Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956598

RESUMEN

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Asunto(s)
Acuaporina 4 , Epéndimo , Hidrocefalia , Ratones Noqueados , Microglía , Animales , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Microglía/metabolismo , Acuaporina 4/metabolismo , Acuaporina 4/genética , Ratones , Acueducto del Mesencéfalo/metabolismo , Acueducto del Mesencéfalo/patología , Antígenos CD11/metabolismo , Antígenos CD11/genética , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38916997

RESUMEN

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Asunto(s)
Cilios , Hidrocefalia , Microtúbulos , Animales , Femenino , Humanos , Masculino , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/metabolismo , Cilios/metabolismo , Cilios/patología , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/patología , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología
3.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718086

RESUMEN

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Asunto(s)
Trastorno del Espectro Autista , Cilios , Epéndimo , Ratones Noqueados , Fenotipo , Animales , Masculino , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Cilios/metabolismo , Modelos Animales de Enfermedad , Epéndimo/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Hidrocefalia/fisiopatología , Katanina/metabolismo , Katanina/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Sinapsis/metabolismo , Transcriptoma/genética
4.
Cell Biochem Funct ; 42(4): e4034, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38715189

RESUMEN

L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.


Asunto(s)
Mutación Missense , Molécula L1 de Adhesión de Célula Nerviosa , Humanos , Masculino , Células HEK293 , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Linaje , Recién Nacido
5.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741020

RESUMEN

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Asunto(s)
Encéfalo , Órgano Subcomisural , Animales , Ratones , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/embriología , Órgano Subcomisural/metabolismo , Regulación del Desarrollo de la Expresión Génica , Timosina/metabolismo , Timosina/genética , Ratones Transgénicos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Neuronas/metabolismo , Movimiento Celular/fisiología , Péptidos/metabolismo , Ratones Endogámicos C57BL
6.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436063

RESUMEN

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Asunto(s)
Enfermedades Fetales , Hidrocefalia , Células-Madre Neurales , Nacimiento Prematuro , Humanos , Femenino , Animales , Ratones , Epéndimo/patología , Hidrocefalia/cirugía , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
7.
Theranostics ; 14(5): 1909-1938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505607

RESUMEN

Rationale: Hydrocephalus is a substantial complication after intracerebral hemorrhage (ICH) or intraventricular hemorrhage (IVH) that leads to impaired cerebrospinal fluid (CSF) circulation. Recently, brain meningeal lymphatic vessels (mLVs) were shown to serve as critical drainage pathways for CSF. Our previous studies indicated that the degradation of neutrophil extracellular traps (NETs) after ICH/IVH alleviates hydrocephalus. However, the mechanisms by which NET degradation exerts beneficial effects in hydrocephalus remain unclear. Methods: A mouse model of hydrocephalus following IVH was established by infusing autologous blood into both wildtype and Cx3cr1-/- mice. By studying the features and processes of the model, we investigated the contribution of mLVs and NETs to the development and progression of hydrocephalus following secondary IVH. Results: This study observed the widespread presence of neutrophils, fibrin and NETs in mLVs following IVH, and the degradation of NETs alleviated hydrocephalus and brain injury. Importantly, the degradation of NETs improved CSF drainage by enhancing the recovery of lymphatic endothelial cells (LECs). Furthermore, our study showed that NETs activated the membrane protein CX3CR1 on LECs after IVH. In contrast, the repair of mLVs was promoted and the effects of hydrocephalus were ameliorated after CX3CR1 knockdown and in Cx3cr1-/- mice. Conclusion: Our findings indicated that mLVs participate in the development of brain injury and secondary hydrocephalus after IVH and that NETs contribute to acute LEC injury and lymphatic thrombosis. CX3CR1 is a key molecule in NET-induced LEC damage and meningeal lymphatic thrombosis, which leads to mLV dysfunction and exacerbates hydrocephalus and brain injury. NETs may be a critical target for preventing the obstruction of meningeal lymphatic drainage after IVH.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Hidrocefalia , Trombosis , Ratones , Animales , Trampas Extracelulares/metabolismo , Células Endoteliales/metabolismo , Hemorragia Cerebral/complicaciones , Hidrocefalia/complicaciones , Hidrocefalia/metabolismo
8.
Brain Nerve ; 76(2): 117-122, 2024 Feb.
Artículo en Japonés | MEDLINE | ID: mdl-38351557

RESUMEN

The inflow channel of the glymphatic pathway is the basilar membrane formed by the pia matter and glial border membrane in the outermost layer of the artery. Cerebrospinal fluid from the subarachnoid space enters the brain parenchyma through this pathway, and its water component is pumped into the brain parenchyma through aquaporin 4. One of the driving forces is vascular pulsation, and if this pathway becomes inoperative, cerebrospinal fluid loses its normal dynamics and contributes to idiopathic normal pressure hydrocephalus. Future research is needed to determine the extent of this contribution to the development of idiopathic normal pressure hydrocephalus.


Asunto(s)
Sistema Glinfático , Hidrocéfalo Normotenso , Hidrocefalia , Humanos , Sistema Glinfático/metabolismo , Hidrocéfalo Normotenso/líquido cefalorraquídeo , Encéfalo , Neuroglía , Acuaporina 4 , Hidrocefalia/metabolismo , Líquido Cefalorraquídeo/metabolismo
9.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38056463

RESUMEN

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Asunto(s)
Neoplasias Encefálicas , Plexo Coroideo , Hidrocefalia , Mastocitos , Humanos , Neoplasias Encefálicas/secundario , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Hidrocefalia/metabolismo , Hidrocefalia/patología , Mastocitos/metabolismo , Mastocitos/patología , Triptasas/líquido cefalorraquídeo , Metástasis de la Neoplasia/patología
10.
Nucl Med Commun ; 44(12): 1163-1167, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37779439

RESUMEN

AIM: Patients with idiopathic normal-pressure hydrocephalus (iNPH) can show a global reduction in cerebral glucose metabolism at [ 18 F]Fluorodeoxyglucose (FDG) PET. The presence of caudate hypometabolism has been identified as a potential biomarker in iNPH, yet there is limited evidence of hypermetabolic findings in patients with iNPH so far. METHODS: We retrieved retrospectively patients with iNPH and normal cognitive assessment, evaluated before surgery undergoing brain [ 18 F]FDG-PET. The 18 F-FDG-PET brain scans were compared to those of a control group of healthy subjects, matched for age and sex, by statistical parametric mapping (SPM) to identify areas of relative hypo- and hypermetabolism. Furthermore, the existence of a correlation between areas of hypo- and hypermetabolism in the patient group was tested. RESULTS: Seven iNPH patients (mean age 74 ±â€…6 years) were found in the hospital database. SPM group analysis revealed clusters of significant hypometabolism ( P  = 0.001) in the iNPH group in the dorsal striatum, involving caudate and putamen bilaterally. Clusters of significant hypermetabolism ( P  = 0.001) were revealed in the bilateral superior and precentral frontal gyrus (BA 4, 6). A significant inverse correlation between striatal hypometabolism and bilateral superior and precentral frontal gyrus hypermetabolism was revealed ( P  < 0.001 corrected for multiple comparisons). CONCLUSION: In this cohort, patients with iNPH showed subcortical hypometabolism, including bilateral dorsal striatum. To the best of our knowledge, this is the first report demonstrating a hypermetabolic pattern in the primary motor and premotor areas, and showing an inverse correlation between the striatum and motor cortex in patients with iNPH.


Asunto(s)
Fluorodesoxiglucosa F18 , Hidrocefalia , Humanos , Anciano , Anciano de 80 o más Años , Fluorodesoxiglucosa F18/metabolismo , Estudios Retrospectivos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hidrocefalia/metabolismo
11.
Fluids Barriers CNS ; 20(1): 71, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828581

RESUMEN

Intraventricular hemorrhage is a potentially life-threatening condition. Approximately 20% of patients develop posthemorrhagic hydrocephalus with increased ventricular volume and intracranial pressure. Hydrocephalus develops partially due to increased secretion of cerebrospinal fluid by the choroid plexus. During hemorrhage a multitude of factors are released into the cerebrospinal fluid. Many of these have been implicated in the hypersecretion. In this study, we have investigated the isolated effect of inflammatory components, on the abundance of two membrane transporters involved in cerebrospinal fluid secretion by the choroid plexus: the Na+-dependent Cl-/HCO3- exchanger, Ncbe, and the Na+, K+, 2Cl- cotransporter, NKCC1. We have established a primary choroid plexus epithelial cell culture from 1 to 7 days old mouse pups. Seven days after seeding, the cells formed a monolayer. The cells were treated with either tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1ß), or interleukin 6 (IL-6) to mimic inflammation. The data show that treatment with TNFα, and IL-1ß only transiently increased NKCC1 abundance whereas the effect on Ncbe abundance was a transient decrease. IL-6 however significantly increased NKCC1 (242%), the phosphorylated NKCC1 (147%), as well as pSPAK (406%) abundance, but had no effect on Ncbe. This study suggests that the inflammatory pathway involved in hypersecretion primarily is mediated by activation of basolateral receptors in the choroid plexus, mainly facilitated by IL-6. This study highlights the complexity of the pathophysiological circumstances occurring during intraventricular hemorrhage.


Asunto(s)
Plexo Coroideo , Hidrocefalia , Animales , Ratones , Plexo Coroideo/metabolismo , Citocinas/metabolismo , Hemorragia/metabolismo , Hidrocefalia/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Proteínas de Transporte de Membrana/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
12.
Cereb Cortex ; 33(15): 9339-9342, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37280765

RESUMEN

Hydrocephalus is classically considered to be a disorder of altered cerebrospinal fluid (CSF) circulation, leading to the dilation of cerebral ventricles. Here, we report a clinical case of a patient who presented with fetal-onset hydrocephalus with diffusely reduced cortical and white matter volumes resulting from a genetic mutation in L1CAM, a well-known hydrocephalus disease gene involved in neuronal cell adhesion and axon development. After CSF was drained from the ventricle intraoperatively, the patient's cortical mantle collapsed and exhibited a "floppy" appearance on neuroimaging, suggesting an inability of the hydrocephalic brain to maintain its structural integrity. The case provides clinical support for altered brain biomechanical properties in human hydrocephalus and adds to the emerging hypothesis that altered brain development with secondary impact on brain structural stability may contribute to ventricular enlargement in some subsets of hydrocephalus.


Asunto(s)
Hidrocefalia , Sustancia Blanca , Humanos , Encéfalo , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/metabolismo , Ventrículos Cerebrales , Mutación
13.
Fluids Barriers CNS ; 20(1): 42, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296418

RESUMEN

BACKGROUND: Neonatal hydrocephalus is a congenital abnormality resulting in an inflammatory response and microglial cell activation both clinically and in animal models. Previously, we reported a mutation in a motile cilia gene, Ccdc39 that develops neonatal progressive hydrocephalus (prh) with inflammatory microglia. We discovered significantly increased amoeboid-shaped activated microglia in periventricular white matter edema, reduced mature homeostatic microglia in grey matter, and reduced myelination in the prh model. Recently, the role of microglia in animal models of adult brain disorders was examined using cell type-specific ablation by colony-stimulating factor-1 receptor (CSF1R) inhibitor, however, little information exists regarding the role of microglia in neonatal brain disorders such as hydrocephalus. Therefore, we aim to see if ablating pro-inflammatory microglia, and thus suppressing the inflammatory response, in a neonatal hydrocephalic mouse line could have beneficial effects. METHODS: In this study, Plexxikon 5622 (PLX5622), a CSF1R inhibitor, was subcutaneously administered to wild-type (WT) and prh mutant mice daily from postnatal day (P) 3 to P7. MRI-estimated brain volume was compared with untreated WT and prh mutants P7-9 and immunohistochemistry of the brain sections was performed at P8 and P18-21. RESULTS: PLX5622 injections successfully ablated IBA1-positive microglia in both the WT and prh mutants at P8. Of the microglia that are resistant to PLX5622 treatment, there was a higher percentage of amoeboid-shaped microglia, identified by morphology with retracted processes. In PLX-treated prh mutants, there was increased ventriculomegaly and no change in the total brain volume was observed. Also, the PLX5622 treatment significantly reduced myelination in WT mice at P8, although this was recovered after full microglia repopulation by P20. Microglia repopulation in the mutants worsened hypomyelination at P20. CONCLUSIONS: Microglia ablation in the neonatal hydrocephalic brain does not improve white matter edema, and actually worsens ventricular enlargement and hypomyelination, suggesting critical functions of homeostatic ramified microglia to better improve brain development with neonatal hydrocephalus. Future studies with detailed examination of microglial development and status may provide a clarification of the need for microglia in neonatal brain development.


Asunto(s)
Hidrocefalia , Microglía , Ratones , Animales , Microglía/metabolismo , Hidrocefalia/etiología , Hidrocefalia/metabolismo , Encéfalo , Compuestos Orgánicos/metabolismo , Compuestos Orgánicos/farmacología , Modelos Animales de Enfermedad
14.
Cells Dev ; 175: 203858, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271245

RESUMEN

Coil-coiled domain containing 85c (Ccdc85c) is a causative gene for congenital hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. We established Ccdc85c knockout (KO) rats and investigated the roles of CCDC85C and intermediate filament protein expression, including nestin, vimentin, GFAP, and cytokeratin AE1/AE3 during the lateral ventricle development in KO rats to evaluate the role of this gene. We found altered and ectopic expression of nestin and vimentin positive cells in the wall of the dorso-lateral ventricle in the KO rats during development from the age of postnatal day (P) 6, whereas both protein expression became faint in the wild-type rats. In the KO rats, there was a loss of cytokeratin expression on the surface of the dorso-lateral ventricle with ectopic expression and maldevelopment of ependymal cells. Our data also revealed disturbed GFAP expression at postnatal ages. These findings indicate that lack of CCDC85C disrupts the proper expression of intermediate filament proteins (nestin, vimentin, GFAP, and cytokeratin), and CCDC85C is necessary for normal neurogenesis, gliogenesis, and ependymogenesis.


Asunto(s)
Hidrocefalia , Ratas , Animales , Nestina/genética , Vimentina/genética , Vimentina/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Neurogénesis/genética , Queratinas
15.
Methods Cell Biol ; 176: 103-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164533

RESUMEN

Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.


Asunto(s)
Hidrocefalia , Pez Cebra , Animales , Pez Cebra/genética , Encéfalo/patología , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Animales Modificados Genéticamente , Cilios/metabolismo
16.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047646

RESUMEN

Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid-electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.


Asunto(s)
Hidrocefalia , Humanos , Adulto , Hidrocefalia/metabolismo , Ventrículos Cerebrales/metabolismo , Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Resultado del Tratamiento , Proteínas Portadoras/metabolismo
17.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047057

RESUMEN

Cerebrospinal fluid (CSF) plays an important role in the homeostasis of the brain. We previously reported that CSF major glycoproteins are biosynthesized in the brain, i.e., lipocalin-type prostaglandin D2 synthase (L-PGDS) and transferrin isoforms carrying unique glycans. Although these glycoproteins are secreted from distinct cell types, their CSF levels have been found to be highly correlated with each other in cases of neurodegenerative disorders. The aim of this study was to examine these marker levels and their correlations in other neurological diseases, such as depression and schizophrenia, and disorders featuring abnormal CSF metabolism, including spontaneous intracranial hypotension (SIH) and idiopathic normal pressure hydrocephalus (iNPH). Brain-derived marker levels were found to be highly correlated with each other in the CSF of depression and schizophrenia patients. SIH is caused by CSF leakage, which is suspected to induce hypovolemia and a compensatory increase in CSF production. In SIH, the brain-derived markers were 2-3-fold higher than in other diseases, and, regardless of their diverse levels, they were found to be correlated with each other. Another abnormality of the CSF metabolism, iNPH, is possibly caused by the reduced absorption of CSF, which secondarily induces CSF accumulation in the ventricle; the excess CSF compresses the brain's parenchyma to induce dementia. One potential treatment is a "shunt operation" to bypass excess CSF from the ventricles to the peritoneal cavity, leading to the attenuation of dementia. After the shunt operation, marker levels began to increase within a week and then further increased by 2-2.5-fold at three, six, and twelve months post-operation, at which point symptoms had gradually attenuated. Notably, the marker levels were found to be correlated with each other in the post-operative period. In conclusion, the brain-derived major glycoprotein markers were highly correlated in the CSF of patients with different neurological diseases, and their correlations were maintained even after surgical intervention. These results suggest that brain-derived proteins could be biomarkers of CSF production.


Asunto(s)
Demencia , Hidrocefalia , Enfermedades del Sistema Nervioso , Humanos , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Glicoproteínas/metabolismo , Hidrocefalia/metabolismo , Demencia/metabolismo , Biomarcadores/metabolismo
18.
PLoS Biol ; 21(3): e3002008, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862758

RESUMEN

Idiopathic scoliosis (IS) is the most common spinal deformity diagnosed in childhood or early adolescence, while the underlying pathogenesis of this serious condition remains largely unknown. Here, we report zebrafish ccdc57 mutants exhibiting scoliosis during late development, similar to that observed in human adolescent idiopathic scoliosis (AIS). Zebrafish ccdc57 mutants developed hydrocephalus due to cerebrospinal fluid (CSF) flow defects caused by uncoordinated cilia beating in ependymal cells. Mechanistically, Ccdc57 localizes to ciliary basal bodies and controls the planar polarity of ependymal cells through regulating the organization of microtubule networks and proper positioning of basal bodies. Interestingly, ependymal cell polarity defects were first observed in ccdc57 mutants at approximately 17 days postfertilization, the same time when scoliosis became apparent and prior to multiciliated ependymal cell maturation. We further showed that mutant spinal cord exhibited altered expression pattern of the Urotensin neuropeptides, in consistent with the curvature of the spine. Strikingly, human IS patients also displayed abnormal Urotensin signaling in paraspinal muscles. Altogether, our data suggest that ependymal polarity defects are one of the earliest sign of scoliosis in zebrafish and disclose the essential and conserved roles of Urotensin signaling during scoliosis progression.


Asunto(s)
Hidrocefalia , Escoliosis , Urotensinas , Animales , Cilios/metabolismo , Epéndimo/metabolismo , Epéndimo/patología , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Escoliosis/genética , Escoliosis/metabolismo , Escoliosis/patología , Urotensinas/metabolismo , Pez Cebra
19.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982724

RESUMEN

Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery. The present investigation aimed to test the effect of BM-MSC treatment on astrocyte reaction formation. BM-MSCs were injected into the lateral ventricles of four-day-old hyh mice, and the periventricular reaction was detected two weeks later. A protein expression analysis of the cerebral tissue differentiated the BM-MSC-treated mice from the controls and revealed effects on neural development. In in vivo and in vitro experiments, BM-MSCs stimulated the generation of periventricular reactive astrocytes overexpressing AQP4 and its regulatory protein kinase D-interacting substrate of 220 kDa (Kidins220). In the cerebral tissue, mRNA overexpression of nerve growth factor (NGF), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF1α), and transforming growth factor beta 1 (TGFß1) could be related to the regulation of the astrocyte reaction and AQP4 expression. In conclusion, BM-MSC treatment in hydrocephalus can stimulate a key developmental process such as the periventricular astrocyte reaction, where AQP4 overexpression could be implicated in tissue recovery.


Asunto(s)
Hidrocefalia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones , Humanos , Animales , Astrocitos/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hidrocefalia/terapia , Hidrocefalia/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
20.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768908

RESUMEN

Hydrocephalus has been observed in rats with spontaneous hypertension (SHRs). It has been demonstrated that activation of the oxidative stress related protein retinoic acid receptor alpha (RARα) has neuroprotective impacts. Our investigation aims to determine the potential role and mechanism of RARα in hydrocephalus. The RARα-specific agonist (Am80) and RARα inhibitor (AGN196996) were used to investigate the role of RARα in cerebrospinal fluid (CSF) secretion in the choroid plexus of SHRs. Evaluations of CSF secretion, ventricular volume, Western blotting, and immunofluorescent staining were performed. Hydrocephalus and CSF hypersecretion were identified in SHRs but not in Wistar-Kyoto rats, occurring at the age of 7 weeks. The RARα/MAFB/MSR1 pathway was also activated in SHRs. Therapy with Am80 beginning in week 5 decreased CSF hypersecretion, hydrocephalus development, and pathological changes in choroid plexus alterations by week 7. AGN196996 abolished the effect of Am80. In conclusion, activation of the RARα attenuated CSF hypersecretion to inhibit hydrocephalus development via regulating the MAFB/MSR1 pathway. RARα may act as a possible therapeutic target for hydrocephalus.


Asunto(s)
Hidrocefalia , Hipertensión , Animales , Ratas , Plexo Coroideo/metabolismo , Hidrocefalia/metabolismo , Hipertensión/metabolismo , Factor de Transcripción MafB/metabolismo , Proteínas Oncogénicas/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Depuradores de Clase A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA