thymus atrophy (BTA) and spleen enlargement in SC9-2/40th-inoculated chickens were also weaker than the SC9-2/10th-inoculated ones but stronger than the uninoculated controls. Chickens inoculated with SC9-2/40th and SC9-2/10th showed similar antibody levels induced by H9N2 subtype avian influenza virus/Newcastle disease virus inactivated vaccines, both of which were lower than the uninoculated controls. Replication of SC9-2/40th was significantly lower than SC9-2/10th in feather follicle epithelium (FFE) of infected chickens. The immune protection index of SC9-2/40th was also lower than that of SC9-2/10th, but the difference was not significantly, and both of which were significant higher than that of the commercial MDV vaccine CVI988/Rispens. The results of our studies demonstrated that SC9-2/40th showed weaker severity of BTA, spleen enlargement, and body weight loss and lower replication level in FFE than SC9-2/10th in SPF chickens. However, SC9-2/40th was able to confer better immune protection as compared with CVI988/Rispens vaccination in SPF chickens. In conclusion, serially attenuation of SC9-2 in CEFs reduced the lymphoid organ atrophy and replication in SPF chickens, and the immune protective efficacy of attenuated viruses was still superior than CVI988/Rispens.


Asunto(s)
Pollos , Herpesvirus Gallináceo 2/fisiología , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/inmunología , Proteínas Oncogénicas Virales/deficiencia , Enfermedades de las Aves de Corral/inmunología , Animales , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/virología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/fisiología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos
14.
J Gen Virol ; 101(5): 542-552, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32134378

RESUMEN

Marek's disease virus (MDV), a causative agent of Marek's disease, has evolved its virulence partly because the current control strategies fail to provide sterilizing immunity. Gallid alphaherpesvirus 3 (GaHV-3) and turkey herpesvirus have been developed as bivalent vaccines to improve upon the level of protection elicited by single formulations. Since the in vitro passage of vaccines can result in attenuation, a GaHV-3 strain 301B/1 was cloned as a bacterial artificial chromosome (BAC) by inserting the mini-F replicon into the virus genome. A fully infectious virus, v301B-BAC, was reconstituted from the 301B/1 BAC clone and had similar growth kinetics comparable to that of the parental 301B/1 virus with strong reactivity against anti-301B/1 chicken sera. Protective efficacies of v301B-BAC, parental 301B/1, and SB-1 vaccine were evaluated against a very virulent MDV Md5 challenge. Clinical signs were significantly lower in the v301B-BAC vaccinated groups (24-25 %), parental 301B/1 (29 %) compare to that of non-vaccinated control (100%) and the removal of BAC sequences from v301B-BAC genome further reduced this to 17 %. The protective indices of v301B-BACs (75-76 %) were comparable with those of both the 301B/1 and the SB-1 vaccine (71%). Removal of the mini-F replicon resulted in a reconstituted virus with a protective index of 83 %. The shedding of challenge virus was notably lower in the v301B-BAC, and v301B-delBAC vaccinated groups. Overall, the protective efficacy of the 301B-BAC-derived vaccine virus against a very virulent MDV challenge was comparable to that of the parental 301B/1 virus as well as the SB-1 vaccine virus.


Asunto(s)
Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/inmunología , Enfermedades de las Aves de Corral/inmunología , Virulencia/inmunología , Animales , Pollos/virología , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Vectores Genéticos/genética , Genoma Viral/inmunología , Herpesvirus Meleágrido 1/inmunología , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Vacunas de ADN/genética , Vacunas Virales/genética , Replicación Viral/inmunología
15.
Cell Mol Life Sci ; 77(16): 3103-3116, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32080753

RESUMEN

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.


Asunto(s)
Pollos/inmunología , Pollos/virología , Inmunidad Celular/inmunología , Enfermedad de Marek/inmunología , Virus Oncogénicos/inmunología , Linfocitos T/inmunología , Animales , Herpesvirus Gallináceo 2/inmunología , Humanos , Enfermedad de Marek/virología , Linfocitos T/virología , Virulencia/inmunología
16.
Viruses ; 11(12)2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795203

RESUMEN

Marek's disease virus (MDV) is an alphaherpesvirus that causes Marek's disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek's disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus.


Asunto(s)
Pollos/virología , Herpesvirus Gallináceo 2/inmunología , Interferón-alfa/inmunología , Interferón gamma/inmunología , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Animales , Anticuerpos Monoclonales/inmunología , Progresión de la Enfermedad , Inmunidad Innata , Enfermedad de Marek/patología , Enfermedad de Marek/prevención & control , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/prevención & control
17.
PLoS Pathog ; 15(9): e1007999, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31539404

RESUMEN

The cellular DNA sensor cGMP-AMP synthase (cGAS) detects cytosolic viral DNA via the stimulator of interferon genes (STING) to initiate innate antiviral response. Herpesviruses are known to target key immune signaling pathways to persist in an immune-competent host. Marek's disease virus (MDV), a highly pathogenic and oncogenic herpesvirus of chickens, can antagonize host innate immune responses to achieve persistent infection. With a functional screen, we identified five MDV proteins that blocked beta interferon (IFN-ß) induction downstream of the cGAS-STING pathway. Specifically, the MDV major oncoprotein Meq impeded the recruitment of TANK-binding kinase 1 and IFN regulatory factor 7 (IRF7) to the STING complex, thereby inhibiting IRF7 activation and IFN-ß induction. Meq overexpression markedly reduced antiviral responses stimulated by cytosolic DNA, whereas knockdown of Meq heightened MDV-triggered induction of IFN-ß and downstream antiviral genes. Moreover, Meq-deficient MDV induced more IFN-ß production than wild-type MDV. Meq-deficient MDV also triggered a more robust CD8+ T cell response than wild-type MDV. As such, the Meq-deficient MDV was highly attenuated in replication and lymphoma induction compared to wild-type MDV. Taken together, these results revealed that MDV evades the cGAS-STING DNA sensing pathway, which underpins the efficient replication and oncogenesis. These findings improve our understanding of the virus-host interaction in MDV-induced lymphoma and may contribute to the development of novel vaccines against MDV infection.


Asunto(s)
Herpesvirus Gallináceo 2/inmunología , Herpesvirus Gallináceo 2/patogenicidad , Evasión Inmune , Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , Animales , Proteínas Aviares/metabolismo , Carcinogénesis , Pollos , ADN Viral/inmunología , Patos , Herpesvirus Gallináceo 2/fisiología , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Enfermedad de Marek/metabolismo , Modelos Inmunológicos , Nucleotidiltransferasas/metabolismo , Proteínas Oncogénicas Virales/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Virales/inmunología , Replicación Viral
18.
Vaccine ; 37(43): 6397-6404, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31515142

RESUMEN

BACKGROUND: Marek's disease (MD) is a lymphoproliferative disease of chickens caused by Marek's disease virus (MDV), an oncogenic α-herpesvirus. Since 1970, MD has been controlled by widespread vaccination; however, more effective MD vaccines are needed to counter more virulent MDV strains. The bivalent vaccine combination of SB-1 and herpesvirus of turkey (HVT) strain FC126 has been widely used. Nonetheless, the mechanism(s) underlying this synergistic effect has not been investigated. METHODS: Three experiments were conducted where SB-1 or HVT were administered as monovalent or bivalent vaccines to newly hatched chickens, then challenged five days later with MDV. In Experiment 1, levels of MDV replication in PBMCs were measured over time, and tumor incidence and vaccinal protection determined. In Experiment 2, MDV and vaccine strains replication levels in lymphoid organs were measured at 1, 5, 10, and 14 days post-challenge (DPC). In Experiment 3, to verify that the bursa was necessary for HVT protection, a subset of chicks were bursectomized and these birds plus controls were similarly vaccinated and challenged, and the levels of vaccinal protection determined. RESULTS: The efficacy of bivalent SB-1 + HVT surpasses that of either SB-1 or HVT monovalent vaccines in controlling the level of pathogenic MDV in PBMCs until the end of the study, and this correlated with the ability to inhibit tumor formation. SB-1 replication in the spleen increased from 1 to 14 DPC, while HVT replicated only in the bursa at 1 DPC. The bursa was necessary for immune protection induced by HVT vaccine. CONCLUSION: Synergy of SB-1 and HVT vaccines is due to additive influences of the individual vaccines acting at different times and target organs. And the bursa is vital for HVT to replicate and induce immune protection.


Asunto(s)
Linfoma/veterinaria , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunación/veterinaria , Vacunas Virales/inmunología , Animales , Pollos/inmunología , Sinergismo Farmacológico , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Gallináceo 2/inmunología , Herpesvirus Gallináceo 2/fisiología , Leucocitos Mononucleares/virología , Tejido Linfoide/virología , Linfoma/prevención & control , Linfoma/virología , Vacunas contra la Enfermedad de Marek/administración & dosificación , Cavidad Peritoneal/virología , Enfermedades de las Aves de Corral/virología , Vacunas Virales/administración & dosificación , Replicación Viral
19.
BMC Vet Res ; 15(1): 214, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31238913

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent and bioaccumulative chemicals. Immunomodulation is among the most concerning of toxic effects linked with PFAS exposure in mammalian models. However, no studies had yet shown this to be true in birds. Thus, we designed and conducted the first study to determine if PFASs could cause immunomodulation in birds. Secondly, we wanted to determine the effects on an avian host when exposed not only to immunomodulating chemicals, but also to a viral challenge. The aim, to determine if PFAS mediated immunmodulation functionally affects a pathogen challenge for a host. As innate immune system signalling pathways initiate crucial responses against a pathogen challenge, and are lesser studied than their adaptive counterparts, we focused on these pathways. To provide the first information on this, an in vitro experiment was designed and performed using chicken embryo fibroblasts exposed to perfluorooctane sulfonate (PFOS) (22 ppm) and immune markers characterised before and after being infected with gallid herpesvirus-2 (GaHV-2). RESULTS: The expression of two pro-inflammatory cytokines, namely interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α), the nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), and the anti-inflammatory cytokine interleukin 4 (IL-4) were investigated in various scenarios. These results showed that exposure to PFOS decreased immune gene expression in chicken fibroblasts from 36 h post-exposure. Next, it was shown that this decrease could be mitigated by infection with gallid herpesvirus-2, which increased gene expression back to the baseline/control levels. CONCLUSIONS: Not only is this the first study to provide the expected evidence that PFOS has immunomodulatory potential in birds, it also provides unexpected data that virus infections can mitigate this negative effect. Thereby, further research, including in vivo and in situ studies, on the impact of PFOS on host-virus interactions is now warranted, as it has been overlooked and might contribute to our understanding of recent disease outbreaks in wildlife. The mechanisms by which gallid herpesvirus mitigates immunomodulation were beyond the scope of this study, but are now of interest for future study.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Herpesvirus Gallináceo 2/inmunología , Inmunomodulación/efectos de los fármacos , Enfermedad de Marek/inmunología , Virosis/veterinaria , Ácidos Alcanesulfónicos/inmunología , Animales , Línea Celular , Embrión de Pollo , ADN Complementario , Fibroblastos/efectos de los fármacos , Fluorocarburos/inmunología , Expresión Génica/efectos de los fármacos , Inmunomodulación/genética , Mediadores de Inflamación/metabolismo , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Transducción de Señal/efectos de los fármacos , Virosis/inmunología
20.
Avian Dis ; 63(2): 335-341, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251535

RESUMEN

Several recombinant turkey herpesviruses (rHVTs) have been developed within the past decades, and they are now used commercially worldwide. In broiler chickens, rHVTs are usually administered alone, but in long-living birds they are used in combination with Marek's disease (MD) vaccines of other serotypes (i.e., CVI988). The objectives of this work were to 1) evaluate protection against MD conferred by HVT and two rHVTs when combined with CVI988 and 2) optimize the use of rHVT in combination with CVI988 to maximize replication of rHVT without compromising MD protection. Various vaccine protocols, all using rHVT or HVT at the recommended dose (RD), were evaluated. Protocols evaluated included in ovo vaccination with HVT+CVI988 or rHVT+CVI988 (using either the double dose [DD] or the RD of CVI988), day of age vaccination of rHVT+CVI988 at DD, and revaccination protocols using rHVT in ovo followed by CVI988 at DD at day of age. Our results show that, when combined with CVI988, HVT and rHVTs confer a similar level of protection against MD (>90%) regardless of whether CVI988 was used at RD or at DD. However, the combination of rHVT with CVI988 at DD resulted in reduced replication rates of rHVT (60%-76% vs. 95%-100%). Our results show that such a negative effect could be avoided without jeopardizing MD protection by administering CVI988 at RD (if combined in ovo with rHVT) or administered rHVT first in ovo followed by CVI988 at DD at day of age.


Estudio de la eficacia y replicación de vacunas con vectores recombinantes mediante el uso del virus del herpes del pavo combinado con otras vacunas contra la enfermedad de Marek. Varios herpesvirus de pavo recombinantes (rHVT) se han desarrollado en las últimas décadas y ahora se utilizan comercialmente en todo el mundo. En pollos de engorde, los rHVT generalmente se administran solos, pero en aves de vida larga se usan en combinación con vacunas contra la enfermedad de Marek (MD) de otros serotipos (especialmente, CVI988). Los objetivos de este trabajo fueron 1) evaluar la protección contra la enfermedad de Marek conferida por herpesvirus de pavo (HVT9 y por dos rHVT cuando se combinan con la cepa CVI988 y 2) optimizar el uso de rHVT en combinación con la cepa CVI988 para maximizar la replicación de rHVT sin comprometer la protección contra la enfermedad de Marek. Se evaluaron varios protocolos de vacunas, todos con rHVT o con HVT a la dosis recomendada (RD). Los protocolos evaluados incluyeron la vacunación in ovo con HVT + CVI988 o rHVT + CVI988 (usando la dosis doble o la dosis recomendada de la cepa CVI988), la vacunación al día de la edad con rHVT + CVI988 con dosis doble, y los protocolos de revacunación usando rHVT seguido por la cepa CVI988 con dosis doble al día de edad. Los resultados muestran que cuando se combinan con CVI988, HVT y rHVT confieren un nivel de protección similar contra la enfermedad de Marek (> 90%) independientemente de que la cepa CVI988 se haya usado a la dosis recomendada o con dosis doble. Sin embargo, la combinación de rHVT con la cepa CVI988 con doble dosis produjo una reducción en las tasas de replicación de rHVT (60% ­76% vs. 95% ­100%). Estos resultados muestran que dicho efecto negativo podría evitarse sin poner en peligro la protección contra la enfermedad de Marek administrando la cepa CVI988 a la dosis recomendada (si se combina in ovo con rHVT) o administrando rHVT primero in ovo, seguido de CVI988 con dosis doble al día de la edad.


Asunto(s)
Pollos , Herpesvirus Meleágrido 1/inmunología , Herpesvirus Gallináceo 2/inmunología , Vacunas contra la Enfermedad de Marek/farmacología , Enfermedad de Marek/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Animales , Femenino , Enfermedad de Marek/virología , Enfermedades de las Aves de Corral/virología , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA