Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Plant Mol Biol ; 114(4): 72, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874897

RESUMEN

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Fitocromo B , Transducción de Señal , Fitocromo B/metabolismo , Fitocromo B/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Citosol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Plantas Modificadas Genéticamente , Luz , Mutación , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , Fenotipo
2.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718571

RESUMEN

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Luz , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Hipocótilo/genética , Criptocromos/metabolismo , Criptocromos/genética , Reparación del ADN/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Morfogénesis/efectos de la radiación , Luz Azul
3.
Plant Physiol ; 187(3): 1096-1103, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34734275

RESUMEN

Ultraviolet-B (UV-B) radiation has a wavelength range of 280-315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved "sunscreen" flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cotiledón/genética , Cotiledón/fisiología , Cotiledón/efectos de la radiación , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Modelos Biológicos , Estrés Fisiológico , Rayos Ultravioleta/efectos adversos
4.
Nat Commun ; 12(1): 6128, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675219

RESUMEN

NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/efectos de la radiación , Proteínas 14-3-3/genética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Fosforilación , Fototropismo/efectos de la radiación , Unión Proteica , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Plant Mol Biol ; 107(1-2): 117-127, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34490593

RESUMEN

KEY MESSAGE: Cross-talk between light and ABA signaling is mediated by physical interaction between HY5 and ABI5 Arabidopsis. Plants undergo numerous transitions during their life-cycle and have developed a very complex network of signaling to integrate information from their surroundings to effectively survive in the ever-changing environment. Light signaling is one of the crucial factors that govern the plant growth and development from the very first step of that is from seedling germination to the flowering. Similarly, Abscisic acid (ABA) signaling transduces the signals from external unfavorable condition to the internal developmental pathways and is crucial for regulation of seed maturation, dormancy germination and early seedling development. These two fundamental factors coordinately regulate plant wellbeing, but the underlying molecular mechanisms that drive this regulation are poorly understood. Here, we identified that two bZIP transcription factors, ELONGATED HYPOCOTYLE 5 (HY5), a positive regulator of light signaling and ABA-INSENSITIVE 5 (ABI5), a positive regulator of ABA signaling interacts and integrates the two pathways together. Our phenotypic data suggest that ABI5 may act as a negative regulator during photomorphogenesis in contrast, HY5 acts as a positive regulator of ABA signaling in an ABA dependent manner. We further showed that over-expression of HY5 leads to ABA-hypersensitive phenotype and late flowering phenotype. Taken together, our data provides key insights regarding the mechanism of interaction between ABI5-HY5 that fine tunes the stress and developmental response in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Transducción de Señal , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Flores/fisiología , Germinación/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica/efectos de la radiación , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación , Transducción de Señal/efectos de la radiación
6.
Plant Signal Behav ; 16(11): 1966587, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34463604

RESUMEN

Plant response to light is a complex and diverse phenomenon. Several studies have elucidated the mechanisms via which light and hormones regulate hypocotyl growth. However, the hormone-dependent ultraviolet-B (UV-B) response in plants remains obscure. Involvement of gibberellins (GAs) in UV-B-induced hypocotyl inhibition and its mechanisms in Arabidopsis thaliana were investigated in the present research. UV-B exposure remarkably decreased the endogenous GA3 content through the UV RESISTANCE LOCUS 8 (UVR8) receptor pathway, and exogenous GA3 partially restored the hypocotyl growth. UV-B irradiation affected the expression levels of GA metabolism-related genes (GA20ox1, GA2ox1 and GA3ox1) in the hy5-215 mutant, resulting in increased GA content.ELONGATED HYPOCOTYL 5 (HY5) promoted the accumulation of DELLA proteins under UV-B radiation; HY5 appeared to regulate the abundance of DELLAs at the transcriptional level under UV-B. As a result, the GA3 content decreased, which eventually led to the shortening of the hypocotyl. To conclude, the present study provides new insight into the regulation of plant photomorphogenesis under UV-B.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Giberelinas/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación
7.
Plant J ; 107(5): 1346-1362, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160854

RESUMEN

The butenolide molecule, karrikin (KAR), emerging in smoke of burned plant material, enhances light responses such as germination, inhibition of hypocotyl elongation, and anthocyanin accumulation in Arabidopsis. The KAR signaling pathway consists of KARRIKIN INSENSITIVE 2 (KAI2) and MORE AXILLARY GROWTH 2 (MAX2), which, upon activation, act in an SCF E3 ubiquitin ligase complex to target the downstream signaling components SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 2 (SMXL2) for degradation. How degradation of SMAX1 and SMXL2 is translated into growth responses remains unknown. Although light clearly influences the activity of KAR, the molecular connection between the two pathways is still poorly understood. Here, we demonstrate that the KAR signaling pathway promotes the activity of a transcriptional module consisting of ELONGATED HYPOCOTYL 5 (HY5), B-BOX DOMAIN PROTEIN 20 (BBX20), and BBX21. The bbx20 bbx21 mutant is largely insensitive to treatment with KAR2 , similar to a hy5 mutant, with regards to inhibition of hypocotyl elongation and anthocyanin accumulation. Detailed analysis of higher order mutants in combination with RNA-sequencing analysis revealed that anthocyanin accumulation downstream of SMAX1 and SMXL2 is fully dependent on the HY5-BBX module. However, the promotion of hypocotyl elongation by SMAX1 and SMXL2 is, in contrast to KAR2 treatment, only partially dependent on BBX20, BBX21, and HY5. Taken together, these results suggest that light- and KAR-dependent signaling intersect at the HY5-BBX transcriptional module.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Furanos/farmacología , Fototransducción , Piranos/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Germinación , Hidrolasas/genética , Hidrolasas/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Luz , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Factores de Transcripción/genética
8.
PLoS Genet ; 17(5): e1009540, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989283

RESUMEN

Sugar, light, and hormones are major signals regulating plant growth and development, however, the interactions among these signals are not fully understood at the molecular level. Recent studies showed that sugar promotes hypocotyl elongation by activating the brassinosteroid (BR) signaling pathway after shifting Arabidopsis seedlings from light to extended darkness. Here, we show that sugar inhibits BR signaling in Arabidopsis seedlings grown under light. BR induction of hypocotyl elongation in seedlings grown under light is inhibited by increasing concentration of sucrose. The sugar inhibition of BR response is correlated with decreased effect of BR on the dephosphorylation of BZR1, the master transcription factor of the BR signaling pathway. This sugar effect is independent of the sugar sensors Hexokinase 1 (HXK1) and Target of Rapamycin (TOR), but requires the GSK3-like kinase Brassinosteroid-Insensitive 2 (BIN2), which is stabilized by sugar. Our study uncovers an inhibitory effect of sugar on BR signaling in plants grown under light, in contrast to its promotive effect in the dark. Such light-dependent sugar-BR crosstalk apparently contributes to optimal growth responses to photosynthate availability according to light-dark conditions.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Sacarosa/farmacología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Oscuridad , Hexoquinasa/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Luz , Fosfatidilinositol 3-Quinasas , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sacarosa/metabolismo
9.
J Integr Plant Biol ; 63(6): 1133-1146, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33982818

RESUMEN

Light serves as a crucial environmental cue which modulates plant growth and development, and which is controlled by multiple photoreceptors including the primary red light photoreceptor, phytochrome B (phyB). The signaling mechanism of phyB involves direct interactions with a group of basic helix-loop-helix (bHLH) transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and the negative regulators of photomorphogenesis, COP1 and SPAs. H2A.Z is an evolutionarily conserved H2A variant which plays essential roles in transcriptional regulation. The replacement of H2A with H2A.Z is catalyzed by the SWR1 complex. Here, we show that the Pfr form of phyB physically interacts with the SWR1 complex subunits SWC6 and ARP6. phyB and ARP6 co-regulate numerous genes in the same direction, some of which are associated with auxin biosynthesis and response including YUC9, which encodes a rate-limiting enzyme in the tryptophan-dependent auxin biosynthesis pathway. Moreover, phyB and HY5/HYH act to inhibit hypocotyl elongation partially through repression of auxin biosynthesis. Based on our findings and previous studies, we propose that phyB promotes H2A.Z deposition at YUC9 to inhibit its expression through direct phyB-SWC6/ARP6 interactions, leading to repression of auxin biosynthesis, and thus inhibition of hypocotyl elongation in red light.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación
10.
Plant Physiol ; 186(2): 1186-1201, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33693800

RESUMEN

As day-neutral (DN) woody perennial plants, the flowering time of roses (Rosa spp.) is assumed to be independent of the photoperiodic conditions; however, light responses of rose plants are not well understood. Chinese rose (Rosa chinensis) plants were grown under two light intensities (low light [LL], 92 µmol·m-2·s-1; or high light [HL], 278 µmol·m-2·s-1), and either with or without an end-of-day far-red (EOD-FR) treatment. Flowering was significantly delayed in the LL condition compared with the HL, but was not affected by EOD-FR treatment. The time until flowering positively corresponded with the mRNA and protein levels of phytochrome-interacting factors (PIFs; RcPIFs). The heterologous expression of RcPIF1, RcPIF3, or RcPIF4 in the Arabidopsis (Arabidopsis thaliana) pifq quadruple mutant partially rescued the mutant's shorter hypocotyl length. Simultaneous silencing of three RcPIFs in R. chinensis accelerated flowering under both LL and HL, with a more robust effect in LL, establishing RcPIFs as flowering suppressors in response to light intensity. The RcPIFs interacted with the transcription factor CONSTANS (RcCO) to form a RcPIFs-RcCO complex, which interfered with the binding of RcCO to the promoter of FLOWERING LOCUS T (RcFT), thereby inhibiting its expression. Furthermore, this inhibition was enhanced when RcPIFs were stabilized by LL, leading to delayed flowering under LL compared with HL. Our results not only revealed another layer of PIF functioning in the flowering of woody perennial plants, but also established a mechanism of light response in DN plants.


Asunto(s)
Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Rosa/genética , Arabidopsis/genética , Arabidopsis/fisiología , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Expresión Génica , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Mutación , Fotoperiodo , Proteínas de Plantas/genética , Rosa/fisiología , Rosa/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
11.
Methods Mol Biol ; 2297: 41-47, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33656668

RESUMEN

Light is one of the most important environmental factors, serving as the energy source of photosynthesis and a cue for plant developmental programs, called photomorphogenesis. Here, we provide a standardized operation to measure physiological parameters of photomorphogenesis, including in hypocotyl length, cotyledon size, and anthocyanin content.


Asunto(s)
Antocianinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Cotiledón/anatomía & histología , Hipocótilo/anatomía & histología , Arabidopsis/anatomía & histología , Arabidopsis/química , Arabidopsis/efectos de la radiación , Cotiledón/química , Cotiledón/crecimiento & desarrollo , Cotiledón/efectos de la radiación , Hipocótilo/química , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Tamaño de los Órganos/efectos de la radiación , Fenotipo
12.
Plant J ; 105(2): 392-420, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986276

RESUMEN

Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.


Asunto(s)
Relojes Circadianos/fisiología , Componentes Aéreos de las Plantas/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Luz , Redes y Vías Metabólicas , Componentes Aéreos de las Plantas/metabolismo , Componentes Aéreos de las Plantas/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , Transducción de Señal , Temperatura
13.
Methods Mol Biol ; 2213: 17-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33270189

RESUMEN

After germination, plants determine their morphogenesis, such as hypocotyl elongation and cotyledon opening, by responding to various wavelengths of light (photomorphogenesis). Cryptochrome is a blue-light photoreceptor that controls de-etiolation, stomatal opening and closing, flowering time, and shade avoidance. Successful incorporation of these phenotypes as indicators into a chemical screening system results in faster selection of candidate compounds. Here, we describe phenotypic screening for the blue-light response of Arabidopsis thaliana seedling and the resulting process that clarifies that the compound obtained in the screening is an inhibitor of cryptochromes.


Asunto(s)
Arabidopsis/metabolismo , Criptocromos/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/análisis , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Sistema Libre de Células , Cotiledón/anatomía & histología , Cotiledón/efectos de los fármacos , Cotiledón/efectos de la radiación , Criptocromos/metabolismo , Criptocromos/efectos de la radiación , Medios de Cultivo , Hipocótilo/anatomía & histología , Hipocótilo/efectos de los fármacos , Hipocótilo/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Luz , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de la radiación , Proteínas Recombinantes/biosíntesis , Plantones/efectos de los fármacos , Plantones/efectos de la radiación , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Plant Sci ; 301: 110665, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218632

RESUMEN

COP1, an important RING ubiquitin ligase E3, is a molecular switch for light regulation in plant development. As an interacting protein of COP1, CIP8 contains a RING-H2 domain, but its biological function is unclear. Here, the apple MdCIP8 was identified based on its homology with AtCIP8 in Arabidopsis. MdCIP8 was constitutively expressed at different levels in various apple tissues, and the expression level of MdCIP8 was not affected by light and dark conditions. MdCIP8 reversed the short hypocotyl phenotype of the cip8 mutant under light conditions. Furthermore, the yeast two-hybrid experiment showed that MdCIP8 interacted with the RING domain of MdCOP1 through its RING-H2 domain. MdCIP8-OX/cop1-4 exhibited the phenotype of the cop1-4 mutant, indicating that CIP8 acts upstream of COP1. In addition, an apple transient injection experiment showed that MdCIP8 inhibited anthocyanin accumulation in an MdCOP1-dependent pathway. Overall, our findings reveal that CIP8 plays an inhibitory role in the light-regulation responses of plants.


Asunto(s)
Antocianinas/metabolismo , Malus/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/enzimología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Malus/enzimología , Malus/crecimiento & desarrollo , Malus/efectos de la radiación , Mutación , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228084

RESUMEN

Polar auxin transport mediated by PIN-FORMED (PIN) proteins is critical for plant growth and development. As an environmental cue, shade stimulates hypocotyls, petiole, and stem elongation by inducing auxin synthesis and asymmetric distributions, which is modulated by PIN3,4,7 in Arabidopsis. Here, we characterize the MtPIN1 and MtPIN3, which are the orthologs of PIN3,4,7, in model legume species Medicago truncatula. Under the low Red:Far-Red (R:FR) ratio light, the expression of MtPIN1 and MtPIN3 is induced, and shadeavoidance response is disrupted in mtpin1 mtpin3 double mutant, indicating that MtPIN1 and MtPIN3 have a conserved function in shade response. Surprisingly, under the normal growth condition, mtpin1 mtpin3 displayed the constitutive shade avoidance responses, such as the elongated petiole, smaller leaf, and increased auxin and chlorophyll content. Therefore, MtPIN1 and MtPIN3 play dual roles in regulation of shadeavoidance response under different environments. Furthermore, these data suggest that PIN3,4,7 and its orthologs have evolved conserved and specific functions among species.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Transporte de Membrana/genética , Hojas de la Planta/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Clorofila/biosíntesis , Clorofila/genética , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Luz , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Medicago truncatula/efectos de la radiación , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fotosíntesis/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
16.
Plant Physiol ; 183(3): 1268-1280, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32430463

RESUMEN

Exquisitely regulated plastid-to-nucleus communication by retrograde signaling pathways is essential for fine-tuning of responses to the prevailing environmental conditions. The plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) has emerged as a stress signal transduced into a diverse ensemble of response outputs. Here, we demonstrate enhanced phytochrome B protein abundance in red light-grown MEcPP-accumulating ceh1 mutant Arabidopsis (Arabidopsis thaliana) plants relative to wild-type seedlings. We further establish MEcPP-mediated coordination of phytochrome B with auxin and ethylene signaling pathways and uncover differential hypocotyl growth of red light-grown seedlings in response to these phytohormones. Genetic and pharmacological interference with ethylene and auxin pathways outlines the hierarchy of responses, placing ethylene epistatic to the auxin signaling pathway. Collectively, our findings establish a key role of a plastidial retrograde metabolite in orchestrating the transduction of a repertoire of signaling cascades. This work positions plastids at the zenith of relaying information coordinating external signals and internal regulatory circuitry to secure organismal integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo B/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Vías Biosintéticas/efectos de la radiación , Epistasis Genética/efectos de los fármacos , Epistasis Genética/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Mutación/genética , Fitocromo B/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
17.
Proc Natl Acad Sci U S A ; 117(12): 6910-6917, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152121

RESUMEN

Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Indoles/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Glucosiltransferasas/metabolismo , Glicosilación , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Indoles/química , Luz , Reguladores del Crecimiento de las Plantas/farmacología , Plantones , Temperatura
18.
Nat Commun ; 11(1): 1323, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165634

RESUMEN

UV-B constitutes a critical part of the sunlight reaching the earth surface. The homodimeric plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) monomerizes in response to UV-B and induces photomorphogenic responses, including UV-B acclimation and tolerance. REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 are negative feedback regulators that operate by facilitating UVR8 ground state reversion through re-dimerization. Here we show that RUP1 and RUP2 are transcriptionally induced by cryptochrome photoreceptors in response to blue light, which is dependent on the bZIP transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). Elevated RUP1 and RUP2 levels under blue light enhance UVR8 re-dimerization, thereby negatively regulating UVR8 signalling and providing photoreceptor pathway cross-regulation in a polychromatic light environment, as is the case in nature. We further show that cryptochrome 1, as well as the red-light photoreceptor phytochrome B, contribute to UV-B tolerance redundantly with UVR8. Thus, photoreceptors for both visible light and UV-B regulate UV-B tolerance through an intricate interplay allowing the integration of diverse sunlight signals.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Fototransducción , Rayos Ultravioleta , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Luz , Fototransducción/efectos de la radiación , Modelos Biológicos , Multimerización de Proteína/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación
19.
Plant Cell Physiol ; 61(5): 933-941, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32091601

RESUMEN

We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.


Asunto(s)
Arabidopsis/inmunología , Luz , Temperatura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Análisis Multivariante , Fenotipo , Enfermedades de las Plantas , Inmunidad de la Planta/efectos de la radiación
20.
Genes Genomics ; 42(3): 347-354, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31902106

RESUMEN

BACKGROUND: Brassinosteroids (BR) are essential growth hormone in plants. Various components involved in signal transduction pathway have been identified as targets of 14-3-3 phospho-binding proteins. Previously, we showed that 14-3-3 proteins directly interact with the Brassinosteroid Insensitive 1 (BRI1), the BR receptor kinase, and are also subject to phosphorylation in a BR-dependent manner. OBJECTIVE: In this study, we aimed to examine a potential interplay between 14-3-3 proteins and BRI1 in plant growth. METHODS: Morphological phenotypes of a T-DNA insertion mutant line, 14-3-3ψφε, defective in three 14-3-3 isoforms, psi, phi and epsilon, were characterized and compared with bri1-5 and two transgenic lines for BRI1, BRI1-Flag and BRI1-Flag (14-3-3ψφε). We also generated complementation lines carrying each of the three 14-3-3 genes and determined their differences in rosette growth. RESULTS: No significant differences between the wild-type and 14-3-3ψφε seedlings were observed regardless of BR applications. However, BRI1-Flag (14-3-3ψφε) showed a significantly reduced cold tolerance and BR sensitivity in hypocotyl and root development when compared to BRI1-Flag. In addition, narrower leaf shape and smaller rosette size were observed in BRI1-Flag (14-3-3ψφε), while the mutant phenotypes were partially restored in the complementation lines, two of which with 14-3-3φ and 14-3-3ε showed the rosette growth comparable to BRI1-Flag. CONCLUSION: Taken together, our results suggested that 14-3-3 proteins might positively regulate BRI1 activity and showed that 14-3-3 isoforms have different functional impacts in BR signaling.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/biosíntesis , Brasinoesteroides/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/genética , Transducción de Señal/genética , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA