Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.685
Filtrar
1.
Mol Brain ; 17(1): 76, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438991

RESUMEN

The present study uses electron microscopy to document ultrastructural characteristics of hippocampal GABAergic inhibitory synapses under resting and stimulated conditions in three experimental systems. Synaptic profiles were sampled from stratum pyramidale and radiatum of the CA1 region from (1) perfusion fixed mouse brains, (2) immersion fixed rat organotypic slice cultures, and from (3) rat dissociated hippocampal cultures of mixed cell types. Synapses were stimulated in the brain by a 5 min delay in perfusion fixation to trigger an ischemia-like excitatory condition, and by treating the two culture systems with 90 mM high K+ for 2-3 min to depolarize the neurons. Upon such stimulation conditions, the presynaptic terminals of the inhibitory synapses exhibited similar structural changes to those seen in glutamatergic excitatory synapses, with depletion of synaptic vesicles, increase of clathrin-coated vesicles and appearance of synaptic spinules. However, in contrast to excitatory synapses, no structural differences were detected in the postsynaptic compartment of the inhibitory synapses upon stimulation. There were no changes in the appearance of material associated with the postsynaptic membrane or the length and curvature of the membrane. Also no change was detected in the labeling density of gephyrin, a GABAergic synaptic marker, lining the postsynaptic membrane. Furthermore, virtually all inhibitory synaptic clefts remained rigidly apposed, unlike in the case of excitatory synapses where ~ 20-30% of cleft edges were open upon stimulation, presumably to facilitate the clearance of neurotransmitters from the cleft. The fact that no open clefts were induced in inhibitory synapses upon stimulation suggests that inhibitory input may not need to be toned down under these conditions. On the other hand, similar to excitatory synapse, EGTA (a calcium chelator) induced open clefts in ~ 18% of inhibitory synaptic cleft edges, presumably disrupting similar calcium-dependent trans-synaptic bridges in both types of synapses.


Asunto(s)
Hipocampo , Sinapsis , Animales , Sinapsis/ultraestructura , Hipocampo/ultraestructura , Ratones , Ratas , Vesículas Sinápticas/ultraestructura , Vesículas Sinápticas/metabolismo , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Terminales Presinápticos/ultraestructura , Terminales Presinápticos/fisiología , Ratas Sprague-Dawley , Proteínas de la Membrana
2.
Commun Biol ; 7(1): 796, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951162

RESUMEN

The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.


Asunto(s)
Microscopía Electrónica , Fibras Nerviosas , Sinapsis , Animales , Ratones , Microscopía Electrónica/métodos , Fibras Nerviosas/ultraestructura , Sinapsis/ultraestructura , Axones/ultraestructura , Dendritas/ultraestructura , Encéfalo/ultraestructura , Corteza Somatosensorial/ultraestructura , Ratones Endogámicos C57BL , Masculino , Programas Informáticos , Hipocampo/ultraestructura , Hipocampo/citología , Microscopía Electrónica de Volumen
3.
Science ; 383(6682): eadj9198, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38300992

RESUMEN

Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.


Asunto(s)
Axones , Mapeo Encefálico , Hipocampo , Neuronas , Animales , Ratones , Axones/fisiología , Axones/ultraestructura , Hipocampo/ultraestructura , Neuronas/clasificación , Neuronas/ultraestructura , Análisis de la Célula Individual/métodos , Red Nerviosa , Masculino , Ratones Endogámicos C57BL
4.
Neurochem Int ; 169: 105570, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451344

RESUMEN

Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.


Asunto(s)
Terminales Presinápticos , Caracteres Sexuales , Ratones , Femenino , Masculino , Animales , Terminales Presinápticos/metabolismo , Hipocampo/ultraestructura , Sinapsis/ultraestructura , Vesículas Sinápticas/metabolismo , Exocitosis , Células Cultivadas
5.
Cereb Cortex ; 33(10): 6120-6131, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36587288

RESUMEN

In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.


Asunto(s)
Conectoma , Hipocampo , Consolidación de la Memoria , Consolidación de la Memoria/fisiología , Hipocampo/fisiología , Hipocampo/ultraestructura , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura
6.
Elife ; 102021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543184

RESUMEN

Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both γ-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Axones/enzimología , Membrana Celular/enzimología , Hipocampo/enzimología , Vesículas Sinápticas/enzimología , Sinaptotagminas/metabolismo , Animales , Axones/ultraestructura , Membrana Celular/ultraestructura , Células Cultivadas , Exocitosis , Hipocampo/ultraestructura , Lipoilación , Ratones Noqueados , Simulación del Acoplamiento Molecular , Plasticidad Neuronal , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis , Ratas Sprague-Dawley , Transmisión Sináptica , Vesículas Sinápticas/ultraestructura , Sinaptotagminas/genética , Factores de Tiempo
7.
J Pharmacol Sci ; 147(3): 234-244, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34507632

RESUMEN

The incidence of diabetes-associated cognitive dysfunction is increasing. However, few clinical interventions are available to prevent the disorder. Several researches have shown that liraglutide, as a glucagon-like peptide-1 analog, has protective effects on various neurodegenerative diseases, but its roles in diabetic cognitive dysfunction are rarely reported. This study aims to investigate the protective effects of liraglutide on diabetic cognitive dysfunction and its underlying mechanisms. In vivo, the effects of liraglutide treatment were investigated in a mouse model of type 2 diabetes mellitus (T2DM). In vitro, we investigated the effects of liraglutide on the high-glucose-induced rat primary neurons. The results showed that liraglutide reduced the escape latency and increased the time in effective area in the Morris water maze test, improved the damage of hippocampal and synaptic ultrastructure, and decreased the accumulation of amyloid ß protein in hippocampus of T2DM mice. Furthermore, liraglutide increased the ratio of microtubule-associated protein light 1 chain Ⅱ/Ⅰ, the expression of Beclin1 protein and Lysosome-associated membrane protein 2 in vivo and vitro. Additionally, Bafilomycin A1 which can inhibit the fusion of autophagosome and lysosome partially abolished the effects of liraglutide. These findings indicate liraglutide ameliorates diabetes-associated cognitive dysfunction by rescuing autophagic flux.


Asunto(s)
Autofagia/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Liraglutida/farmacología , Liraglutida/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Animales , Beclina-1/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/ultraestructura , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Ratas , Sinapsis/patología , Sinapsis/ultraestructura
8.
Sci Rep ; 11(1): 17747, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493757

RESUMEN

Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Nootrópicos/farmacología , Proteoma/efectos de los fármacos , Aislamiento Social , Vesículas Sinápticas/efectos de los fármacos , Tiazepinas/farmacología , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Nootrópicos/uso terapéutico , Mapeo de Interacción de Proteínas , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Tiazepinas/uso terapéutico
9.
PLoS One ; 16(8): e0254597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34358242

RESUMEN

OBJECTIVE: T1-weighted MRI images are commonly used for volumetric assessment of brain structures. Magnetization prepared 2 rapid gradient echo (MP2RAGE) sequence offers superior gray (GM) and white matter (WM) contrast. This study aimed to quantitatively assess the agreement of whole brain tissue and deep GM (DGM) volumes obtained from MP2RAGE compared to the widely used MP-RAGE sequence. METHODS: Twenty-nine healthy participants were included in this study. All subjects underwent a 3T MRI scan acquiring high-resolution 3D MP-RAGE and MP2RAGE images. Twelve participants were re-scanned after one year. The whole brain, as well as DGM segmentation, was performed using CAT12, volBrain, and FSL-FAST automatic segmentation tools based on the acquired images. Finally, contrast-to-noise ratio between WM and GM (CNRWG), the agreement between the obtained tissue volumes, as well as scan-rescan variability of both sequences were explored. RESULTS: Significantly higher CNRWG was detected in MP2RAGE vs. MP-RAGE (Mean ± SD = 0.97 ± 0.04 vs. 0.8 ± 0.1 respectively; p<0.0001). Significantly higher total brain GM, and lower cerebrospinal fluid volumes were obtained from MP2RAGE vs. MP-RAGE based on all segmentation methods (p<0.05 in all cases). Whole-brain voxel-wise comparisons revealed higher GM tissue probability in the thalamus, putamen, caudate, lingual gyrus, and precentral gyrus based on MP2RAGE compared with MP-RAGE. Moreover, significantly higher WM probability was observed in the cerebellum, corpus callosum, and frontal-and-temporal regions in MP2RAGE vs. MP-RAGE. Finally, MP2RAGE showed a higher mean percentage of change in total brain GM compared to MP-RAGE. On the other hand, MP-RAGE demonstrated a higher overtime percentage of change in WM and DGM volumes compared to MP2RAGE. CONCLUSIONS: Due to its higher CNR, MP2RAGE resulted in reproducible brain tissue segmentation, and thus is a recommended method for volumetric imaging biomarkers for the monitoring of neurological diseases.


Asunto(s)
Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/ultraestructura , Encéfalo/ultraestructura , Mapeo Encefálico , Sistema Nervioso Central/diagnóstico por imagen , Sistema Nervioso Central/ultraestructura , Líquido Cefalorraquídeo/metabolismo , Femenino , Sustancia Gris/ultraestructura , Voluntarios Sanos , Hipocampo/diagnóstico por imagen , Hipocampo/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Manejo de Especímenes , Tálamo/diagnóstico por imagen , Tálamo/ultraestructura , Sustancia Blanca/ultraestructura
10.
Bioelectrochemistry ; 142: 107930, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34450563

RESUMEN

High-energy, short-duration electric pulses (EPs) are known to be effective in neuromodulation, but the biological mechanisms underlying this effect remain unclear. Recently, we discovered that nanosecond electric pulses (nsEPs) could initiate the phosphatidylinositol4,5-bisphosphate (PIP2) depletion in non-excitable cells identical to agonist-induced activation of the Gq11 coupled receptors. PIP2 is the precursor for multiple intracellular second messengers critically involved in the regulation of intracellular Ca2+ homeostasis and plasma membrane (PM) ion channels responsible for the control of neuronal excitability. In this paper we demonstrate a novel finding that five day in vitro (DIV5) primary hippocampal neurons (PHNs) undergo significantly higher PIP2 depletion after 7.5 kV/cm 600 ns EP exposure than DIV1 PHNs and day 1-5 (D1-D5) non-excitable Chinese hamster ovarian cells with muscarinic receptor 1 (CHO-hM1). Despite the age of development, the stronger 15 kV/cm 600 ns or longer 7.5 kV/cm 12 µs EP initiated profound PIP2 depletion in all cells studied, outlining damage of the cellular PM and electroporation. Therefore, the intrinsic properties of PHNs in concert with nanoporation explain the stronger neuronal response to nsEP at lower intensity exposures. PIP2 reduction in neurons could be a primary biological mechanism responsible for the stimulation or inhibition of neuronal tissues.


Asunto(s)
Membrana Celular/metabolismo , Hipocampo , Neuronas , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Animales Recién Nacidos , Células CHO , Cricetulus , Hipocampo/citología , Hipocampo/ultraestructura , Neuronas/citología , Neuronas/ultraestructura , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
11.
Eur J Histochem ; 65(s1)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34459572

RESUMEN

The SUMOylation machinery is a regulator of neuronal activity and synaptic plasticity. It is composed of SUMO isoforms and specialized enzymes named E1, E2 and E3 SUMO ligases. Recent studies have highlighted how SUMO isoforms and E2 enzymes localize with synaptic markers to support previous functional studies but less information is available on E3 ligases. PIAS proteins - belonging to the protein inhibitor of activated STAT (PIAS) SUMO E3-ligase family - are the best-characterized SUMO E3-ligases and have been linked to the formation of spatial memory in rodents. Whether however they exert their function co-localizing with synaptic markers is still unclear. In this study, we applied for the first time structured illumination microscopy (SIM) to PIAS ligases to investigate the co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal and cortical murine neurons. The results indicate partial co-localization of PIAS1 and PIAS3 with synaptic markers in hippocampal neurons and much rarer occurrence in cortical neurons. This is in line with previous super-resolution reports describing the co-localization with synaptic markers of other components of the SUMOylation machinery.


Asunto(s)
Corteza Cerebral/enzimología , Hipocampo/enzimología , Microscopía/métodos , Neuronas/enzimología , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Corteza Cerebral/ultraestructura , Hipocampo/ultraestructura , Ratones , Neuronas/ultraestructura
12.
Neurochem Int ; 149: 105145, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34324942

RESUMEN

The heteromeric complexes of adenosine 2A receptor (A2AR) and N-methyl-D-aspartate receptor (NMDAR) have recently been confirmed in cell experiments, while its in situ detection at the subcellular level of brain tissue has not yet been achieved. Proximity Ligation Assay (PLA) enables the detection of low-abundance proteins and their interactions at the cellular level with high specificity and sensitivity, while Transmission electron microscope (TEM) is an excellent tool for observing subcellular structures. To develop a highly efficient and reproducible technique for in situ detection of protein interactions at subcellular levels, in this study, we modified the standard PLA sample preparation method to make the samples suitable for analysis by transmission electron microscopy. Using this technique, we successfully detected the heteromers of A2AR and NMDAR1, the essential subunit of NMDA receptor on the hippocampal synaptic structure in mice. Our results show that the distribution of this heteromer is different in different hippocampal subregions. This technique holds the potential for being a reliable method to detect protein interactions at the subcellular level and unravel their unknown functions.


Asunto(s)
Hipocampo/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Receptor de Adenosina A2A/ultraestructura , Receptores de N-Metil-D-Aspartato/ultraestructura , Sinapsis/ultraestructura , Animales , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica/fisiología , Receptor de Adenosina A2A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
13.
J Neurosci ; 41(33): 7003-7014, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34266899

RESUMEN

The structural plasticity of dendritic spines is considered to be an important basis of synaptic plasticity, learning, and memory. Here, we induced input-specific structural LTP (sLTP) in single dendritic spines in organotypic hippocampal slices from mice of either sex and performed ultrastructural analyses of the spines using efficient correlative light and electron microscopy. We observed reorganization of the PSD nanostructure, such as perforation and segmentation, at 2-3, 20, and 120 min after sLTP induction. In addition, PSD and nonsynaptic axon-spine interface (nsASI) membrane expanded unevenly during sLTP. Specifically, the PSD area showed a transient increase at 2-3 min after sLTP induction. The PSD growth was to a degree less than spine volume growth at 2-3 min and 20 min after sLTP induction but became similar at 120 min. On the other hand, the nsASI area showed a profound and lasting expansion, to a degree similar to spine volume growth throughout the process. These rapid ultrastructural changes in PSD and surrounding membrane may contribute to rapid electrophysiological plasticity during sLTP.SIGNIFICANCE STATEMENT To understand the ultrastructural changes during synaptic plasticity, it is desired to efficiently image single dendritic spines that underwent structural plasticity in electron microscopy. We induced structural long-term potentiation (sLTP) in single dendritic spines by two-photon glutamate uncaging. We then identified the same spines at different phases of sLTP and performed ultrastructural analysis by using an efficient correlative light and electron microscopy method. We found that postsynaptic density undergoes dramatic modification in its structural complexity immediately after sLTP induction. Meanwhile, the nonsynaptic axon-spine interface area shows a rapid and sustained increase throughout sLTP. Our results indicate that the uneven modification of synaptic and nonsynaptic postsynaptic membrane might contribute to rapid electrophysiological plasticity during sLTP.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Potenciación a Largo Plazo , Densidad Postsináptica/ultraestructura , Animales , Axones/ultraestructura , Biolística , Membrana Celular/ultraestructura , Espinas Dendríticas/fisiología , Femenino , Glutamatos/efectos de la radiación , Procesamiento de Imagen Asistido por Computador , Indoles/efectos de la radiación , Masculino , Ratones , Microscopía Electrónica de Rastreo , Fotoquímica
14.
J Pineal Res ; 71(1): e12747, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34085316

RESUMEN

Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.


Asunto(s)
Isquemia Encefálica/patología , Estructuras de la Membrana Celular/efectos de los fármacos , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/ultraestructura , Animales , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/ultraestructura , Ratones , Mitocondrias/metabolismo , Nanotubos , Neuronas/efectos de los fármacos , Neuronas/patología , Daño por Reperfusión/patología
15.
J Cell Physiol ; 236(11): 7464-7472, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061993

RESUMEN

Most patients that resuscitate successfully from cardiac arrest (CA) suffer from poor neurological prognosis. DL-3-n-butylphthalide (NBP) is known to have neuroprotective effects via multiple mechanisms. This study aimed to investigate whether NBP can decrease neurological impairment after CA. We studied the protective role of NBP in the hippocampus of a rat model of cardiac arrest induced by asphyxia. Thirty-nine rats were divided randomly into sham, control, and NBP groups. Rats in control and NBP groups underwent cardiopulmonary resuscitation (CPR) 6 min after asphyxia. NBP or vehicle (saline) was administered intravenously 10 min after the return of spontaneous circulation (ROSC). Ultrastructure of hippocampal neurons was observed under transmission electron microscope. NBP treatment improved neurological function up to 72 h after CA. The ultrastructural lesion in mitochondria recovered in the NBP-treated CA model. In conclusion, our study demonstrated multiple therapeutic benefits of NBP after CA.


Asunto(s)
Benzofuranos/farmacología , Encefalopatías/prevención & control , Reanimación Cardiopulmonar/efectos adversos , Paro Cardíaco/terapia , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Asfixia/complicaciones , Encefalopatías/etiología , Encefalopatías/metabolismo , Encefalopatías/patología , Modelos Animales de Enfermedad , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Fosforilación , Ratas Sprague-Dawley , Retorno de la Circulación Espontánea , Transducción de Señal , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas tau/metabolismo
16.
Brain Res Bull ; 173: 28-36, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33984429

RESUMEN

Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.


Asunto(s)
Espinas Dendríticas/ultraestructura , Hipocampo/ultraestructura , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neuronas/ultraestructura , Sinapsis/ultraestructura , Animales , Microscopía Electrónica
17.
Turk Neurosurg ; 31(4): 623-633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33978223

RESUMEN

AIM: To investigate neurogenesis in both adult and 3-week-old genetic absence epilepsy rats from Strasbourg (GAERS) to determine if newly formed neurons within the dentate gyrus (DG) form synaptic contacts with GABAergic (gamma aminobutyric acid) and glutamatergic nerve terminals and compared to the control (non-GAERS) Wistar rats. MATERIAL AND METHODS: Brain tissue was processed for electron microscopic assessment. Thin sections from the hippocampal DG were double-labelled for anti-GABA or anti-VGLUT1 (vesicular glutamate transporter 1) and anti-doublecortin (DCX) antibodies using immunogold methodology and examined with the transmission electron microscope for morphological changes and to quantify the density of gold labeling. RESULTS: DCX immunoreactivity was demonstrated within axon terminals, dendrites and somata in all groups. DCX and GABA or VGLUT1 were found to be co-localized in the axon terminals in all groups. We observed that DCX-immunoreactive (-ir) profiles formed synaptic contacts with GABAergic and glutamatergic terminals. The percentage of DCX labeling in dendrites, compared to axons, and the percentage of DCX-ir terminal profiles forming asymmetrical synapses, compared to those forming symmetrical synapses, were increased in all groups compared to the control group. DCX immunoreactivity in the 21-day-old GAERS group was found to be increased compared to the Wistar group. CONCLUSION: We conclude that newly born neurons are incorporated into the local hippocampal network in both the GAERS and the control Wistar rats. The results suggest that the neurogenesis taking place in the hippocampus may also be involved in the mechanism underlying absence seizures in GAERS.


Asunto(s)
Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Neurogénesis/fisiología , Animales , Proteína Doblecortina , Epilepsia Tipo Ausencia/diagnóstico , Epilepsia Tipo Ausencia/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/ultraestructura , Inmunohistoquímica/métodos , Masculino , Microscopía Electrónica/métodos , Neuronas/metabolismo , Neuronas/patología , Neuronas/ultraestructura , Ratas , Ratas Transgénicas , Ratas Wistar , Sinapsis/fisiología , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
18.
Am J Physiol Cell Physiol ; 321(1): C17-C25, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979213

RESUMEN

Sleep deprivation has profound influence on several aspects of health and disease. Mitochondria dysfunction has been implicated to play an essential role in the neuronal cellular damage induced by sleep deprivation, but little is known about how neuronal mitochondrial ultrastructure is affected under sleep deprivation. In this report, we utilized electron cryo-tomography to reconstruct the three-dimensional (3-D) mitochondrial structure and extracted morphometric parameters to quantitatively characterize its reorganizations. Isolated mitochondria from the hippocampus and cerebral cortex of adult male Sprague-Dawley rats after 72 h of paradoxical sleep deprivation (PSD) were reconstructed and analyzed. Statistical analysis of six morphometric parameters specific to the mitochondrial inner membrane topology revealed identical pattern of changes in both the hippocampus and cerebral cortex but with higher significance levels in the hippocampus. The structural differences were indistinguishable by conventional phenotypic methods based on two-dimensional electron microscopy images or 3-D electron tomography reconstructions. Furthermore, to correlate structure alterations with mitochondrial functions, high-resolution respirometry was employed to investigate the effects of PSD on mitochondrial respiration, which showed that PSD significantly suppressed the mitochondrial respiratory capacity of the hippocampus, whereas the isolated mitochondria from the cerebral cortex were less affected. These results demonstrate the capability of the morphometric parameters for quantifying complex structural reorganizations and suggest a correlation between PSD and inner membrane architecture/respiratory functions of the brain mitochondria with variable effects in different brain regions.


Asunto(s)
Corteza Cerebral/ultraestructura , Hipocampo/ultraestructura , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Privación de Sueño/fisiopatología , Sueño REM/fisiología , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Tomografía con Microscopio Electrónico , Hipocampo/metabolismo , Hipocampo/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Especificidad de Órganos , Consumo de Oxígeno/fisiología , Ratas , Ratas Sprague-Dawley , Privación de Sueño/metabolismo
19.
Neurotoxicology ; 85: 18-32, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33878312

RESUMEN

Mitochondrial biogenesis relies on different protein import machinery, as mitochondrial proteins are imported from the cytosol. The mitochondrial intermembrane space assembly (MIA) pathway consists of GFER/ALR and CHCHD4/Mia40, responsible for importing proteins and their oxidative folding inside the mitochondria. The MIA pathway plays an essential role in complex IV (COX IV) biogenesis via importing copper chaperone COX17, associated with the respiratory chain. BPA, an environmental toxicant, found in consumable plastics, causes neurotoxicity via impairment in mitochondrial dynamics, neurogenesis, and cognitive functions. We studied the levels of key regulatory proteins of mitochondrial import pathways and mitochondrial biogenesis after BPA exposure in the rat hippocampus. BPA caused a significant reduction in the levels of mitochondrial biogenesis proteins (PGC1α, and TFAM) and mitochondrial import protein (GFER). Immunohistochemical analysis showed reduced co-localization of NeuN with GFER, PGC-1α, and TFAM suggesting impaired mitochondrial biogenesis and protein import. BPA exposure resulted in damaged mitochondria with distorted cristae in neurons and caused a significant reduction in GFER localization inside IMS as depicted by immunogold electron microscopy. The reduced levels of GFER resulted in defective COX17 import. The translocation of cytochrome c into the cytosol and increased cleaved caspase-3 levels triggered apoptosis due to BPA toxicity. Overall, our study implicates GFER as a potential target for impaired mitochondrial protein machinery, biogenesis, and apoptosis against BPA neurotoxicity in the rat hippocampus.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/antagonistas & inhibidores , Biogénesis de Organelos , Fenoles/toxicidad , Proteínas/antagonistas & inhibidores , Contaminantes Ocupacionales del Aire/química , Contaminantes Ocupacionales del Aire/metabolismo , Contaminantes Ocupacionales del Aire/toxicidad , Animales , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Simulación por Computador , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Fenoles/química , Fenoles/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Ratas , Ratas Wistar
20.
Sci Rep ; 11(1): 8656, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883618

RESUMEN

Calcium-dependent activator protein for secretion 1 (CAPS1) is a key molecule in vesicular exocytosis, probably in the priming step. However, CAPS1's role in synaptic plasticity and brain function is elusive. Herein, we showed that synaptic plasticity and learning behavior were impaired in forebrain and/or hippocampus-specific Caps1 conditional knockout (cKO) mice by means of molecular, physiological, and behavioral analyses. Neonatal Caps1 cKO mice showed a decrease in the number of docked vesicles in the hippocampal CA3 region, with no detectable changes in the distribution of other major exocytosis-related molecules. Additionally, long-term potentiation (LTP) was partially and severely impaired in the CA1 and CA3 regions, respectively. CA1 LTP was reinforced by repeated high-frequency stimuli, whereas CA3 LTP was completely abolished. Accordingly, hippocampus-associated learning was severely impaired in adeno-associated virus (AAV) infection-mediated postnatal Caps1 cKO mice. Collectively, our findings suggest that CAPS1 is a key protein involved in the cellular mechanisms underlying hippocampal synaptic release and plasticity, which is crucial for hippocampus-associated learning.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Animales , Western Blotting , Proteínas de Unión al Calcio/metabolismo , Condicionamiento Clásico , Aprendizaje Discriminativo , Femenino , Hipocampo/metabolismo , Hipocampo/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA