Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 813
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 431, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148029

RESUMEN

BACKGROUND: Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis (AS). Endothelial mesenchymal transition (EndMT) refers to the process in which endothelial cells lose endothelial cell morphology and characteristic gene expression, and acquire phenotypic characteristics and gene expression related to mesenchymal cells. Numerous studies have confirmed that EndMT is involved in the formation of atherosclerosis. Catalpol is one of the active components of Rehmannia, which has antioxidant, anti-inflammatory, anti-tumor, neuroprotective and other biological activities. Studies have shown that catalpol can reduce atherosclerotic plaque induced by high sugar or fat. However, the effect of catalpol on HHCY-induced EndMT is unclear. METHODS AND RESULTS: In vitro HHcy-treated primary human umbilical vein endothelial cells (HUVECs) were used to construct a cell model, and the antioxidants N-acetylcysteine (NAC) and catalase alcohol were administered. In vivo C57BL/6N mice were given a diet fed with 4.4% high methionine chow to construct a HHcy mice model and were treated with catalpol. The results showed that hhcy could induce morphological transformation of endothelial cells into mesenchymal cells, increase intracellular ROS content, up-regulate α-SMA, N-cadherin, p-p65 protein expression, down-regulate VE-cadherin, CD31 protein expression, induce pathological changes of aortic root endothelium, and increase aortic endothelial ROS content. Catalpol reversed these hhcy induced outcomes. CONCLUSIONS: Catalpol inhibits HHcy-induced EndMT, and the underlying mechanism may be related to the ROS/NF-κB signaling pathway. Catalpol may be a potential drug for the treatment of HHcy-related AS.


Asunto(s)
Aterosclerosis , Transición Endotelial-Mesenquimatosa , Hiperhomocisteinemia , Glucósidos Iridoides , FN-kappa B , Especies Reactivas de Oxígeno , Animales , Humanos , Antígenos CD/metabolismo , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/patología , Cadherinas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Transición Endotelial-Mesenquimatosa/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/patología , Hiperhomocisteinemia/tratamiento farmacológico , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/complicaciones , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/uso terapéutico , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Ratones
2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125665

RESUMEN

Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.


Asunto(s)
Enfermedad de Alzheimer , Homocisteína , Humanos , Enfermedad de Alzheimer/metabolismo , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Animales , Hiperhomocisteinemia/metabolismo
3.
Brain Res ; 1841: 149095, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38917878

RESUMEN

BACKGROUND: Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES: This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS: In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of ß-amyloid (Aß), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aß and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS: FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aß42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS: The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ácido Fólico , Hipocampo , Homocisteína , Presenilina-1 , Proteína Fosfatasa 2 , Ratas Wistar , S-Adenosilmetionina , Proteínas tau , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/farmacología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Homocisteína/farmacología , Homocisteína/toxicidad , Ácido Fólico/farmacología , Ratas , Masculino , Presenilina-1/genética , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Metilación/efectos de los fármacos , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/inducido químicamente , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fosforilación/efectos de los fármacos , Modelos Animales de Enfermedad
4.
J Pharmacol Sci ; 155(4): 131-139, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880547

RESUMEN

Elevation of the homocysteine concentration in the plasma called hyperhomocysteinemia (hHCY) during pregnancy causes a number of pre- and postnatal developmental disorders. The aim of our study was to analyze the effects of H2S donors -NaHS and N-acetylcysteine (NAC) on blood-brain barrier (BBB) permeability in rats with prenatal hHCY. In rats with mild hHCY BBB permeability assessed by Evans Blue extravasation in brain increased markedly throughout life. Administration of NaHS or NAC during pregnancy attenuated hHCY-associated damage and increased endogenous concentrations of sulfides in brain tissues. Acute application of dl-homocysteine thiolactone induced BBB leakage, which was prevented by the NMDA receptor antagonist MK-801 or H2S donors. Rats with hHCY demonstrated high levels of NO metabolite - nitrites and proinflammatory cytokines (IL-1ß, TNF-α, IL-6) in brain. Lactate dehydrogenase (LDH) activity in the serum was higher in rats with hHCY. Mitochondrial complex-I activity was lower in brain of hHCY rats. NaHS treatment during pregnancy restored levels of proinflammatory cytokines, nitrites and activity of the respiratory chain complex in brain as well as the LDH activity in serum. Our data suggest that H2S has neuroprotective effects against prenatal hHCY-associated BBB disturbance providing a potential strategy for the prevention of developmental impairments in newborns.


Asunto(s)
Acetilcisteína , Barrera Hematoencefálica , Citocinas , Sulfuro de Hidrógeno , Hiperhomocisteinemia , Fármacos Neuroprotectores , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Embarazo , Hiperhomocisteinemia/metabolismo , Femenino , Sulfuro de Hidrógeno/metabolismo , Fármacos Neuroprotectores/farmacología , Acetilcisteína/farmacología , Citocinas/metabolismo , Homocisteína/sangre , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Ratas Wistar , Sulfuros/farmacología , Sulfuros/administración & dosificación , Ratas , Masculino , Complicaciones del Embarazo , Encéfalo/metabolismo , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/sangre , Permeabilidad , Nitritos/metabolismo , Nitritos/sangre
5.
Chem Biol Interact ; 396: 111028, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729282

RESUMEN

Homocysteine (Hcy) is an independent cardiovascular disease (CVD) risk factor, whose mechanisms are poorly understood. We aimed to explore mild hyperhomocysteinemia (HHcy) effects on oxidative status, inflammatory, and cholinesterase parameters in aged male Wistar rats (365 days old). Rats received subcutaneous Hcy (0.03 µmol/g body weight) twice daily for 30 days, followed by euthanasia, blood collection and heart dissection 12 h after the last injection. Results revealed increased dichlorofluorescein (DCF) levels in the heart and serum, alongside decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase), reduced glutathione (GSH) content, and diminished acetylcholinesterase (AChE) activity in the heart. Serum butyrylcholinesterase (BuChE) levels also decreased. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) protein content decreased in both cytosolic and nuclear fractions, while cytosolic nuclear factor kappa B (NFκB) p65 increased in the heart. Additionally, interleukins IL-1ß, IL-6 and IL-10 showed elevated expression levels in the heart. These findings could suggest a connection between aging and HHcy in CVD. Reduced Nrf2 protein content and impaired antioxidant defenses, combined with inflammatory factors and altered cholinesterases activity, may contribute to understanding the impact of Hcy on cardiovascular dynamics. This study sheds light on the complex interplay between HHcy, oxidative stress, inflammation, and cholinesterases in CVD, providing valuable insights for future research.


Asunto(s)
Hiperhomocisteinemia , Inflamación , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Wistar , Animales , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Hiperhomocisteinemia/metabolismo , Ratas , Inflamación/metabolismo , Envejecimiento/metabolismo , Sistema Cardiovascular/metabolismo , Colinesterasas/metabolismo , Colinesterasas/sangre , Acetilcolinesterasa/metabolismo , Miocardio/metabolismo , Butirilcolinesterasa/metabolismo
6.
Redox Biol ; 73: 103139, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696898

RESUMEN

In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA ß-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.


Asunto(s)
Síndrome Metabólico , Animales , Ratones , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/genética , Masculino , Modelos Animales de Enfermedad , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/genética , Ratones Endogámicos C57BL , Glucosa/metabolismo , Metaboloma , Metabolómica/métodos , Redes y Vías Metabólicas
7.
Am J Physiol Renal Physiol ; 326(6): F988-F1003, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634138

RESUMEN

Acid sphingomyelinase (ASM) has been reported to increase tissue ceramide and thereby mediate hyperhomocysteinemia (hHcy)-induced glomerular nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation, inflammation, and sclerosis. In the present study, we tested whether somatic podocyte-specific silencing of Smpd1 gene (mouse ASM gene code) attenuates hHcy-induced NLRP3 inflammasome activation and associated extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. In vivo, somatic podocyte-specific Smpd1 gene silencing almost blocked hHcy-induced glomerular NLRP3 inflammasome activation in Podocre (podocyte-specific expression of cre recombinase) mice compared with control littermates. By nanoparticle tracking analysis (NTA), floxed Smpd1 shRNA transfection was found to abrogate hHcy-induced elevation of urinary EV excretion in Podocre mice. In addition, Smpd1 gene silencing in podocytes prevented hHcy-induced immune cell infiltration into glomeruli, proteinuria, and glomerular sclerosis in Podocre mice. Such protective effects of podocyte-specific Smpd1 gene silencing were mimicked by global knockout of Smpd1 gene in Smpd1-/- mice. On the contrary, podocyte-specific Smpd1 gene overexpression exaggerated hHcy-induced glomerular pathological changes in Smpd1trg/Podocre (podocyte-specific Smpd1 gene overexpression) mice, which were significantly attenuated by transfection of floxed Smpd1 shRNA. In cell studies, we also confirmed that Smpd1 gene knockout or silencing prevented homocysteine (Hcy)-induced elevation of EV release in the primary cultures of podocyte isolated from Smpd1-/- mice or podocytes of Podocre mice transfected with floxed Smpd1 shRNA compared with WT/WT podocytes. Smpd1 gene overexpression amplified Hcy-induced EV secretion from podocytes of Smpd1trg/Podocre mice, which was remarkably attenuated by transfection of floxed Smpd1 shRNA. Mechanistically, Hcy-induced elevation of EV release from podocytes was blocked by ASM inhibitor (amitriptyline, AMI), but not by NLRP3 inflammasome inhibitors (MCC950 and glycyrrhizin, GLY). Super-resolution microscopy also showed that ASM inhibitor, but not NLRP3 inflammasome inhibitors, prevented the inhibition of lysosome-multivesicular body interaction by Hcy in podocytes. Moreover, we found that podocyte-derived inflammatory EVs (released from podocytes treated with Hcy) induced podocyte injury, which was exaggerated by T cell coculture. Interstitial infusion of inflammatory EVs into renal cortex induced glomerular injury and immune cell infiltration. In conclusion, our findings suggest that ASM in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy and that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effect.NEW & NOTEWORTHY In the present study, we tested whether podocyte-specific silencing of Smpd1 gene attenuates hyperhomocysteinemia (hHcy)-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and associated inflammatory extracellular vesicle (EV) release in podocytes and thereby suppresses glomerular inflammatory response and injury. Our findings suggest that acid sphingomyelinase (ASM) in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and inflammatory EV release during hHcy. Based on our findings, it is anticipated that the development of podocyte-specific ASM inhibition or Smpd1 gene silencing may be a novel therapeutic strategy for treatment of hHcy-induced glomerular disease with minimized side effects.


Asunto(s)
Hiperhomocisteinemia , Inflamasomas , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Podocitos , Esfingomielina Fosfodiesterasa , Animales , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Podocitos/metabolismo , Podocitos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomerulonefritis/patología , Glomerulonefritis/metabolismo , Glomerulonefritis/genética , Silenciador del Gen , Ratones , Ratones Endogámicos C57BL , Vesículas Extracelulares/metabolismo , Masculino , Modelos Animales de Enfermedad
8.
Diabetes Metab J ; 48(2): 170-183, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468500

RESUMEN

Diabetes mellitus (DM) affects about 9.3% of the population globally. Hyperhomocysteinemia (HHcy) has been implicated in the pathogenesis of DM, owing to its promotion of oxidative stress, ß-cell dysfunction, and insulin resistance. HHcy can result from low status of one-carbon metabolism (OCM) nutrients (e.g., folate, choline, betaine, vitamin B6, B12), which work together to degrade homocysteine by methylation. The etiology of HHcy may also involve genetic variation encoding key enzymes in OCM. This review aimed to provide an overview of the existing literature assessing the link between OCM nutrients status, related genetic factors, and incident DM. We also discussed possible mechanisms underlying the role of OCM in DM development and provided recommendations for future research and practice. Even though the available evidence remains inconsistent, some studies support the potential beneficial effects of intakes or blood levels of OCM nutrients on DM development. Moreover, certain variants in OCM-related genes may influence metabolic handling of methyl-donors and presumably incidental DM. Future studies are warranted to establish the causal inference between OCM and DM and examine the interaction of OCM nutrients and genetic factors with DM development, which will inform the personalized recommendations for OCM nutrients intakes on DM prevention.


Asunto(s)
Diabetes Mellitus , Hiperhomocisteinemia , Humanos , Ácido Fólico , Nutrientes , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/prevención & control , Diabetes Mellitus/genética , Carbono , Variación Genética
9.
Aging Cell ; 23(5): e14106, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38358083

RESUMEN

Cerebrovascular dysfunction has been implicated as a major contributor to Alzheimer's Disease (AD) pathology, with cerebral endothelial cell (cEC) stress promoting ischemia, cerebral-blood flow impairments and blood-brain barrier (BBB) permeability. Recent evidence suggests that cardiovascular (CV)/cerebrovascular risk factors, including hyperhomocysteinemia (Hhcy), exacerbate AD pathology and risk. Yet, the underlying molecular mechanisms for this interaction remain unclear. Our lab has demonstrated that amyloid beta 40 (Aß40) species, and particularly Aß40-E22Q (AßQ22; vasculotropic Dutch mutant), promote death receptor 4 and 5 (DR4/DR5)-mediated apoptosis in human cECs, barrier permeability, and angiogenic impairment. Previous studies show that Hhcy also induces EC dysfunction, but it remains unknown whether Aß and homocysteine function through common molecular mechanisms. We tested the hypotheses that Hhcy exacerbates Aß-induced cEC DR4/5-mediated apoptosis, barrier dysfunction, and angiogenesis defects. This study was the first to demonstrate that Hhcy specifically potentiates AßQ22-mediated activation of the DR4/5-mediated extrinsic apoptotic pathway in cECs, including DR4/5 expression, caspase 8/9/3 activation, cytochrome-c release and DNA fragmentation. Additionally, we revealed that Hhcy intensifies the deregulation of the same cEC junction proteins mediated by Aß, precipitating BBB permeability. Furthermore, Hhcy and AßQ22, impairing VEGF-A/VEGFR2 signaling and VEGFR2 endosomal trafficking, additively decrease cEC angiogenic capabilities. Overall, these results show that the presence of the CV risk factor Hhcy exacerbates Aß-induced cEC apoptosis, barrier dysfunction, and angiogenic impairment. This study reveals specific mechanisms through which amyloidosis and Hhcy jointly operate to produce brain EC dysfunction and death, highlighting new potential molecular targets against vascular pathology in comorbid AD/CAA and Hhcy conditions.


Asunto(s)
Péptidos beta-Amiloides , Apoptosis , Barrera Hematoencefálica , Células Endoteliales , Homocisteína , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Homocisteína/farmacología , Homocisteína/metabolismo , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/complicaciones , Neovascularización Patológica/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396625

RESUMEN

The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 µmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 µmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.


Asunto(s)
Antioxidantes , Hiperhomocisteinemia , Ratas , Masculino , Animales , Catalasa/metabolismo , Antioxidantes/farmacología , Ratas Wistar , Malato Deshidrogenasa/metabolismo , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/metabolismo , Solución Salina , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Homocisteína/metabolismo , Colon/metabolismo
11.
Mol Neurobiol ; 61(9): 6788-6804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38351418

RESUMEN

Homocysteine (Hcy) is an independent and serious risk factor for dementia, including Alzheimer's disease (AD), but the precise mechanisms are still poorly understood. In the current study, we observed that the permissive histone mark trimethyl histone H3 lysine 4 (H3K4me3) and its methyltransferase KMT2B were significantly elevated in hyperhomocysteinemia (HHcy) rats, with impairment of synaptic plasticity and cognitive function. Further research found that histone methylation inhibited synapse-associated protein expression, by suppressing histone acetylation. Inhibiting H3K4me3 by downregulating KMT2B could effectively restore Hcy-inhibited H3K14ace in N2a cells. Moreover, chromatin immunoprecipitation revealed that Hcy-induced H3K4me3 resulted in ANP32A mRNA and protein overexpression in the hippocampus, which was regulated by increased transcription Factor c-fos and inhibited histone acetylation and synapse-associated protein expression, and downregulating ANP32A could reverse these changes in Hcy-treated N2a cells. Additionally, the knockdown of KMT2B restored histone acetylation and synapse-associated proteins in Hcy-treated primary hippocampal neurons. These data have revealed a novel crosstalk mechanism between KMT2B-H3K4me3-ANP32A-H3K14ace, shedding light on its role in Hcy-related neurogenerative disorders.


Asunto(s)
Histonas , Hiperhomocisteinemia , Animales , Histonas/metabolismo , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/patología , Acetilación , Metilación/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Hipocampo/metabolismo , Hipocampo/patología , Proteínas Nucleares/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratas , Sinapsis/metabolismo , Sinapsis/patología , Línea Celular Tumoral , Homocisteína/metabolismo , Homocisteína/farmacología
12.
Aging Cell ; 23(5): e14124, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380563

RESUMEN

DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.


Asunto(s)
Homocisteína , Enfermedad de Parkinson , Proteína Desglicasa DJ-1 , Humanos , Línea Celular Tumoral , Proteína Desglicasa DJ-1/química , Proteína Desglicasa DJ-1/metabolismo , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Envejecimiento , Encéfalo/metabolismo , Encéfalo/patología , Oxidación-Reducción , Mitocondrias/metabolismo , Metionina/administración & dosificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Hiperhomocisteinemia/tratamiento farmacológico , Hiperhomocisteinemia/metabolismo , Lisina/metabolismo
13.
EMBO Rep ; 25(1): 128-143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177907

RESUMEN

Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.


Asunto(s)
Hiperglucemia , Hiperhomocisteinemia , Ratas , Ratones , Humanos , Animales , Circulación Colateral , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Liso Vascular , Hiperhomocisteinemia/metabolismo , Apolipoproteínas E/metabolismo , Hiperglucemia/metabolismo
14.
Acta Neurol Belg ; 124(1): 213-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37728847

RESUMEN

BACKGROUND: Homocysteine (Hcy) is an endogenous nonprotein sulfur-containing amino acid biosynthesized from methionine by the removal of its terminal methyl group. Hyperhomocysteinemia (HHcy) has been linked to many systemic disorders, including stroke, proteinuria, epilepsy, psychosis, diabetes, lung disease, and liver disease. The clinical effects of high serum Hcy level, also known as hyperhomocysteinemia, have been explained by different mechanisms. However, little has been reported on the clinical and laboratory findings and etiologies of genetic HHcy in children. This study aimed to examine the relationships between clinical features, laboratory findings, and genetic defects of HHcy. METHODS: We retrospectively evaluated 20 consecutive children and adolescents with inherited HHcy at the pediatric neurology division of Baskent University, Adana Hospital (Adana, Turkey) between December 2011 and December 2022. RESULTS: Our main finding is that the most common cause of genetic HHcy is MTHFR mutation. The other main finding is that the Hcy level was higher in patients with CBS deficiency and intracellular cbl defects than in MTHFR mutations. We also found that clinical presentations of genetic HHcy vary widely, and the most common clinical finding is seizures. Here, we report the first and only case of a cbl defect with nonepileptic myoclonus. We also observed that mild and intermediate HHcy associated with the MTHFR mutation may be related to migraine, vertigo, tension-type headache, and idiopathic intracranial hypertension. Although some of the patients were followed up in tertiary care centers for a long time, they were not diagnosed with HHcy. Therefore, we suggest evaluating Hcy levels in children with unexplained neurological symptoms. CONCLUSIONS: Our findings suggest that genetic HHcy might be associated with different clinical manifestations and etiologies. Therefore, we suggest evaluating Hcy levels in children with unexplained neurologic symptoms.


Asunto(s)
Hiperhomocisteinemia , Accidente Cerebrovascular , Niño , Humanos , Adolescente , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Estudios Retrospectivos , Aminoácidos
15.
Gene ; 898: 148036, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38036076

RESUMEN

Abdominal aortic aneurysm (AAA) is a fatal cardiovascular disorder with high mortality and morbidity rates. To date, no drug has shown to significantly alleviate the risk of AAA. Previous studies have indicated that hyperhomocysteinemia (HHcy) significantly increases the incidence of AAA by disrupting endothelial cell homeostasis; however, the potential molecular mechanisms require clarification. Herein, we aimed to integrate transcriptomics analysis and molecular biology experiments to explore the potential molecular targets by which HHcy may increase the incidence of AAA. We integrated two AAA data profiles (GSE57691 and GSE7084) based on previously published microarray ribonucleic acid sequencing (RNAseq) data from the GEO database. Additionally, 500 µM homocysteine-treated human aorta endothelium cells microarray dataset (GSE175748) was downloaded and processed. Subsequently, single-cell RNA-seq profiles of the aortic aneurysms (GSE155468) were downloaded, scaled, and processed for further analysis. The microarray profiles analysis demonstrated that the Ras association domain family member 2 (RASSF2) and interleukin (IL)-1ß are potentially the target genes involved in the HHcy-mediated aggravation of AAA formation. Single-cell RNAseq analysis revealed that RASSF2 might impair endothelial cell function by increasing inflammatory cell infiltration to participate in AAA formation. Finally, we conducted reverse transcription quantitative polymerase chain reaction and immunofluorescence analysis to validate the up-regulated mRNA expression of RASSF2 (p = 0.008) and IL-1ß (p = 0.002) in AAA tissue compared to control tissue. Immunofluorescence staining revealed overexpression of RASSF2 protein in AAA tissue sections compared to control tissue (p = 0.037). Co-localization of RASSF2 and the aortic endothelium cell marker, CD31, was observed in tissue sections, indicating the potential involvement of RASSF2 in aortic endothelial cells. To summarise, our preliminary study revealed that HHcy may worsen AAA formation by up-regulating the expression of RASSF2 and IL-1ß in aortic endothelium cells.


Asunto(s)
Aneurisma de la Aorta Abdominal , Hiperhomocisteinemia , Humanos , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Células Endoteliales/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Perfilación de la Expresión Génica , Endotelio Vascular/metabolismo , Proteínas Supresoras de Tumor/genética
16.
Pharmacol Res ; 198: 107009, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995896

RESUMEN

Although hyperhomocysteinemia (hHcys) has been recognized as an important independent risk factor in the progression of end-stage renal disease and the development of cardiovascular complications related to end-stage renal disease, the mechanisms triggering pathogenic actions of hHcys are not fully understood. The present study was mainly designed to investigate the role of HDACs in renal injury induced by hHcys. Firstly, we identified the expression patterns of HDACs and found that, among zinc-dependent HDACs, HDAC9 was preferentially upregulated in the kidney from mice with hHcys. Deficiency or pharmacological inhibition of HDAC9 ameliorated renal injury in mice with hHcys. Moreover, podocyte-specific deletion of HDAC9 significantly attenuated podocyte injury and proteinuria. In vitro, gene silencing of HDAC9 attenuated podocyte injury by inhibiting apoptosis, reducing oxidative stress and maintaining the expressions of podocyte slit diaphragm proteins. Mechanically, we proved for the first time that HDAC9 reduced the acetylation level of H3K9 in the promoter of Klotho, then inhibited gene transcription of Klotho, finally aggravating podocyte injury in hHcys. In conclusion, our results indicated that targeting of HDAC9 might be an attractive therapeutic strategy for the treatment of renal injury induced by hHcys.


Asunto(s)
Hiperhomocisteinemia , Fallo Renal Crónico , Podocitos , Animales , Ratones , Represión Epigenética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Podocitos/patología
17.
Alzheimers Res Ther ; 15(1): 164, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789414

RESUMEN

BACKGROUND: Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid ß (Aß). Microglia (MG) play a crucial role in uptake of Aß fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aß phagocytosis remains unstudied. METHODS: We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-ß-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aß phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS: HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aß phagocytosis model, we identified 130 functional-validated Aß phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aß phagocytosis. Interestingly, we identified 14 human Aß phagocytic AD MG DEGs which represented impaired MG Aß phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aß phagocytosis. CONCLUSIONS: We established molecular signatures for a compensatory response of Aß phagocytosis activation in human and mouse AD MG and impaired Aß phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aß phagocytosis in AD.


Asunto(s)
Enfermedad de Alzheimer , Hiperhomocisteinemia , Ratones , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Microglía/metabolismo , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Metilación , Fagocitosis , Modelos Animales de Enfermedad , Ratones Transgénicos
18.
Cardiovasc Diabetol ; 22(1): 219, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620823

RESUMEN

BACKGROUND: Clinical observations suggest a complex relationship between obesity and coronary artery disease (CAD). This study aimed to characterize the intermediate metabolism phenotypes among obese patients with CAD and without CAD. METHODS: Sixty-two participants who consecutively underwent coronary angiography were enrolled in the discovery cohort. Transcriptional and untargeted metabolomics analyses were carried out to screen for key molecular changes between obese patients with CAD (CAD obese), without CAD (Non-CAD obese), and Non-CAD leans. A targeted GC-MS metabolomics approach was used to further identify differentially expressed metabolites in the validation cohorts. Regression and receiver operator curve analysis were performed to validate the risk model. RESULTS: We found common aberrantly expressed pathways both at the transcriptional and metabolomics levels. These pathways included cysteine and methionine metabolism and arginine and proline metabolism. Untargeted metabolomics revealed that S-adenosylhomocysteine (SAH), 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, nicotinuric acid, and 2-arachidonoyl glycerol were significantly elevated in the CAD obese group compared to the other two groups. In the validation study, targeted cysteine and methionine metabolomics analyses showed that homocysteine (Hcy), SAH, and choline were significantly increased in the CAD obese group compared with the Non-CAD obese group, while betaine, 5-methylpropanedioic acid, S-adenosylmethionine, 4-PA, and vitamin B2 (VB2) showed no significant differences. Multivariate analyses showed that Hcy was an independent predictor of obesity with CAD (hazard ratio 1.7; 95%CI 1.2-2.6). The area under the curve based on the Hcy metabolomic (HCY-Mtb) index was 0.819, and up to 0.877 for the HCY-Mtb.index plus clinical variables. CONCLUSION: This is the first study to propose that obesity with hyperhomocysteinemia is a useful intermediate metabolism phenotype that could be used to identify obese patients at high risk for developing CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Hiperhomocisteinemia , Obesidad , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Estudios Transversales , Cisteína , Pueblos del Este de Asia , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Metabolómica , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Estudios Prospectivos , Factores de Riesgo , Transcriptoma , Angiografía Coronaria , Factores de Riesgo Cardiometabólico , Adulto , Persona de Mediana Edad , Anciano
19.
Cell Biol Toxicol ; 39(6): 3077-3100, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37495868

RESUMEN

Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.


Asunto(s)
Hiperhomocisteinemia , Células Intersticiales del Testículo , Ratones , Masculino , Animales , Células Intersticiales del Testículo/metabolismo , Testosterona , Hiperhomocisteinemia/metabolismo , Macrófagos/metabolismo , Factores de Transcripción/genética
20.
Biochemistry (Mosc) ; 88(4): 435-456, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37080931

RESUMEN

According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.


Asunto(s)
Epigénesis Genética , Hiperhomocisteinemia , Embarazo , Femenino , Humanos , Hiperhomocisteinemia/metabolismo , Placenta/metabolismo , Metilación de ADN , Sistema Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA