RESUMEN
Kaposi's Sarcoma Herpesvirus (KSHV) is the causative agent of several human diseases. There are no cures for KSHV infection. KSHV establishes biphasic lifelong infections. During the lytic phase, new genomes are replicated by seven viral DNA replication proteins. The processivity factor's (PF-8) functions to tether DNA polymerase to DNA, so new viral genomes are efficiently synthesized. PF-8 self-associates, interacts with KSHV DNA replication proteins and the viral DNA. Inhibition of viral DNA replication would diminish the infection within a host and reduce transmission to new individuals. In this review we summarize PF-8 molecular and structural studies, detail the essential protein-protein and nucleic acid interactions needed for efficient lytic DNA replication, identify future areas for investigation and propose PF-8 as a promising antiviral target. Additionally, we discuss similarities that the processivity factor from Epstein-Barr virus shares with PF-8, which could promote a pan-herpesvirus antiviral therapeutic targeting strategy.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Virales , Replicación Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Replicación Viral/efectos de los fármacos , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Replicación del ADN , Antivirales/farmacología , ADN Viral/genéticaRESUMEN
The central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication. This study expands upon a previous report of non-natural peptides, which were found to disrupt the association between the HopTPR2A domain and its interacting HSP90CTD. Here, in addition to providing insight into the structure-activity relationships of PPI inhibition, we show disruption of the full-length Hop-HSP90 PPI. The inhibitory peptides selectively engaged the HopTPR2A domain in cell lysates and when tethered to a cell-penetrating peptide acted as noncytotoxic inhibitors of KSHV lytic replication by lowering the viral load, preventing the production of infectious virions, and reducing the expression of KSHV lytic genes. In addition to tentative evidence of Hop-HSP90 PPI as a much-needed target for KSHV drug discovery, this study represents an important step in understanding viral interactions with the host proteostasis machinery.
Asunto(s)
Proteínas HSP90 de Choque Térmico , Herpesvirus Humano 8 , Unión Proteica , Replicación Viral , Herpesvirus Humano 8/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Humanos , Replicación Viral/efectos de los fármacos , Interacciones Huésped-Patógeno , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Relación Estructura-ActividadRESUMEN
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Asunto(s)
Carcinogénesis , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Herpesvirus Humano 8 , Ubiquitina , Latencia del Virus , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Humanos , Herpesvirus Humano 4/fisiología , Ubiquitina/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Replicación Viral , Proteínas Virales/metabolismo , Proteínas Virales/genética , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Patógeno , Animales , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismoRESUMEN
Primary Effusion Lymphoma (PEL) cells carry Kaposi's sarcoma-associated herpesvirus (KSHV) in a latent state, except for a small number of cells in which the virus replicates to ensure its persistence into the infected host. However, the lytic cycle can be reactivated in vitro by exposing these lymphoma cells to various treatments, leading to cell lysis. To restrict viral antigen expression, KSHV induces repressive epigenetic changes, including DNA methylation and histone modifications. Among the latter, histone deacetylation and tri-methylation of Histone H3 lisyne-27 (H3K27me3) have been reported to play a role. Here, we found that the inhibition of H3K27 tri-methylation by valemetostat DS3201 (DS), a small molecule that inhibits Enhancer of Zeste Homolog 2 (EZH2) methyltransferase, induced the KSHV lytic cycle in PEL cells, and that this effect involved the activation of the wtp53-p21 axis and autophagic dysregulation. DS also potentiated the lytic cycle activation mediated by the Histone deacetylases (HDAC) inhibitor Suberoylanilide hydroxamic acid (SAHA) and reinforced its cytotoxic effect, suggesting that such a combination could be used to unbalance the latent/lytic cycle and further impair the survival of PEL cells.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Herpesvirus Humano 8 , Inhibidores de Histona Desacetilasas , Linfoma de Efusión Primaria , Vorinostat , Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Humanos , Linfoma de Efusión Primaria/virología , Linfoma de Efusión Primaria/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Vorinostat/farmacología , Línea Celular Tumoral , Latencia del Virus/efectos de los fármacos , Activación Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Autofagia/efectos de los fármacos , Histonas/metabolismoRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi's sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with the ORF20-Null virus. These findings suggest that ORF20 protein, with its putative endonuclease motif, promotes coordinated lytic reactivation for increased infectious particle production.
Asunto(s)
Herpesvirus Humano 8 , Sistemas de Lectura Abierta , Proteínas Virales , Activación Viral , Humanos , Línea Celular , ADN Viral/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/genética , Latencia del Virus , Replicación ViralRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Asunto(s)
Ciclo Celular , Proliferación Celular , Herpesvirus Humano 8 , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , Metilación , Antígenos Virales/metabolismo , Antígenos Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ciclina D2/metabolismo , Células HEK293 , Replicación Viral/fisiología , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Proteínas NuclearesRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Asunto(s)
Factores de Transcripción Forkhead , Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Secuencias de Aminoácidos , Activación Viral , Células HEK293 , Animales , Interacciones Huésped-Patógeno , Unión ProteicaRESUMEN
Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.
Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Proteínas Serina-Treonina Quinasas , Activación Viral , Herpesvirus Humano 8/fisiología , Linfoma de Efusión Primaria/virología , Linfoma de Efusión Primaria/metabolismo , Linfoma de Efusión Primaria/patología , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Ratones , Línea Celular Tumoral , Apoptosis , Replicación Viral , Latencia del Virus , Progresión de la Enfermedad , FosforilaciónRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS). KSHV is one of the oncoviruses that contribute to 1.5 million new infection-related cancer cases annually. Currently, there are no targeted therapies for KSHV-associated diseases. Through the development of a medium-throughput phenotype-based ELISA screening platform based on KSHV ORF57 protein detection, we screened the Medicines for Malaria Venture (MMV) Pandemic Response Box for non-cytotoxic inhibitors of KSHV lytic replication. MMV1645152 was identified as a promising inhibitor of KSHV lytic replication, suppressing KSHV immediate-early and late lytic gene expression and blocking the production of infectious KSHV virion particles at non-cytotoxic concentrations in cell line models of KSHV infection with or without EBV coinfection. MMV1645152 is a promising hit compound for the development of future therapeutic agents against KSHV-associated malignancies.
Asunto(s)
Antivirales , Descubrimiento de Drogas , Herpesvirus Humano 8 , Replicación Viral , Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Humanos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos , Bibliotecas de Moléculas Pequeñas/farmacología , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/tratamiento farmacológicoRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
Asunto(s)
Herpesvirus Humano 8 , Factor de Empalme Asociado a PTB , Proteínas Virales , Replicación Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Factor de Empalme Asociado a PTB/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteómica , Interacciones Huésped-Patógeno , Células HEK293 , Línea Celular , Unión Proteica , Proteínas de Unión al ADNRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNß production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Virales , Replicación Viral , Herpesvirus Humano 8/fisiología , Humanos , Replicación Viral/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Inmunidad Innata , Células HEK293 , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Regulación Viral de la Expresión Génica , Latencia del Virus/fisiología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virologíaRESUMEN
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Receptor Notch1 , Transactivadores , Activación Viral , Latencia del Virus , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Humanos , Animales , Transactivadores/metabolismo , Transactivadores/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Células Vero , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Chlorocebus aethiops , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Viral de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADNRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.
Asunto(s)
Herpesvirus Humano 8 , Canal de Potasio Kv1.3 , Factores de Transcripción NFATC , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/antagonistas & inhibidores , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Transactivadores/metabolismo , Transactivadores/genética , Linfocitos B/virología , Linfocitos B/metabolismo , Calcio/metabolismo , Sarcoma de Kaposi/virología , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/genéticaRESUMEN
Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.
Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Transactivadores , Ubiquitinación , Replicación Viral , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Células HEK293 , Transactivadores/metabolismo , Transactivadores/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Activación Viral , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Núcleo Celular/metabolismoRESUMEN
N4-acetylcytidine (ac4C), a conserved but recently rediscovered RNA modification on tRNAs, rRNAs and mRNAs, is catalyzed by N-acetyltransferase 10 (NAT10). Lysine acylation is a ubiquitous protein modification that controls protein functions. Our latest study demonstrates a NAT10-dependent ac4C modification, which occurs on the polyadenylated nuclear RNA (PAN) encoded by oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), can induce KSHV reactivation from latency and activate inflammasome. However, it remains unclear whether a novel lysine acylation occurs in NAT10 during KSHV reactivation and how this acylation of NAT10 regulates tRNAs ac4C modification. Here, we showed that NAT10 was lactylated by α-tubulin acetyltransferase 1 (ATAT1), as a writer at the critical domain, to exert RNA acetyltransferase function and thus increase the ac4C level of tRNASer-CGA-1-1. Mutagenesis at the ac4C site in tRNASer-CGA-1-1 inhibited its ac4C modifications, translation efficiency of viral lytic genes, and virion production. Mechanistically, KSHV PAN orchestrated NAT10 and ATAT1 to enhance NAT10 lactylation, resulting in tRNASer-CGA-1-1 ac4C modification, eventually boosting KSHV reactivation. Our findings reveal a novel post-translational modification in NAT10, as well as expand the understanding about tRNA-related ac4C modification during KSHV replication, which may be exploited to design therapeutic strategies for KSHV-related diseases.
Asunto(s)
Acetiltransferasas , Citidina , Herpesvirus Humano 8 , Activación Viral , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Citidina/análogos & derivados , Citidina/metabolismo , Células HEK293 , Acetiltransferasas N-Terminal/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , AcilaciónRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Asunto(s)
Cromatina , Epigénesis Genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8 , Activación Viral , Latencia del Virus , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , Cromatina/metabolismo , Cromatina/genética , Latencia del Virus/genética , Genoma Viral , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/genética , Interacciones Huésped-Patógeno , Antígenos Virales , Proteínas NuclearesRESUMEN
The viral interferon regulatory factors (vIRFs) of KSHV are known to dysregulate cell signaling pathways to promote viral oncogenesis and to block antiviral immune responses to facilitate infection. However, it remains unknown to what extent each vIRF plays a role in gene regulation. To address this, we performed a comparative analysis of the protein structures and gene regulation of the four vIRFs. Our structure prediction analysis revealed that despite their low amino acid sequence similarity, vIRFs exhibit high structural homology in both their DNA-binding domain (DBD) and IRF association domain. However, despite this shared structural homology, we demonstrate that each vIRF regulates a distinct set of KSHV gene promoters and human genes in epithelial cells. We also found that the DBD of vIRF1 is essential in regulating the expression of its target genes. We propose that the structurally similar vIRFs evolved to possess specialized transcriptional functions to regulate specific genes.
Asunto(s)
Células Epiteliales , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8 , Factores Reguladores del Interferón , Proteínas Virales , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Células Epiteliales/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Regiones Promotoras Genéticas , Transcripción Genética , Genoma Viral , Línea CelularRESUMEN
Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.
Asunto(s)
Herpesvirus Humano 8 , Células Madre Mesenquimatosas , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/virología , Células Madre Mesenquimatosas/virología , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Proliferación CelularRESUMEN
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Asunto(s)
ADN Viral , Herpesvirus Humano 8 , Inmunidad Innata , Transducción de Señal , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Humanos , ADN Viral/metabolismo , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/metabolismo , Sarcoma de Kaposi/virología , Nucleotidiltransferasas/metabolismo , Interacciones Huésped-Patógeno , Animales , Proteínas de la Membrana/metabolismo , Proteínas Nucleares , FosfoproteínasRESUMEN
Human herpesvirus 8 (HHV-8), associated with Kaposi sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman disease, encodes four interferon regulatory factor homologs, vIRFs 1-4, that interact with and inhibit various mediators of host-cell defense against virus infection. A cellular protein targeted by all the vIRFs is ubiquitin-specific protease 7 (USP7); while replication-modulatory and latently infected PEL-cell pro-viability phenotypes of USP7 targeting have been identified for vIRFs 1-3, the significance of the interaction of vIRF-4 with USP7 has remained undetermined. Here we show, through genetic ablation of the vIRF-4-USP7 interaction in infected cells, that vIRF-4 association with USP7 is necessary for optimal expression of vIRF-4 and normal HHV-8 replication. Findings from experiments on transfected and infected cells identified ubiquitination of vIRF-4 via K48-linkage and USP7-binding-associated suppression of vIRF-4 ubiquitination and, in infected cells, increased vIRF-4 expression. Analysis of IFN-I induction and associated signaling as a function of vIRF-4 and its interaction with USP7 identified a role of each in innate-immune suppression. Finally, activation via K63-polyubiquitination of the innate-immune signaling mediator TRAF3 was found to be suppressed by vIRF-4 in a USP7-binding-associated manner in infected cells, but not in transfected cells, likely via binding-regulated expression of vIRF-4. Together, our data identify the first examples of vIRF ubiquitination and a vIRF substrate of USP7, enhanced expression of vIRF-4 via its interaction with USP7, and TRAF3-inhibitory activity of vIRF-4. The findings address, for the first time, the biological significance of the interaction of vIRF-4 with USP7 and reveal a mechanism of vIRF-4-mediated innate-immune evasion and pro-replication activity via TRAF3 regulation. IMPORTANCE: HHV-8 homologs of cellular interferon regulatory factors (IRFs), involved in host-cell defense against virus infection, interact in an inhibitory fashion with IRFs and other mediators of antiviral innate immunity. These interactions are of demonstrated or hypothesized importance for successful primary, productive (lytic), and latent (persistent) infection by HHV-8. While HHV-8 vIRF-4 is known to interact physically with USP7 deubiquitinase, a key regulator of various cellular proteins, the functional and biological significance of the interaction has not been addressed. The present study identifies the interaction as important for HHV-8 productive replication and, indeed, for vIRF-4 expression and reveals a new function of vIRF-4 via inhibition of the activity of TRAF3, a pivotal mediator of host-cell antiviral activity through activation of cellular IRFs and induction of type-I interferons. These findings identify potential targets for the development of novel anti-HHV-8 agents, such as those able to disrupt vIRF-4-USP7 interaction or vIRF-4-stabilizing USP7 activity.