Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 676
Filtrar
1.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847939

RESUMEN

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Simulación del Acoplamiento Molecular , Péptidos , Hidrolisados de Proteína , Solubilidad , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Animales , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Agua/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Papaína/metabolismo , Papaína/antagonistas & inhibidores , Papaína/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo
2.
J Microbiol Biotechnol ; 34(5): 1082-1091, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38719776

RESUMEN

The antioxidant capacity and protective effect of peptides from protein hydrolysate of Cordyceps militaris cultivated with tussah pupa (ECPs) on H2O2-injured HepG2 cells were studied. Results indicated ECP1 (<3 kDa) presented the strongest antioxidant activity compared with other molecular weight peptides. Pretreated with ECPs observably enhanced survival rates and reduced apoptosis rates of HepG2 cells. ECPs treatment decreased the ROS level, MDA content and increased CAT and GSH-Px activities of HepG2 cells. Besides, the morphologies of natural peptides from C. militaris cultivated with tussah pupa (NCP1) and ECP1 were observed by scanning electron microscopy (SEM). Characterization results suggested the structure of NCP1 was changed by enzymatic hydrolysis treatment. Most of hydrophobic and acidic amino acids contents (ACC) in ECP1 were also observably improved by enzymatic hydrolysis. In conclusion, low molecular weight peptides had potential value in the development of cosmetics and health food.


Asunto(s)
Antioxidantes , Apoptosis , Cordyceps , Estrés Oxidativo , Péptidos , Especies Reactivas de Oxígeno , Cordyceps/química , Cordyceps/metabolismo , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Células Hep G2 , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Hidrólisis , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Sustancias Protectoras/farmacología , Peso Molecular , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacología
3.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819482

RESUMEN

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Asunto(s)
Hidrolisados de Proteína , Proteína de Suero de Leche , Proteína de Suero de Leche/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/química , Prebióticos , Humanos , Suero Lácteo/química , Suero Lácteo/metabolismo , Lactosa/metabolismo , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética
4.
J Agric Food Chem ; 72(22): 12529-12540, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38764367

RESUMEN

In this study, edible bird's nest (EBN) was proven to be a suitable source of bioactive peptides via enzymatic hydrolysis. The ultrafiltration component of the EBN peptides (EBNPs, Mw < 3 000 Da) could be responsible for moderate moisture retention and filaggrin synthesis. It was found that EBNP had a great capacity to protect HaCaT keratinocytes from DNA damage caused by UVB-irradiation and enhance wound healing by increasing the migratory and proliferative potential of cells. Furthermore, the external application of EBNP could effectively repair high glycolic acid concentration-induced skin burns in mice. A total of 1 188 peptides, predominantly the hydrophobic amino acids (e.g., Leu, Val, Tyr, Phe), were identified in the EBNP by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Molecular docking showed that hydrophobic tripeptides from EBNP had a good binding affinity to proton-dependent oligopeptide transporter PepT1. Our data indicated that the hydrophobic amino acid-rich EBNP plays an important role in skin wound healing.


Asunto(s)
Aves , Proteínas Filagrina , Péptidos , Hidrolisados de Proteína , Piel , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Ratones , Piel/química , Piel/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Aves/metabolismo , Simulación del Acoplamiento Molecular , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Espectrometría de Masas en Tándem , Masculino , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Transporte Biológico , Células HaCaT , Absorción Cutánea
5.
J Agric Food Chem ; 72(22): 12738-12751, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38788151

RESUMEN

Phytosterol (PS) is a steroid, and its bioavailability can be enhanced by interacting with protein in the C-24 hydroxyl group. The interaction between sterols and amino acid residues in proteins can be enhanced by enzymatic hydrolysis. Phytosterol and whey insulation hydrolysates (WPH1-4) fabricated by the Alcalase enzyme at different enzymatic hydrolysis times were selected as delivery systems to simulate sterol C-24 hydroxyl group interaction with protein. Increasing hydrolysis time can promote the production of ß-Lg, which raises the ratio of ß-turn in the secondary structure and promotes the formation of interaction between WPH and PS. The correlation coefficient between hydrogen bonds and encapsulation efficiency (EE) and bioaccessibility is 0.91 and 0.88 (P < 0.05), respectively, indicating that hydrogen bonds of two components significantly influenced the combination by concealing the hydrophobic amino acids and some residues, which improved PS EE and bioavailability by 3.03 and 2.84 times after PS was combined with the WPI hydrolysate. These findings are expected to enhance the absorption of PS and other macromolecules by protein enzymatic hydrolysis to broaden their applications for food.


Asunto(s)
Digestión , Fitosteroles , Hidrolisados de Proteína , Proteína de Suero de Leche , Fitosteroles/química , Fitosteroles/metabolismo , Proteína de Suero de Leche/química , Proteína de Suero de Leche/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrólisis , Disponibilidad Biológica , Enlace de Hidrógeno , Subtilisinas/química , Subtilisinas/metabolismo , Humanos , Animales
6.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689562

RESUMEN

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina , Cucurbita , Simulación del Acoplamiento Molecular , Péptidos , Peptidil-Dipeptidasa A , Semillas , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Cucurbita/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Semillas/química , Humanos , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
7.
Food Chem ; 452: 139466, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735106

RESUMEN

γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.


Asunto(s)
Antiinflamatorios , Péptido 1 Similar al Glucagón , Hidrolisados de Proteína , Gusto , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Animales , Humanos , Bovinos , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/química
8.
Physiol Plant ; 176(3): e14357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775128

RESUMEN

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Asunto(s)
Lactuca , Nitrógeno , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Nitrógeno/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Multiómica
9.
J Food Sci ; 89(4): 2482-2493, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369943

RESUMEN

The calcium-binding capacity and osteoblast proliferation and differentiation were studied in Alaska pollock surimi hydrolysate (APSH) using a system that mimics the gastrointestinal digestive system. Evaluation of the calcium absorption-promoting ability of APSH revealed that the best calcium-binding ability was achieved after hydrolysis with a combination of pepsin, α-chymotrypsin, and trypsin, and separation into <3 kDa (APSH-I), 3-5 kDa (APSH-II), 5-10 kDa (APSH-III), and <10 kDa (APSH-IV) fractions. Scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis confirmed that the hydrolysate and calcium ions formed a complex. Comparison of the calcium absorption capacity using Caco-2 cells showed that calcium absorption was promoted by these hydrolysates. Measurement of the osteoblast activation revealed higher alkaline phosphatase activity, collagen synthesis, and mineralization effect for the low-molecular-weight hydrolysate (LMH) than for the other hydrolysates. In addition, LMH promoted the expression of osteocalcin, osteopontin, and bone morphogenetic protein-2 and -4, which are hormones related to bone formation. Expression of the Runx2 transcription factor, which regulates the expression of these hormones, also increased. These results suggest that Alaska pollock surimi protein hydrolysates prepared using a system that mimics gastrointestinal hydrolysis may result in better osteoblast proliferation and bone health than those prepared using other proteases.


Asunto(s)
Calcio , Osteogénesis , Humanos , Calcio/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Células CACO-2 , Alaska , Diferenciación Celular , Osteoblastos/metabolismo , Calcio de la Dieta/metabolismo , Hormonas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
10.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 19-24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417848

RESUMEN

In this study, we investigated the effects of a porcine liver protein hydrolysate (PLH) diet on lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type II diabetes. OLETF rats (20-wk-old males) were pair-fed with either a PLH diet containing 20% PLH or a casein diet for 14 wk. Dietary PLH significantly lowered serum cholesterol and phospholipid concentrations, mainly by decreasing low-density lipoprotein and high-density lipoprotein fractions. Fecal cholesterol was significantly increased in the PLH diet group; however, the total bile acid concentration in the feces was not significantly different between the groups. In addition, the PLH diet significantly decreased serum thiobarbituric acid reactive substance concentrations. These results suggest that dietary PLH exerts hyperlipidemic and antioxidant effects, indicating that it is a novel functional food ingredient.


Asunto(s)
Diabetes Mellitus Tipo 2 , Carne de Cerdo , Carne Roja , Ratas , Masculino , Animales , Porcinos , Ratas Endogámicas OLETF , Diabetes Mellitus Tipo 2/metabolismo , Antioxidantes/farmacología , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Hígado/metabolismo , Colesterol/metabolismo
11.
Food Res Int ; 176: 113813, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163717

RESUMEN

The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.


Asunto(s)
Escarabajos , Hidrolisados de Proteína , Animales , Larva/química , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Escarabajos/química , Péptidos/farmacología , Péptidos/metabolismo , Agua/metabolismo , Proteínas de Insectos/farmacología , Proteínas de Insectos/metabolismo
12.
J Dairy Sci ; 107(5): 2620-2632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38101744

RESUMEN

This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.


Asunto(s)
Peróxido de Hidrógeno , Fármacos Neuroprotectores , Animales , Peróxido de Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Glutamina/farmacología , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Isoleucina/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Suero Lácteo/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
13.
Food Chem ; 439: 138143, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103490

RESUMEN

The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.


Asunto(s)
Cicer , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cicer/metabolismo , Hidrolisados de Proteína/metabolismo , Congelación , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación , Pan/análisis
14.
Nutrients ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892468

RESUMEN

Whey protein hydrolysate (WPH) has been shown to have a variety of bioactivities. This study aimed to investigate the preventive effect of WPH on dextran sodium sulfate (DSS)-induced colitis in C57BL/6J mice. The results indicated that WPH intervention for 37 days was effective in delaying the development of colonic inflammation, and high doses of WPH significantly inhibited weight loss (9.16%, n = 8, p < 0.05), protected the colonic mucosal layer, and significantly reduced the levels of inflammatory factors TNF-α, IL-6, and IL-1ß in mice with colitis (n = 8, p < 0.05). In addition, WPH intervention was able to up-regulate the short-chain fatty acids secretion and restore the gut microbiome imbalance in mice with colitis. Notably, high-dose WPH intervention increased the relative abundance of norank_f_Muribaculaceae by 1.52-fold and decreased the relative abundance of Romboutsia and Enterobacter by 3.77-fold and 2.45-fold, respectively, compared with the Model group. WPH intervention protected colitis mice mainly by reversing the microbiome imbalance and regulating the major histocompatibility complex (MHC) class I pathway. This study showed that WPH has anti-inflammatory activity and a promising colitis management future.


Asunto(s)
Colitis , Microbiota , Animales , Ratones , Dextranos/uso terapéutico , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico , Hidrolisados de Proteína/metabolismo , Suero Lácteo/metabolismo , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Antiinflamatorios/efectos adversos , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad
15.
Nutrients ; 15(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447191

RESUMEN

Long-term hypercaloric intake such as a high-fat diet (HFD) could act as negative regulators on bone remodeling, thereby inducing bone loss and bone microarchitecture destruction. Currently, food-derived natural compounds represent a promising strategy to attenuate HFD-induced bone loss. We previously prepared a whey protein hydrolysate (WPH) with osteogenic capacity. In this study, we continuously isolated and identified an osteogenic and antioxidant octapeptide TPEVDDA from WPH, which significantly promoted the alkaline phosphatase activities on MC3T3-E1 cells and exerted DPPH radical scavenging capacity. We then established an HFD-fed obese mice model with significantly imbalanced redox status and reduced bone mass and further evaluated the effects of different doses of WPH on ameliorating the HFD-induced bone loss and oxidative damages. Results showed that the administration of 2% and 4% WPH for 12 weeks significantly restored perirenal fat mass, improved serum lipid levels, reduced oxidative stress, and promoted the activity of antioxidant enzymes; meanwhile, WPH significantly preserved bone mass and bone mechanical properties, attenuated the degradation of trabecular microstructure, and regulated serum bone metabolism biomarkers. The protein levels of Runx2, Nrf2, and HO-1, as well as the phosphorylation level of GSK-3ß in tibias, were notably activated by WPH. Overall, we found that the potential mechanism of WPH on ameliorating the HFD-induced bone loss mainly through its antioxidant and osteogenic capacity by activating Runx2 and GSK-3ß/Nrf2 signaling pathway, demonstrating the potential of WPH to be used as a nutritional strategy for obesity and osteoporosis.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Antioxidantes/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico , Hidrolisados de Proteína/metabolismo , Dieta Alta en Grasa/efectos adversos , Suero Lácteo/metabolismo , Estrés Oxidativo , Transducción de Señal
16.
Food Chem ; 429: 136804, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490818

RESUMEN

Whey protein hydrolysate from Binglangjiang buffalo, a unique genetic resource, has anti-inflammatory activity, but its anti-inflammatory composition and effects are unknown. The aim of this study was to investigate the anti-inflammatory peptides from Binglangjiang buffalo whey protein hydrolysate. A total of 1483 peptides were identified using LC-MS/MS, and 12 peptides were chosen for chemical synthesis using peptidomics, and then two novel anti-inflammatory peptides (DQPFFHYN (DN8) and YSPFSSFPR (YR9)) were screened out using LPS-stimulated RAW264.7 cells. The molecular weights of DN8 and YR9 with ß-turn conformations were 1067.458 Da and 1087.52 Da, respectively, and showed a high in-vitro safety profile and thermal stability, but were intolerant to pepsin. Furthermore, ELISA and Western blot analysis indicated that peptides DN8 and YR9 significantly suppressed the secretion of pro-inflammatory cytokines NO, TNF-α, and IL-6 and the expression of mediators iNOS, TNF-α, and IL-6 in LPS-stimulated RAW264.7 cells. The study provides insights into the development of novel food-based anti-inflammatory nutritional supplements.


Asunto(s)
Búfalos , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/farmacología , Proteína de Suero de Leche/metabolismo , Búfalos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Hidrolisados de Proteína/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Células RAW 264.7
17.
Food Funct ; 14(17): 7882-7896, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37489104

RESUMEN

Our previous study evaluated the antioxidant and anti-inflammatory activities of selenium-enriched soybean peptides (SePPs) in vivo. In this study, we purified SePPs via gel filtration chromatography and obtained five fractions (F1, F2, F3, F4 and F5), among which F3 displayed the highest antioxidant and anti-inflammatory activities. Nineteen selenium-enriched peptides were identified in F3 by mass spectrometry. Two selenium-enriched peptides with sequences ESeCQIQKL (Sep-1) and SELRSPKSeC (Sep-2) were selected for synthesis based on their score and the number of hydrophobic amino acids, acidic and basic amino acids. Both Sep-1 and Sep-2 exhibited preventive effects on the heat stress-induced impairment of intestinal epithelial cell integrity, oxidative stress and inflammatory responses in a Caco-2 cell model. Pretreatment of the cells with Sep-1 or Sep-2 for 24 h reduced intracellular reactive oxygen species (ROS) generation, prevented the disruption of tight junction (TJ) proteins, and decreased paracellular permeability. Western blot results showed that Sep-1 and Sep-2 could improve the abnormal expressions of Nrf2, Keap1, NLRP3, caspase-1 and ASC/TMS1, thereby enhancing the glutathione (GSH) redox system and reducing IL-1ß and IL-18 concentrations. Sep-1 activated the Nrf2-Keap1 signaling pathway significantly more than Sep-2. Molecular docking results indicated that Sep-1 and Sep-2 are both bound to Keap1 and NLRP3 in the form of hydrogen bonds, hydrophobic interactions and salt bridges, which interferes with Nrf2 and NLRP3 signaling. Molecular dynamics simulations suggested that more hydrogen bonds were formed during the resultant process of Sep-1 with Keap1, and the compactness and stability of the complex structure were better than those of Sep-2. These findings confirm the value of both Sep-1 and Sep-2 in the development of dietary supplements as potential alternatives for heat damage and related disease prevention.


Asunto(s)
Antioxidantes , Selenio , Humanos , Antioxidantes/química , Selenio/farmacología , Selenio/metabolismo , Células CACO-2 , Glycine max/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Péptidos/farmacología , Péptidos/metabolismo , Glutatión/metabolismo
18.
Sci Rep ; 13(1): 12280, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507421

RESUMEN

This study is aimed to investigate whether tuna protein hydrolysate (TPH) supplementation could alleviate cardiovascular complications induced by a high-fat diet (HFD) in rats. Rats were fed a HFD for 16 weeks and given TPH (100 mg/kg, 300 mg/kg, or 500 mg/kg) or metformin (100 mg/kg) (n = 8) for the last four weeks. TPH had the following effects: resolved their impaired glucose tolerance, hyperglycemia, dyslipidemia, obesity, and hypertension (p < 0.05); alleviated left ventricular dysfunction and hypertrophy (p < 0.05), and vascular dysfunction and hypertrophy (p < 0.05); adipocyte hypertrophy; increases in circulating leptin and tumor necrosis factor (TNF-α) were mitigated (p < 0.05); increased renin-angiotensin system (RAS), oxidative stress, and decreased nitric oxide metabolites were modulated (p < 0.05). TPH restored the expression of angiotensin II receptor type 1 (AT1R)/NADPH oxidase 2 (NOX2), endothelial nitric oxide synthase (eNOS), nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor γ (PPARγ)/the nuclear factor kappa B (NF-κB) protein in cardiovascular tissue (p < 0.05). In metabolic syndrome (MS) rats, metformin and TPH had comparable effects. In conclusion, TPH alleviated cardiovascular complications related to MS. It suppressed RAS, oxidative stress, and inflammation that were associated with modulation of AT1R/NOX2, eNOS, Nrf2/HO-1, and PPARγ/NF-κB expression.


Asunto(s)
Dieta Alta en Grasa , Hidrolisados de Proteína , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Atún/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , PPAR gamma/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo , Suplementos Dietéticos , Hipertrofia
19.
Mar Drugs ; 21(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37367668

RESUMEN

Obesity and type 2 diabetes are characterized by low-grade systemic inflammation and glucose intolerance, which can be partially controlled with nutritional interventions. Protein-containing nutritional supplements possess health-promoting benefits. Herein, we examined the effect of dietary supplementation with protein hydrolysates derived from fish sidestreams on obesity and diabetes, utilizing a mouse model of High-Fat Diet-induced obesity and type 2 diabetes. We examined the effect of protein hydrolysates from salmon and mackerel backbone (HSB and HMB, respectively), salmon and mackerel heads (HSH and HMH, respectively), and fish collagen. The results showed that none of the dietary supplements affected weight gain, but HSH partially suppressed glucose intolerance, while HMB and HMH suppressed leptin increase in the adipose tissue. We further analyzed the gut microbiome, which contributes to the metabolic disease implicated in the development of type 2 diabetes, and found that supplementation with selected protein hydrolysates resulted in distinct changes in gut microbiome composition. The most prominent changes occurred when the diet was supplemented with fish collagen since it increased the abundance of beneficial bacteria and restricted the presence of harmful ones. Overall, the results suggest that protein hydrolysates derived from fish sidestreams can be utilized as dietary supplements with significant health benefits in the context of type 2 diabetes and diet-induced changes in the gut microbiome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Intolerancia a la Glucosa , Resistencia a la Insulina , Ratones , Animales , Intolerancia a la Glucosa/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Ratones Obesos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos , Dieta Alta en Grasa/efectos adversos , Colágeno/metabolismo , Ratones Endogámicos C57BL
20.
Mar Drugs ; 21(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37233488

RESUMEN

Information on the bioaccessibility of minerals is essential to consider a food ingredient as a potential mineral fortifier. In this study, the mineral bioaccessibility of protein hydrolysates from salmon (Salmo salar) and mackerel (Scomber scombrus) backbones and heads was evaluated. For this purpose, the hydrolysates were submitted to simulated gastrointestinal digestion (INFOGEST method), and the mineral content was analyzed before and after the digestive process. Ca, Mg, P, Fe, Zn, and Se were then determined using an inductively coupled plasma spectrometer mass detector (ICP-MS). The highest bioaccessibility of minerals was found in salmon and mackerel head hydrolysates for Fe (≥100%), followed by Se in salmon backbone hydrolysates (95%). The antioxidant capacity of all protein hydrolysate samples, which was measured by Trolox Equivalent Antioxidant Capacity (TEAC), increased (10-46%) after in vitro digestion. The heavy metals As, Hg, Cd, and Pb were determined (ICP-MS) in the raw hydrolysates to confirm the harmlessness of these products. Except for Cd in mackerel hydrolysates, all toxic elements were below the legislation levels for fish commodities. These results suggest the possibility of using protein hydrolysates from salmon and mackerel backbones and heads for food mineral fortification, as well as the need to verify their safety.


Asunto(s)
Perciformes , Salmo salar , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidrolisados de Proteína/metabolismo , Cadmio/metabolismo , Minerales/metabolismo , Perciformes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA