Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
Viruses ; 16(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39205202

RESUMEN

Oncolytic viruses combined with immunotherapy offer significant potential in tumor therapy. In this study, we engineered a further attenuated pseudorabies virus (PRV) vaccine strain that incorporates a PD-L1 inhibitor and demonstrated its promise as an oncolytic virus in tumor therapy. We first showed that the naturally attenuated PRV vaccine strain Bartha can efficiently infect tumor cells from multiple species, including humans, mice, and dogs in vitro. We then evaluated the safety and anti-tumor efficacy of this vaccine strain and its different single-gene deletion mutants using the B16-F10 melanoma mouse model. The TK deletion strain emerged as the optimal vector, and we inserted a PD-L1 inhibitor (iPD-L1) into it using CRISPR/Cas9 technology. Compared with the control, the recombinant PRV (rPRV-iPD-L1) exhibited more dramatic anti-tumor effects in the B16-F10 melanoma mouse model. Our study suggests that PRV can be developed not only as an oncolytic virus but also a powerful vector for expressing foreign genes to modulate the tumor microenvironment.


Asunto(s)
Antígeno B7-H1 , Herpesvirus Suido 1 , Melanoma Experimental , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Oncolíticos/genética , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Viroterapia Oncolítica/métodos , Melanoma Experimental/terapia , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Femenino , Perros , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Vectores Genéticos/genética , Inmunoterapia/métodos , Microambiente Tumoral
2.
Vet Microbiol ; 296: 110172, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38971118

RESUMEN

TAK1-binding protein 1 (TAB1) assembles with TAK1 through its C-terminal domain, leading to the self-phosphorylation and activation of TAK1, which plays an important role in the activation of NF-κB and MAPK signaling pathway. Pseudorabies virus (PRV) is the pathogen of Pseudorabies (PR), which belongs to the Alphaherpesvirus subfamily and causes serious economic losses to the global pig industry. However, the impact of swine TAB1 (sTAB1) on PRV infection has not been reported. In this study, evidence from virus DNA copies, virus titer and western blotting confirmed that sTAB1 could inhibit PRV replication and knockout of sTAB1 by CRISPR-Cas9 gene editing system could promote PRV replication. Further mechanistic studies by real-time PCR and luciferase reporter gene assay demonstrated that sTAB1 could enhance the production of inflammatory factors and chemokines, IFN-ß transcription level and IFN-ß promoter activity after PRV infection. In summary, we clarify the underlying mechanism of sTAB1 in inhibiting PRV replication for the first time, which provides a new idea for preventing PRV infection and lays a foundation for PRV vaccine development.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Porcinos , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Sistemas CRISPR-Cas , Interferón beta/genética , Interferón beta/metabolismo
3.
Elife ; 132024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963696

RESUMEN

There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta-hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to the bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei, and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to the bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.


Asunto(s)
Huesos , Encéfalo , Sistema Nervioso Simpático , Animales , Sistema Nervioso Simpático/fisiología , Ratones , Encéfalo/fisiología , Encéfalo/metabolismo , Huesos/inervación , Huesos/fisiología , Herpesvirus Suido 1/fisiología
4.
Front Immunol ; 15: 1403070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015575

RESUMEN

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Asunto(s)
Herpesvirus Suido 1 , Inmunidad Innata , Seudorrabia , Transducción de Señal , Proteínas del Envoltorio Viral , Animales , Humanos , Ratones , Células HEK293 , Herpesvirus Suido 1/inmunología , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Seudorrabia/inmunología , Seudorrabia/virología , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Ubiquitinación , Proteínas del Envoltorio Viral/metabolismo
5.
J Vet Sci ; 25(4): e54, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083206

RESUMEN

IMPORTANCE: As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE: This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS: In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS: This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE: These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.


Asunto(s)
Herpesvirus Suido 1 , Proteómica , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Animales , Porcinos , Línea Celular , Eliminación de Gen , Proteínas Virales/genética , Proteínas Virales/metabolismo , Seudorrabia/virología , Seudorrabia/genética , Proteoma , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/metabolismo
6.
Virology ; 598: 110172, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39018683

RESUMEN

Lysine crotonylation is a common occurrence in eukaryotic cells, regulating various physiological functions, including chromatin remodeling, cellular growth, and development. However, its involvement in viral infections has rarely been documented. In this study, we reveal that pseudorabies virus (PRV) infection significantly alters the global lysine crotonylation levels in porcine kidney PK-15 cells. Specifically, we identified a few viral proteins, including UL54, gM, gD, UL19, UL37, and UL46, which undergo crotonylation modification. Our observations indicate that at 20 h post-infection (hpi), 551 crotonylation sites were reduced across 345 proteins, while 47 new sites emerged in 37 proteins compared to the control group. By 40 hpi, 263 sites had decreased in 190 proteins, while 389 new sites appeared in 240 proteins. Deeper analysis revealed that the proteins with altered crotonylation levels were primarily involved in binding, catalytic activity, biosynthetic processes, ribosome activity, and metabolic processes. Additionally, our findings underscored the significance of ribosomes and the endoplasmic reticulum (ER), which were enriched with proteins exhibiting altered crotonylation. Overall, our study for the first time offers new insights into the relationship between crotonylation and herpes virus infection, paving the way for future investigations into the role of crotonylation in viral infections.


Asunto(s)
Herpesvirus Suido 1 , Lisina , Procesamiento Proteico-Postraduccional , Proteínas Virales , Lisina/metabolismo , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/metabolismo , Herpesvirus Suido 1/genética , Porcinos , Línea Celular , Proteínas Virales/metabolismo , Proteínas Virales/genética , Seudorrabia/virología , Seudorrabia/metabolismo
7.
mSphere ; 9(8): e0029724, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39041808

RESUMEN

Interaction between viruses and bacteria during the development of infectious diseases is a complex question that requires continuous study. In this study, we explored the interactions between pseudorabies virus (PRV) and Pasteurella multocida (PM), which are recognized as the primary and secondary agents of porcine respiratory disease complex (PRDC), respectively. In vivo tests using mouse models demonstrated that intranasal inoculation with PRV at a sublethal dose induced disruption of murine respiratory barrier and promoted the invasion and damages caused by PM through respiratory infection. Inoculation with PRV also disrupted the barrier function of murine and porcine respiratory epithelial cells, and accelerated the adherence and invasion of PM to the cells. In mechanism, PRV infection resulted in decreased expression of tight junction proteins (ZO-1, occludin) and adherens junction proteins (ß-catenin, E-cadherin) between neighboring respiratory epithelial cells. Additionally, PRV inoculation at an early stage downregulated multiple biological processes contributing to epithelial adhesion and barrier functions while upregulating signals beneficial for respiratory barrier disruption (e.g., the HIF-1α signaling). Furthermore, PRV infection also stimulated the upregulation of cellular receptors (CAM5, ICAM2, ACAN, and DSCAM) that promote bacterial adherence. The data presented in this study provide insights into the understanding of virus-bacteria interactions in PRDC and may also contribute to understanding the mechanisms of secondary infections caused by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine. IMPORTANCE: Co-infections caused by viral and bacterial agents are common in both medical and veterinary medicine, but the related mechanisms are not fully understood. This study investigated the interactions between the zoonotic pathogens PRV and PM during the development of respiratory infections in both cell and mouse models, and reported the possible mechanisms which included: (i) the primary infection of PRV may induce the disruption and/or damage of mammal respiratory barrier, thereby contributing to the invasion of PM; (ii) PRV infection at early stage accelerates the transcription and/or expression of several cellular receptors that are beneficial for bacterial adherence. This study may shed a light on understanding the mechanisms on the secondary infection of PM promoted by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine.


Asunto(s)
Herpesvirus Suido 1 , Infecciones por Pasteurella , Pasteurella multocida , Seudorrabia , Animales , Pasteurella multocida/patogenicidad , Pasteurella multocida/fisiología , Ratones , Infecciones por Pasteurella/microbiología , Herpesvirus Suido 1/fisiología , Porcinos , Seudorrabia/virología , Seudorrabia/metabolismo , Coinfección/microbiología , Coinfección/virología , Células Epiteliales/virología , Células Epiteliales/microbiología , Permeabilidad , Femenino , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Mucosa Respiratoria/virología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/metabolismo
8.
mBio ; 15(8): e0144524, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953638

RESUMEN

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.


Asunto(s)
Biotina , Humanos , Biotina/metabolismo , Zixina/metabolismo , Zixina/genética , Animales , Línea Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Interacciones Huésped-Patógeno , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Sistemas CRISPR-Cas , Células Epiteliales/virología , Células Epiteliales/metabolismo
9.
Neurosci Bull ; 40(10): 1445-1457, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38896358

RESUMEN

The kidneys are essential organs that help maintain homeostasis, and their function is regulated by the neural system. Despite the anatomical multi-synaptic connection between the central autonomic nuclei and the kidneys, it remains unclear whether there are any variations in neural connections between the nervous systems and the renal cortex and medulla in male and female mice. Here, we used the pseudorabies virus to map the central innervation network of the renal cortex and medulla in both sexes. The data revealed that specific brain regions displayed either a contralateral-bias or ipsilateral-bias pattern while kidney-innervating neurons distributed symmetrically in the midbrain and hindbrain. Sex differences were observed in the distribution of neurons connected to the left kidney, as well as those connected to the renal cortex and medulla. Our findings provide a comprehensive understanding of the brain-kidney network in both males and females and may help shed light on gender differences in kidney function and disease susceptibility in humans.


Asunto(s)
Encéfalo , Riñón , Vías Nerviosas , Caracteres Sexuales , Animales , Femenino , Masculino , Riñón/inervación , Riñón/fisiología , Encéfalo/fisiología , Ratones , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Herpesvirus Suido 1/fisiología , Mapeo Encefálico
10.
J Virol ; 98(7): e0056124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869285

RESUMEN

Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Suido 1 , Neuronas , Activación Viral , Latencia del Virus , Animales , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/fisiología , Neuronas/virología , Neuronas/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Proteína Vmw65 de Virus del Herpes Simple/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/genética , Silenciador del Gen , Ratas , Axones/virología , Axones/metabolismo , Dependovirus/genética , Dependovirus/fisiología , Seudorrabia/virología , Seudorrabia/metabolismo , Células Cultivadas , Herpes Simple/virología , Herpes Simple/metabolismo
11.
Int J Biol Macromol ; 274(Pt 2): 133463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944094

RESUMEN

The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.


Asunto(s)
Fusión Celular , Herpesvirus Suido 1 , Ubiquitina-Proteína Ligasas , Replicación Viral , Red trans-Golgi , Animales , Humanos , Línea Celular , Herpesvirus Suido 1/fisiología , Red trans-Golgi/metabolismo , Red trans-Golgi/virología , Ubiquitina-Proteína Ligasas/metabolismo
12.
Vet Microbiol ; 295: 110164, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936155

RESUMEN

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Asunto(s)
Herpesvirus Suido 1 , Ubiquitina-Proteína Ligasas , Replicación Viral , Red trans-Golgi , Herpesvirus Suido 1/fisiología , Animales , Red trans-Golgi/virología , Red trans-Golgi/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Fusión Celular , Porcinos , Línea Celular , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Células HEK293 , Seudorrabia/virología
13.
Vet Microbiol ; 295: 110165, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936156

RESUMEN

Pseudorabies virus (PRV) effectively utilizes numerous host proteins and pathways to establish a successful infection. Consequently, it becomes imperative to investigate novel host factors implicated in viral infections to gain a deeper understanding of PRV pathogenesis. In this study, we reveal that the host heat shock protein, DNAJB8, functions as a negative regulator in PRV replication. Our findings indicated that both mRNA and protein levels of DNAJB8 were downregulated in cells infected with PRV. Further analysis demonstrated that overexpressing DNAJB8 suppressed PRV replication, whereas its knockdown enhanced viral replication. From a mechanistic perspective, DNAJB8 promoted cellular autophagy, subsequently impeding viral replication. Additionally, we discovered that the transcription factor SOX30 regulated DNAJB8 expression, thereby influencing viral replication. Collectively, these findings enhance our comprehension of the roles played by DNAJB8 and SOX30 in viral replication, broadening our knowledge of virus-host interactions.


Asunto(s)
Autofagia , Proteínas del Choque Térmico HSP40 , Herpesvirus Suido 1 , Replicación Viral , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Línea Celular , Porcinos , Interacciones Huésped-Patógeno , Seudorrabia/virología
14.
Virol J ; 21(1): 107, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720392

RESUMEN

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Asunto(s)
Autofagia , Herpesvirus Suido 1 , Interferón beta , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Animales , Humanos , Línea Celular , Células HEK293 , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Interferón beta/metabolismo , Interferón beta/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Seudorrabia/virología , Seudorrabia/metabolismo , Seudorrabia/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Porcinos , Mesocricetus
15.
Virol Sin ; 39(3): 403-413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636706

RESUMEN

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Triptófano-ARNt Ligasa , Replicación Viral , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Animales , Línea Celular , Porcinos , Triptófano-ARNt Ligasa/metabolismo , Triptófano-ARNt Ligasa/genética , Seudorrabia/virología , Seudorrabia/metabolismo , Transducción de Señal , Mitocondrias/metabolismo , Interacciones Huésped-Patógeno , Ratones
16.
PLoS Pathog ; 20(1): e1011956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295116

RESUMEN

Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Femenino , Ratones , Animales , Herpesvirus Suido 1/fisiología , Progesterona/farmacología , Progesterona/metabolismo , Internalización del Virus , Lisosomas/metabolismo , Antivirales/metabolismo , Seudorrabia/metabolismo
17.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054618

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Asunto(s)
Herpesvirus Suido 1 , Lipoproteínas LDL , Seudorrabia , Enfermedades de los Porcinos , Animales , Humanos , Ratones , Herpesvirus Suido 1/fisiología , Lipoproteínas LDL/metabolismo , Proproteína Convertasa 9 , Seudorrabia/virología , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Línea Celular
18.
Virol J ; 20(1): 264, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968757

RESUMEN

The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Porcinos , Animales , Herpesvirus Suido 1/fisiología , Actinas , Línea Celular , Replicación Viral
19.
J Mater Chem B ; 12(1): 122-130, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37997769

RESUMEN

With the urgent need for antiviral agents, antiviral materials with high biocompatibility and antiviral effects have attracted a lot of attention. In this study, gallic acid, a natural polyphenolic compound, was transformed into biocompatible graphene quantum dots (GAGQDs) which exhibit enhanced antiviral activity against pseudorabies virus (PRV). The as-prepared GAGQDs inhibit PRV proliferation with a 104-fold reduction in viral titers. Investigation of the antiviral mechanism revealed that GAGQDs inhibit the adsorption, invasion and replication of PRV infection. Treatment with GAGQDs regulates the expression levels of interferon-related antiviral proteins, including mitochondrial antiviral-signaling protein (MAVS), signal transducer and activator of transcription 1 (STAT1) and 2',5'-oligoadenylate synthetase 1 (OAS1), suggesting that GAGQDs can stimulate innate antiviral immune responses, resulting in enhanced antiviral effects. More importantly, GAGQD treatments alleviate clinical symptoms and reduce mortality in PRV-infected mice. Our results reveal the enhanced therapeutic effects of GAGQDs against PRV infection in vitro and in vivo, suggesting the potential of GAGQDs as a promising novel antiviral agent.


Asunto(s)
Grafito , Herpesvirus Suido 1 , Seudorrabia , Puntos Cuánticos , Ratones , Animales , Herpesvirus Suido 1/fisiología , Interferones/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Grafito/farmacología , Grafito/uso terapéutico , Seudorrabia/tratamiento farmacológico , Inmunidad Innata
20.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991423

RESUMEN

Pseudorabies virus (PRV) belongs to the alpha herpesvirus family and is responsible for Aujeszky's disease in pigs. Similar to other alpha herpesviruses, PRV establishes a lifelong latent infection in trigeminal ganglion. These latently infected pigs serve as a reservoir for recurrent infections when reactivation is triggered, making the eradication of PRV a challenging task. However, the molecular mechanism underlying PRV latency and reactivation in neurons is still poorly understood due to limitations in the in vitro model. To establish a pseudorabies virus latency and reactivation model in primary neuron cultures, we isolated dorsal root ganglion (DRG) from newborn Kunming mice using a method named epineurium-pulling for DRG collection (EPDC) and cultured primary neurons in vitro. A dual-colour recombinant PRV BAC mRuby-VP16 was constructed and 0.5 multiplicity of infection (MOI) was found as an appropriate dose in the presence of aciclovir to establish latency. Reactivation was induced using UV-inactivated herpesviruses or a series of chemical inhibitors. Interestingly, we found that not only UV-PRV, but also UV-HSV-1 and UV-BHoV-5 were able to induce rapid PRV reactivation. The efficiency of reactivation for LY294002, forskolin, etoposide, dexamethasone, and acetylcholine was found to be dependent on their concentration. In conclusion, we developed a valuable model of PRV latency and reactivation, which provides a basis for future mechanism research.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Ratones , Animales , Porcinos , Herpesvirus Suido 1/fisiología , Ganglios Espinales , Latencia del Virus , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA