Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.660
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1405835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309109

RESUMEN

Introduction: Alpha-cell hyperplasia (ACH) is a rare pancreatic endocrine condition. Three types of ACH have been described: functional or nonglucagonoma hyperglucagonemic glucagonoma syndrome, reactive or secondary to defective glucagon signaling, and non-functional. Few cases of ACH with concomitant pancreatic neuroendocrine tumors (pNETs) have been reported and its etiology remains poorly understood. A case report of non-functional ACH with glucagon-producing NET is herein presented. Case report: A 72-year-old male was referred to our institution for a 2 cm single pNET incidentally found during imaging for acute cholecystitis. The patient's past medical history included type 2 diabetes (T2D) diagnosed 12 years earlier, for which he was prescribed metformin, dapagliflozin, and semaglutide. The pNET was clinically and biochemically non-functioning, apart from mildly elevated glucagon 217 pg/ml (<209), and 68Ga-SSTR PET/CT positive uptake was only found at the pancreatic tail (SUVmax 11.45). The patient underwent a caudal pancreatectomy and the post-operative 68Ga-SSTR PET/CT was negative. A multifocal well-differentiated NET G1, pT1N0M0R0 (mf) strongly staining for glucagon on a background neuroendocrine alpha-cell hyperplasia with some degree of acinar fibrosis was identified on pathology analysis. Discussion and conclusion: This case reports the incidental finding of a clinically non-functioning pNET in a patient with T2D and elevated glucagon levels, unexpectedly diagnosed as glucagon-producing NET and ACH. A high level of suspicion was required to conduct the glucagon immunostaining, which is not part of the pathology routine for a clinically non-functioning pNET, and was key for the diagnosis that otherwise would have been missed. This case highlights the need to consider the diagnosis of glucagon-producing pNET on an ACH background even in the absence of glucagonoma syndrome.


Asunto(s)
Células Secretoras de Glucagón , Glucagón , Hiperplasia , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Masculino , Anciano , Hiperplasia/metabolismo , Hiperplasia/patología , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Glucagón/metabolismo , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167491, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39218273

RESUMEN

Dry skin induced chronic pruritus is an increasingly common and debilitating problem, especially in the elderly. Although keratinocytes play important roles in innate and adaptive immunity and keratinocyte proliferation is a key feature of dry skin induced chronic pruritus, the exact contribution of keratinocytes to the pathogenesis of dry skin induced chronic pruritus is poorly understood. In this study, we generated the acetone-ether-water induced dry skin model in mice and found that epidermal hyperplasia induced by this model is partly dependent on the ß-catenin signaling pathway. XAV939, an antagonist of ß-catenin signaling pathway, inhibited epidermal hyperplasia in dry skin model mice. Importantly, dry skin induced chronic pruritus also dramatically reduced in XAV939 treated mice. Moreover, acetone-ether-water treatment-induced epidermal hyperplasia and chronic itch were decreased in Trpv4-/- mice. In vitro, XAV939 inhibited hypo-osmotic stress induced proliferation of HaCaT cells, and hypo-osmotic stress induced proliferation of in HaCaT cells and primary cultured keratinocytes were also significantly reduced by blocking TRPV4 function. Finally, thymic stromal lymphopoietin release was examined both in vivo and in vitro, which was significantly inhibited by XAV939 treatment and Trpv4 deficiency, and anti-TSLP antibody treatment significantly decreased AEW-induced scratching behavior. Overall, our study revealed a unique ability of TRPV4 expressing keratinocytes in the skin, which critically mediated dry skin induced epidermal hyperplasia and chronic pruritus, thus provided novel insights into the development of therapies for chronic pruritus in the elderly.


Asunto(s)
Queratinocitos , Prurito , Canales Catiónicos TRPV , beta Catenina , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Prurito/patología , Prurito/metabolismo , Prurito/genética , Prurito/tratamiento farmacológico , Prurito/inducido químicamente , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Noqueados , Enfermedad Crónica , Hiperplasia/metabolismo , Hiperplasia/patología , Linfopoyetina del Estroma Tímico , Ratones Endogámicos C57BL , Piel/patología , Piel/metabolismo , Piel/efectos de los fármacos , Células HaCaT
3.
Nat Cardiovasc Res ; 3(5): 541-557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39195932

RESUMEN

Common arterial grafts used in coronary artery bypass grafting include internal thoracic artery (ITA), radial artery (RA) and right gastroepiploic artery (RGA) grafts; of these, the ITA has the best clinical outcome. Here, by analyzing the single-cell transcriptome of different arterial grafts, we suggest optimization strategies for the RA and RGA based on the ITA as a reference. Compared with the ITA, the RA had more lipid-handling-related CD36+ endothelial cells. Vascular smooth muscle cells from the RGA were more susceptible to spasm, followed by those from the RA; comparison with the ITA suggested that potassium channel openers may counteract vasospasm. Fibroblasts from the RA and RGA highly expressed GDF10 and CREB5, respectively; both GDF10 and CREB5 are associated with extracellular matrix deposition. Cell-cell communication analysis revealed high levels of macrophage migration inhibitory factor signaling in the RA. Administration of macrophage migration inhibitory factor inhibitor to mice with partial carotid artery ligation blocked neointimal hyperplasia induced by disturbed flow. Modulation of identified targets may have protective effects on arterial grafts.


Asunto(s)
Arterias Mamarias , Animales , Humanos , Arterias Mamarias/trasplante , Arterias Mamarias/metabolismo , Análisis de la Célula Individual , Arteria Radial/trasplante , Arteria Radial/metabolismo , Arteria Gastroepiploica/metabolismo , Arteria Gastroepiploica/trasplante , Miocitos del Músculo Liso/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neointima/patología , Neointima/metabolismo , Puente de Arteria Coronaria/métodos , Comunicación Celular , Fibroblastos/metabolismo , Células Endoteliales/metabolismo , Ratones , Transducción de Señal , Transcriptoma , Vasoconstricción/efectos de los fármacos , Células Cultivadas , Hiperplasia/metabolismo , Hiperplasia/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
4.
Nat Commun ; 15(1): 7398, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191789

RESUMEN

Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRß signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRß and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRß signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRß and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRßY692 negatively regulates PDGFRß signaling activation. The levels of both PTPN14 and phospho-PDGFRßY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRßY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRß activation.


Asunto(s)
Hiperplasia , Miocitos del Músculo Liso , Neointima , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Transducción de Señal , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Hiperplasia/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Neointima/metabolismo , Neointima/patología , Ratones , Fosforilación , Masculino , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Vasos Coronarios/patología , Vasos Coronarios/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología
5.
Asian Pac J Cancer Prev ; 25(7): 2567-2571, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068592

RESUMEN

BACKGROUND AND AIM: Colorectal cancer (CRC) is considered one of the most common cancers in the world. Serrated polyps were found to be precursor lesions for CRC. BRAF mutation (V600E) has been strongly linked to the development of these lesions. No previous study concerning BRAF immunohistochemical expression in serrated polyps- was done in Oman. The primary objective of our study was to assess the prevalence of BRAF (V600E) mutation in serrated colorectal polyps in the Omani population. The secondary objectives were to assess the prevalence of serrated polyps and their characteristic features: type, site and size as well as the relationship between BRAF (V600E) mutation and polyp type, site and size. MATERIALS AND METHODS: Ninety-one hyperplastic polyps (HP) (76.5%), 24 sessile serrated lesions (SSL) (20.2%) and 4 cases of tubular adenomas with low grade dysplasia (3.4%) were studied for BRAF (V600E) immunohistochemical expression. No case of traditional serrated adenoma (TSA) was present. Control cases of craniopharyngioma and papillary thyroid carcinoma were included. RESULTS: BRAF (V600E) IHC was positive in 63 of the HP polyps (69.2%), 13 SSLs (54.2%) and none of the adenomatous polyps. The majority of positive polyps (75.0%) were ≤5 mm in size, 17.9% were 5-10 mm and 7.1% were ≥10 mm in size.  The majority of BRAF (V600E) positive polyps (68.1 %) were in the distal colon and 31.9 % were in the proximal colon. The majority of positive cases for BRAF (V600E) were showing multiple polyps (61.8 %). None of the tubular adenomas showed any BRAF (V600E) positivity. CONCLUSION: Serrated polyps are now well known for their potential to develop CRC. Immunohistochemistry is an easy and reproducible way to detect BRAF (V600E) mutation. Our study showed there is high prevalence (64.3%) of BRAF mutation in serrated polyps in the Omani population. The majority of these polyps- were HP and SSL; and ≤5 mm in size and located in the distal colon.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Mutación , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Femenino , Masculino , Omán , Pólipos del Colon/genética , Pólipos del Colon/patología , Pólipos del Colon/metabolismo , Persona de Mediana Edad , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Adulto , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo , Centros de Atención Terciaria , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Anciano , Estudios de Seguimiento , Estudios de Casos y Controles , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Adulto Joven , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Técnicas para Inmunoenzimas , Hiperplasia/genética , Hiperplasia/patología , Hiperplasia/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Carcinoma Papilar/metabolismo
6.
J Biol Chem ; 300(8): 107499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944125

RESUMEN

Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.


Asunto(s)
Ciclina D2 , Células Secretoras de Glucagón , Hiperplasia , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptor ErbB-3 , Pez Cebra , Animales , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ciclina D2/metabolismo , Ciclina D2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Proliferación Celular , Aminoácidos/metabolismo , Línea Celular , Humanos
7.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886396

RESUMEN

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Asunto(s)
Neoplasias de la Mama , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Hiperplasia , Células Madre Neoplásicas , Factor de Transcripción STAT3 , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Femenino , Fosforilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hiperplasia/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica , Autorrenovación de las Células/genética , Línea Celular Tumoral , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/citología , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética
8.
Mol Biol Rep ; 51(1): 635, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727850

RESUMEN

BACKGROUND: Psoriasis, a chronic inflammatory skin disease, is increasingly effectively managed with the targeted immunotherapy; however, long-term immunotherapy carries health risks, and loss of response. Therefore, we need to develop the alternative treatment strategies. Mesenchymal stem/stromal cell (M.S.C.) exosomes stand out for their remarkable immunomodulatory properties, gaining widespread recognition. This study investigated whether M.S.C. exosomes can reduce psoriasis-induced hyperplasia by inducing Transforming Growth Factor beta 2 (TGF-beta2) signaling. METHODOLOGY: Exosomes were isolated from M.S.C.s by ultracentrifugation. Then, scanning electron microscopy was used for the morphology of exosomes. To ascertain the exosome concentration, the Bradford test was used. To ascertain the cellular toxicity of exosomes in Human Umbilical Vein Endothelial Cells ( H.U.V.E.C), an MTT experiment was then conducted. Real-time PCR was used to quantify TGF beta2 expression levels, whereas an ELISA immunosorbent assay was used to determine the protein concentration of TGF beta2. RESULTS: In this study, the exosomes of 15-30 nm in size that were uniform, and cup-shaped were isolated. Moreover, the IC50 value for this Treatment was calculated to be 181.750 µg/ml. The concentration of TGF-ß2 gene in the target cells significantly increased following Treatment with the exosomes. Furthermore, the expression level of the studied gene significantly increased due to the Treatment. CONCLUSION: Upregulating the expression of TGF-ß2 in psoriatic cells via TGF-ß2 signaling is one way exosomes can help reduce hyperplasia.


Asunto(s)
Exosomas , Células Endoteliales de la Vena Umbilical Humana , Hiperplasia , Células Madre Mesenquimatosas , Psoriasis , Factor de Crecimiento Transformador beta2 , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Psoriasis/metabolismo , Humanos , Factor de Crecimiento Transformador beta2/metabolismo , Hiperplasia/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transducción de Señal , Animales
9.
Sci Rep ; 14(1): 10717, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730018

RESUMEN

In reconstructive surgery, complications post-fibula free flap (FFF) reconstruction, notably peri-implant hyperplasia, are significant yet understudied. This study analyzed peri-implant hyperplastic tissue surrounding FFF, alongside peri-implantitis and foreign body granulation (FBG) tissues from patients treated at the Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital. Using light microscopy, pseudoepitheliomatous hyperplasia, anucleate and pyknotic prickle cells, and excessive collagen deposition were observed in FFF hyperplastic tissue. Ultrastructural analyses revealed abnormal structures, including hemidesmosome dilation, bacterial invasion, and endoplasmic reticulum (ER) swelling. In immunohistochemical analysis, unfolded protein-response markers ATF6, PERK, XBP1, inflammatory marker NFκB, necroptosis marker MLKL, apoptosis marker GADD153, autophagy marker LC3, epithelial-mesenchymal transition, and angiogenesis markers were expressed variably in hyperplastic tissue surrounding FFF implants, peri-implantitis, and FBG tissues. NFκB expression was higher in peri-implantitis and FBG tissues compared to hyperplastic tissue surrounding FFF implants. PERK expression exceeded XBP1 significantly in FFF hyperplastic tissue, while expression levels of PERK, XBP1, and ATF6 were not significantly different in peri-implantitis and FBG tissues. These findings provide valuable insights into the interconnected roles of ER stress, necroptosis, apoptosis, and angiogenesis in the pathogenesis of oral pathologies, offering a foundation for innovative strategies in dental implant rehabilitation management and prevention.


Asunto(s)
Implantes Dentales , Hiperplasia , Humanos , Femenino , Implantes Dentales/efectos adversos , Masculino , Persona de Mediana Edad , Hiperplasia/patología , Hiperplasia/metabolismo , Adulto , Anciano , Inmunohistoquímica , Periimplantitis/metabolismo , Periimplantitis/patología , Periimplantitis/etiología , Peroné/patología , Peroné/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167170, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38631407

RESUMEN

Intimal hyperplasia (IH) is a common pathological feature of vascular proliferative diseases, such as atherosclerosis and restenosis after angioplasty. Urotensin II (UII) and its receptor (UTR) are widely expressed in cardiovascular tissues. However, it remains unclear whether the UII/UTR system is involved in IH. Right unilateral common carotid artery ligation was performed and maintained for 21 days to induce IH in UTR knockout (UTR-/-) and wild-type (WT) mice. Histological analysis revealed that compared with WT mice, UTR-deficient mice exhibited a decreased neointimal area, angiostenosis and intima-media ratio. Immunostaining revealed fewer smooth muscle cells (SMCs), endothelial cells and macrophages in the lesions of UTR-/- mice than in those of WT mice. Protein interaction analysis suggested that the UTR may affect cell proliferation by regulating YAP and its downstream target genes. In vitro experiments revealed that UII can promote the proliferation and migration of SMCs, and western blotting also revealed that UII increased the protein expression of RhoA, CTGF, Cyclin D1 and PCNA and downregulated p-YAP protein expression, while these effects could be partly reversed by urantide. To evaluate the translational value of UTRs in IH management, WT mice were also treated with two doses of urantide, a UTR antagonist, to confirm the benefit of UTR blockade in IH progression. A high dose of urantide (600 µg/kg/day), rather than a low dose (60 µg/kg/day), successfully improved ligation-induced IH compared with that in mice receiving vehicle. The results of the present study suggested that the UII/UTR system may regulate IH partly through the RhoA-YAP signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proliferación Celular , Hiperplasia , Ratones Noqueados , Receptores Acoplados a Proteínas G , Transducción de Señal , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Hiperplasia/metabolismo , Hiperplasia/patología , Ligadura , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Neointima/metabolismo , Neointima/patología , Neointima/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Túnica Íntima/patología , Túnica Íntima/metabolismo , Urotensinas/metabolismo , Urotensinas/genética , Urotensinas/farmacología , Proteínas Señalizadoras YAP/metabolismo
11.
Cell Mol Biol Lett ; 29(1): 47, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589823

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in vascular smooth muscle cell (VSMC) phenotypic switching, which is an early pathogenic event in various vascular remodeling diseases (VRDs). However, the underlying mechanism is not fully understood. METHODS: An IP‒LC‒MS/MS assay was conducted to identify new binding partners of G6PD involved in the regulation of VSMC phenotypic switching under platelet-derived growth factor-BB (PDGF-BB) stimulation. Co-IP, GST pull-down, and immunofluorescence colocalization were employed to clarify the interaction between G6PD and voltage-dependent anion-selective channel protein 1 (VDAC1). The molecular mechanisms involved were elucidated by examining the interaction between VDAC1 and apoptosis-related biomarkers, as well as the oligomerization state of VDAC1. RESULTS: The G6PD level was significantly elevated and positively correlated with the synthetic characteristics of VSMCs induced by PDGF-BB. We identified VDAC1 as a novel G6PD-interacting molecule essential for apoptosis. Specifically, the G6PD-NTD region was found to predominantly contribute to this interaction. G6PD promotes VSMC survival and accelerates vascular neointimal hyperplasia by inhibiting VSMC apoptosis. Mechanistically, G6PD interacts with VDAC1 upon stimulation with PDGF-BB. By competing with Bax for VDAC1 binding, G6PD reduces VDAC1 oligomerization and counteracts VDAC1-Bax-mediated apoptosis, thereby accelerating neointimal hyperplasia. CONCLUSION: Our study showed that the G6PD-VDAC1-Bax axis is a vital switch in VSMC apoptosis and is essential for VSMC phenotypic switching and neointimal hyperplasia, providing mechanistic insight into early VRDs.


Asunto(s)
Glucosafosfato Deshidrogenasa , Músculo Liso Vascular , Canal Aniónico 1 Dependiente del Voltaje , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Becaplermina/genética , Becaplermina/metabolismo , Proliferación Celular , Proteína X Asociada a bcl-2/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Músculo Liso Vascular/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neointima/genética , Neointima/metabolismo , Neointima/patología , Apoptosis , Miocitos del Músculo Liso/metabolismo , Movimiento Celular/genética , Células Cultivadas , Fenotipo
12.
J Transl Med ; 22(1): 255, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459501

RESUMEN

OBJECTIVE: Benign prostatic hyperplasia (BPH) is common in elder men. The current study aims to identify differentially expressed genes (DEGs) in hyperplastic prostate and to explore the role of Nik related kinase (NRK) in BPH. METHODS: Four datasets including three bulk and one single cell RNA-seq (scRNA-seq) were obtained to perform integrated bioinformatics. Cell clusters and specific metabolism pathways were analyzed. The localization, expression and functional activity of NRK was investigated via RT-PCR, western-blot, immunohistochemical staining, flow cytometry, wound healing assay, transwell assay and CCK-8 assay. RESULTS: A total of 17 DEGs were identified by merging three bulk RNA-seq datasets. The findings of integrated single-cell analysis showed that NRK remarkably upregulated in fibroblasts and SM cells of hyperplasia prostate. Meanwhile, NRK was upregulated in BPH samples and localized almost in stroma. The expression level of NRK was significantly correlated with IPSS and Qmax of BPH patients. Silencing of NRK inhibited stromal cell proliferation, migration, fibrosis and EMT process, promoted apoptosis and induced cell cycle arrest, while overexpression of NRK in prostate epithelial cells showed opposite results. Meanwhile, induced fibrosis and EMT process were rescued by knockdown of NRK. Furthermore, expression level of NRK was positively correlated with that of α-SMA, collagen-I and N-cadherin, negatively correlated with that of E-cadherin. CONCLUSION: Our novel data identified NRK was upregulated in hyperplastic prostate and associated with prostatic stromal cell proliferation, apoptosis, cell cycle, migration, fibrosis and EMT process. NRK may play important roles in the development of BPH and may be a promising therapeutic target for BPH/LUTS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Próstata , Hiperplasia Prostática , Proteínas Serina-Treonina Quinasas , Masculino , Humanos , Anciano , Próstata/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Fibrosis
13.
Sci Rep ; 14(1): 4465, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396011

RESUMEN

The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.


Asunto(s)
Traumatismos de las Arterias Carótidas , Células Progenitoras Endoteliales , Exosomas , Animales , Ratas , Proteína X Asociada a bcl-2/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Caspasa 3/metabolismo , Proliferación Celular , Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Hiperplasia/metabolismo , Lipopolisacáridos/metabolismo , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
J Agric Food Chem ; 72(8): 4008-4022, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373191

RESUMEN

The vital pathological processes in intimal hyperplasia include aberrant vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching. Rosmarinic acid (RA) is a natural phenolic acid compound. Nevertheless, the underlying mechanism of RA in neointimal hyperplasia is still unclear. Our analysis illustrated that miR-25-3p mimics significantly enhanced PDGF-BB-mediated VSMCs proliferation, migration, and phenotypic switching while RA partially weakened the effect of miR-25-3p. Mechanistically, we found that miR-25-3p directly targets sirtuin (SIRT6). The suppressive effect of the miR-25-3p inhibitor on PDGF-BB-induced VSMCs proliferation, migration, and phenotypic switch was partially eliminated by SIRT6 knockdown. The suppression of the PDGF-BB-stimulated Nrf2/ARE signaling pathway that was activated by the miR-25-3p inhibitor was exacerbated by the SIRT6 knockdown. In in vivo experiments, RA reduced the degree of intimal hyperplasia while miR-25-3p agomir partially reversed the suppressive effect of RA in vascular remodeling. Our results indicate that RA activates the Nrf2/ARE signaling pathway via the miR-25-3p/SIRT6 axis to inhibit vascular remodeling.


Asunto(s)
MicroARNs , Sirtuinas , Humanos , Becaplermina/farmacología , Proliferación Celular , Hiperplasia/metabolismo , Hiperplasia/patología , Ácido Rosmarínico , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Remodelación Vascular , Músculo Liso Vascular , Movimiento Celular , Transducción de Señal , MicroARNs/genética , MicroARNs/metabolismo , Miocitos del Músculo Liso , Células Cultivadas , Sirtuinas/metabolismo , Sirtuinas/farmacología
15.
Life Sci ; 340: 122485, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311220

RESUMEN

AIM: Aging is a process characterized by a time-dependent decline in the functionality of adult stem cells and is closely associated with age-related diseases. However, understanding how aging promotes disease and its underlying causes is critical for combating aging. MAIN METHODS: The offspring of UAS-Gal4 and CG12744RNAiDrosophila were cultured for 33 days to evaluate the role of CG12744 in the aging intestine. Immunofluorescence was performed to detect specific cell type markers for assessing proliferation and differentiation. qRT-PCR was used to observe the changes in signaling regulating intestinal homeostasis in the aging intestine after CG12744 knockdown. 16S rRNA-seq analysis was also conducted to elucidate the role of gut microbes in CG12744-mediated intestinal dysfunction. KEY FINDINGS: The mRNA levels of CG12744 were significantly increased in the aged midguts. Knockdown of CG12744 in progenitor cells further exacerbates the age-related intestinal hyperplasia and dysfunction. In particular, upon depletion of CG12744 in progenitors, enteroblasts (EBs) exhibited an increased propensity to differentiate along the enteroendocrine cell (EE) lineage. In contrast, the overexpression of CG12744 in progenitor cells restrained age-related gut hyperplasia in Drosophila. Moreover, CG12744 prevented age-related intestinal stem cell (ISC) overproliferation and differentiation by modulating the EGFR, JNK, and BMP pathways. In addition, the inhibition of CG12744 resulted in a significant increase in the gut microbial composition in aging flies. SIGNIFICANCE: This study established a role for the CG12744 in regulating the proliferation and differentiation of adult stem cells, thereby identifying a potential therapeutic target for diseases caused by age-related dysfunction stem cell dysfunction.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila , Animales , Diferenciación Celular , Proliferación Celular , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Hiperplasia/metabolismo , Intestinos , ARN Ribosómico 16S/metabolismo , Células Madre , Dedos de Zinc , Proteínas de Unión al ADN/metabolismo
16.
Cells ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334674

RESUMEN

Different cellular mechanisms influence steatotic liver disease (SLD) progression. The influence of different levels of steatogenic inputs has not been studied in hepatocytes and hepatic stellate cells (HSCs). METHODS: HepG2 hepatocytes and LX-2 HSCs were cultured in mild (MS) and severe (SS) steatogenic conditions. TGF-ß stimulation was also tested for HSCs in control (T) and steatogenic conditions (MS-T and SS-T). Steatosis was stained with Oil Red, and the proliferation was assayed via WST-8 reduction, apoptosis via flow cytometry, and senescence via SA-ß-galactosidase activity. RESULTS: Regarding hepatocytes, steatosis progressively increased; proliferation was lower in MS and SS; and the viability of both conditions significantly decreased at 72 h. Apoptosis increased in MS at 72 h, while it decreased in SS. Senescence increased in MS and diminished in SS. Regarding HSCs, the SS and SS-T groups showed no proliferation, and the viability was reduced in MS at 72 h and in SS and SS-T. The LX-2 cells showed increased apoptosis in SS and SS-T at 24 h, and in MS and MS-T at 72 h. Senescence decreased in MS, SS, and SS-T. CONCLUSIONS: Lipid overload induces differential effects depending on the cell type, the steatogenic input level, and the exposure time. Hepatocytes are resilient to mild steatosis but susceptible to high lipotoxicity. HSCs are sensitive to lipid overload, undergoing apoptosis and lowering senescence and proliferation. Collectively, these data may help explain the development of steatosis and fibrosis in SLD.


Asunto(s)
Hígado Graso , Células Estrelladas Hepáticas , Humanos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hígado Graso/metabolismo , Proliferación Celular , Hiperplasia/metabolismo , Apoptosis , Lípidos
17.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279051

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Asunto(s)
Músculo Liso Vascular , Lesiones del Sistema Vascular , Ratones , Animales , Hiperplasia/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Proliferación Celular , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Constricción Patológica/metabolismo , Constricción Patológica/patología , Factores de Transcripción/metabolismo , Fenotipo , Neointima/genética , Neointima/metabolismo , Neointima/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas , Movimiento Celular
18.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172726

RESUMEN

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Asunto(s)
Traumatismos de las Arterias Carótidas , Lesiones del Sistema Vascular , Animales , Ratas , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Fibromodulina/metabolismo , Hiperplasia/complicaciones , Hiperplasia/metabolismo , Hiperplasia/patología , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patología , Neointima/prevención & control , Ratas Sprague-Dawley , ARN/metabolismo , ARN de Transferencia/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo
19.
Nat Commun ; 15(1): 72, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167723

RESUMEN

Obesity often leads to severe medical complications. However, existing FDA-approved medications to combat obesity have limited effectiveness in reducing adiposity and often cause side effects. These medications primarily act on the central nervous system or disrupt fat absorption through the gastrointestinal tract. Adipose tissue enlargement involves adipose hyperplasia and hypertrophy, both of which correlate with increased reactive oxygen species (ROS) and hyperactivated X-box binding protein 1 (XBP1) in (pre)adipocytes. In this study, we demonstrate that KT-NE, a nanoemulsion loaded with the XBP1 inhibitor KIRA6 and α-Tocopherol, simultaneously alleviates aberrant endoplasmic reticulum stress and oxidative stress in (pre)adipocytes. As a result, KT-NE significantly inhibits abnormal adipogenic differentiation, reduces lipid droplet accumulation, restricts lipid droplet transfer, impedes obesity progression, and lowers the risk of obesity-associated non-alcoholic fatty liver disease in female mice with obesity. Furthermore, diverse administration routes of KT-NE impact its in vivo biodistribution and contribute to localized and/or systemic anti-obesity effectiveness.


Asunto(s)
Adiposidad , Obesidad , Femenino , Animales , Ratones , Hiperplasia/metabolismo , Distribución Tisular , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Hipertrofia/patología , Dieta Alta en Grasa/efectos adversos
20.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38078543

RESUMEN

The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridad Celular , Endodermo/metabolismo , Hiperplasia/metabolismo , Intestinos , Embrión no Mamífero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA