Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772881

RESUMEN

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Asunto(s)
Diseño de Fármacos , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Animales , Relación Estructura-Actividad , Línea Celular Tumoral , Masculino , Ratones , Sitios de Unión , Ratas
2.
ACS Chem Neurosci ; 15(11): 2099-2111, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747979

RESUMEN

Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Inhibidores de Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas tau/metabolismo , Histona Desacetilasas/metabolismo , Fosforilación/efectos de los fármacos , Acetilación , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/antagonistas & inhibidores
3.
Eur J Med Chem ; 272: 116447, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714044

RESUMEN

Histone deacetylase 6 (HDAC6) is an emerging drug target to treat oncological and non-oncological conditions. Since highly selective HDAC6 inhibitors display limited anticancer activity when used as single agent, they usually require combination therapies with other chemotherapeutics. In this work, we synthesized a mini library of analogues of the preferential HDAC6 inhibitor HPOB in only two steps via an Ugi four-component reaction as the key step. Biochemical HDAC inhibition and cell viability assays led to the identification of 1g (highest antileukemic activity) and 2b (highest HDAC6 inhibition) as hit compounds. In subsequent combination screens, both 1g and especially 2b showed synergy with DNA methyltransferase inhibitor decitabine in acute myeloid leukemia (AML). Our findings highlight the potential of combining HDAC6 inhibitors with DNA methyltransferase inhibitors as a strategy to improve AML treatment outcomes.


Asunto(s)
Antineoplásicos , Decitabina , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Leucemia Mieloide Aguda , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/síntesis química , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Decitabina/farmacología , Decitabina/química , Relación Estructura-Actividad , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Peptoides/química , Peptoides/farmacología , Peptoides/síntesis química , Aminopiridinas , Benzamidas
4.
Clin Exp Pharmacol Physiol ; 51(6): e13866, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719209

RESUMEN

Staphylococcus aureus (S. aureus) pneumonia has become an increasingly important public health problem. Recent evidence suggests that epigenetic modifications are critical in the host immune defence against pathogen infection. In this study, we found that S. aureus infection induces the expression of histone deacetylase 6 (HDAC6) in a dose-dependent manner. Furthermore, by using a S. aureus pneumonia mouse model, we showed that the HDAC6 inhibitor, tubastatin A, demonstrates a protective effect in S. aureus pneumonia, decreasing the mortality and destruction of lung architecture, reducing the bacterial burden in the lungs and inhibiting inflammatory responses. Mechanistic studies in primary bone marrow-derived macrophages demonstrated that the HDAC6 inhibitors, tubastatin A and tubacin, reduced the intracellular bacterial load by promoting bacterial clearance rather than regulating phagocytosis. Finally, N-acetyl-L- cysteine, a widely used reactive oxygen species (ROS) scavenger, antagonized ROS production and significantly inhibited tubastatin A-induced S. aureus clearance. These findings demonstrate that HDAC6 inhibitors promote the bactericidal activity of macrophages by inducing ROS, an important host factor for S. aureus clearance and production. Our study identified HDAC6 as a suitable epigenetic modification target for preventing S. aureus infection, and tubastatin A as a useful compound in treating S. aureus pneumonia.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Macrófagos , Especies Reactivas de Oxígeno , Staphylococcus aureus , Animales , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Neumonía Estafilocócica/tratamiento farmacológico , Neumonía Estafilocócica/microbiología , Neumonía Estafilocócica/metabolismo , Indoles/farmacología , Ratones Endogámicos C57BL , Fagocitosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/patología
5.
Arch Biochem Biophys ; 756: 110009, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642631

RESUMEN

BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.


Asunto(s)
Factor de Transcripción Activador 6 , Lesión Renal Aguda , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica , Respuesta de Proteína Desplegada , Animales , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Humanos , Factor de Transcripción Activador 6/metabolismo , Ratones , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/inducido químicamente , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Masculino , Respuesta de Proteína Desplegada/efectos de los fármacos , Lipopolisacáridos
6.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 231-236, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678601

RESUMEN

Epidural fibrosis (EF) is a chronic, progressive and severe disease. Histone deacetylase 6 (HDAC6) regulates biological signals and cell activities by deacetylating lysine residues and participates in TGF-ß-induced epithelial-mesenchymal transition (EMT). Nevertheless, the effect and mechanism of HDAC6 in EF remain unclear. To investigate the effect and mechanism of HDAC6 inhibition on repressing epidural fibrosis. HDAC6 expression and α-smooth muscle actin (α-SMA) in normal human tissue and human EF tissue were assessed by quantitative real-time PCR (qRT-PCR) and western blotting. Human fibroblasts were treated with TGF-ß ± HDAC6 inhibitors (Tubastatin) and fibrotic markers including collagen I, collagen III, α-SMA and fibronectin were assessed using western blotting. Then TGFß1 receptor (TGFß1-R), PI3K and Akt were analyzed using qRT-PCR and western blotting. Rats were undergone laminectomy± Tubastatin (intraperitoneally injection; daily for 7 days) and epidural scar extracellular matrix (ECM) expression was gauged using immunoblots. Increasing HDAC6 expression was associated with α-SMA enrichment. Tubastatin remarkably restrained TGF-ß-induced level of collagen and ECM deposition in human fibroblasts, and the discovery was accompanied by decreased PI3K and Akt phosphorylation. Moreover, Tubastatin also inhibited TGF-ß-mediated HIF-1α and VEGF expression. In the epidural fibrosis model, we found that Tubastatin weakened scar hyperplasia and collagen deposition, and effectively inhibited the process of epidural fibrosis. These results indicated that Tubastatin inhibited HDAC6 expression and decreased TGF-ß/ PI3K/ Akt pathway that promotes collagen and ECM deposition and VEGF release, leading reduction of myofibroblast activation. Hence, Tubastatin ameliorated epidural fibrosis development.


Asunto(s)
Fibroblastos , Fibrosis , Histona Desacetilasa 6 , Ácidos Hidroxámicos , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Actinas/metabolismo , Espacio Epidural/patología , Espacio Epidural/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Indoles/farmacología , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
7.
Comput Biol Chem ; 110: 108051, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520883

RESUMEN

Amidst the Zn2+-dependant isoforms of the HDAC family, HDAC6 has emerged as a potential target associated with an array of diseases, especially cancer and neuronal disorders like Rett's Syndrome, Alzheimer's disease, Huntington's disease, etc. Also, despite the availability of a handful of HDAC inhibitors in the market, their non-selective nature has restricted their use in different disease conditions. In this situation, the development of selective and potent HDAC6 inhibitors will provide efficacious therapeutic agents to treat different diseases. In this context, this study has been carried out to evaluate the potential structural contributors of quinazoline-cap-containing HDAC6 inhibitors via machine learning (ML), conventional classification-dependant QSAR, and MD simulation-based binding mode of interaction analysis toward HDAC6 binding. This combined conventional and modern molecular modeling study has revealed the significance of the quinazoline moiety, substitutions present at the quinazoline cap group, as well as the importance of molecular property, number of hydrogen bond donor-acceptor functions, carbon-chlorine distance that significantly affects the HDAC6 binding of these inhibitors, subsequently affecting their potency . Interestingly, the study also revealed that the substitutions such as the chloroethyl group, and bulky quinazolinyl cap group can affect the binding of the cap function with the amino acid residues present in the loops proximal to the catalytic site of HDAC6. Such contributions of cap groups can lead to both stabilization and destabilization of the cap function after occupying the hydrophobic catalytic site by the aryl hydroxamate linker-ZBG functions.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Simulación de Dinámica Molecular , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Quinazolinas/química , Quinazolinas/farmacología , Aprendizaje Automático
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527593

RESUMEN

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Hipocampo , Histona Desacetilasa 6 , Ratones Endogámicos C57BL , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Piroptosis/efectos de los fármacos , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Ratones , Masculino , Proteínas HSP90 de Choque Térmico/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Proteínas HSP70 de Choque Térmico/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Complicaciones Cognitivas Postoperatorias/patología , Ácidos Hidroxámicos/farmacología , Envejecimiento/metabolismo , Envejecimiento/patología , Modelos Animales de Enfermedad
9.
Int Immunopharmacol ; 132: 111921, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547770

RESUMEN

Interleukin-1-beta (IL-1ß) one of the biomarkers for oral squamous cell carcinoma (OSCC), is upregulated in tumor-microenvironment (TME) and associated with poor patient survival. Thus, a novel modulator of IL-1ß would be of great therapeutic value for OSCC treatment. Here we report regulation of IL-1ß and TME by histone deacetylase-6 (HDAC6)-inhibitor in OSCC. We observed significant upregulation of HDAC6 in 4-nitroquniline (4-NQO)-induced OSCC in mice and 4-NQO & Lipopolysaccharide (LPS) stimulated OSCC and fibroblast cells. Tubastatin A (TSA)-attenuated the OSCC progression in mice as observed improvement in the histology over tongue and esophagus, with reduced tumor burden. TSA treatment to 4-NQO mice attenuated protein expression of HDAC6, pro-and-mature-IL-1ß and pro-and-cleaved-caspase-1 and ameliorated acetylated-tubulin. In support of our experimental work, human TCGA analysis revealed HDAC6 and IL-1ß were upregulated in the primary tumor, with different tumor stages and grades. We found TSA modulate TME, indicated by downregulation of CD11b+Gr1+-Myeloid-derived suppressor cells, CD11b+F4/80+CD206+ M2-macrophages and increase in CD11b+F4/80+MHCII+ M1-macrophages. TSA significantly reduced the gene expression of HDAC6, IL-1ß, Arginase-1 and iNOS in isolated splenic-MDSCs. FaDu-HTB-43 and NIH3T3 cells stimulated with LPS and 4-NQO exhibit higher IL-1ß levels in the supernatant. Interestingly, immunoblot analysis of the cell lysate, we observed that TSA does not alter the expression as well as activation of IL-1ß and caspase-1 but the acetylated-tubulin was found to be increased. Nocodazole pre-treatment proved that TSA inhibited the lysosomal exocytosis of IL-1ß through tubulin acetylation. In conclusion, HDAC6 inhibitors attenuated TME and cancer progression through the regulation of IL-1ß in OSCC.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Indoles , Interleucina-1beta , Neoplasias de la Boca , Microambiente Tumoral , Animales , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Interleucina-1beta/metabolismo , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Progresión de la Enfermedad , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Masculino , Tubulina (Proteína)/metabolismo , Lipopolisacáridos
10.
Int Immunopharmacol ; 131: 111861, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38484665

RESUMEN

Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Histona Desacetilasa 6 , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Glutatión/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos
11.
PLoS Negl Trop Dis ; 18(2): e0011992, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416775

RESUMEN

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.


Asunto(s)
Antihelmínticos , Inhibidores de Histona Desacetilasas , Quinolonas , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Humanos , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Histona Desacetilasa 6/antagonistas & inhibidores , Larva , Praziquantel/farmacología , Praziquantel/uso terapéutico , Quinolonas/farmacología , Proteínas Represoras , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
12.
J Med Chem ; 67(3): 2095-2117, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38236416

RESUMEN

Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.


Asunto(s)
Lipopolisacáridos , Neuralgia , Animales , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Gabapentina , Histona Desacetilasa 6/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología
13.
Life Sci ; 338: 122395, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181853

RESUMEN

Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 µM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 µM comparable to that of TA (2-20 µM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias de la Mama Triple Negativas , Humanos , Supervivencia Celular , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Simulación del Acoplamiento Molecular , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Zinc
14.
CNS Neurosci Ther ; 30(3): e14439, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37641882

RESUMEN

AIMS: To identify an effective strategy for promoting microvascular endothelial cells (MECs) to phagocytize myelin debris and reduce secretion of inflammatory factors following spinal cord injury (SCI). METHODS: We established a coculture model of myelin debris and vascular-like structures. The efficiency with which MECs phagocytize myelin debris under different conditions was examined via ELISA, flow cytometry, and immunofluorescence. Tubastatin-A was used to interfere with the coculture model. The anti-inflammatory effects of Tubastatin-A were observed by HE staining, flow cytometry, immunofluorescence, and ELISA. RESULTS: MECs phagocytized myelin debris via IgM opsonization, and phagocytosis promoted the secretion of inflammatory factors, whereas IgG-opsonized myelin debris had no effect on inflammatory factors. Application of the HDAC6 inhibitor Tubastatin-A increased the IgG levels and decreased the IgM levels by regulating the proliferation and differentiation of B cells. Tubastatin-A exerted a regulatory effect on the HDAC6-mediated autophagy-lysosome pathway, promoting MECs to phagocytize myelin debris, reducing the secretion of inflammatory factors, and accelerating the repair of SCI. CONCLUSIONS: Inhibition of HDAC6 to regulate the immune-inflammatory response and promote MECs to phagocytize myelin debris may represent a novel strategy in the treatment of SCI.


Asunto(s)
Vaina de Mielina , Traumatismos de la Médula Espinal , Humanos , Células Endoteliales/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Inmunoglobulina G/farmacología , Inmunoglobulina M/metabolismo , Macrófagos , Vaina de Mielina/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo
15.
Front Immunol ; 14: 1168848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545520

RESUMEN

Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.


Asunto(s)
Histona Desacetilasa 6 , Enfermedades Renales , Trasplante de Riñón , Humanos , Fibrosis , Histona Desacetilasa 6/antagonistas & inhibidores , Transducción de Señal
16.
PeerJ ; 11: e15293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138816

RESUMEN

A large body of evidence has demonstrated that neuronal apoptosis is involved in the pathological process of secondary brain injury following intracerebral hemorrhage (ICH). Additionally, our previous studies determined that the inhibition of HDAC6 activity by tubacin or specific shRNA can attenuate neuronal apoptosis in an oxygen-glucose deprivation reperfusion model. However, whether the pharmacological inhibition of HDAC6-attenuated neuronal apoptosis in ICH remains unclear. In this study, we used hemin-induced SH-SY5Y cells to simulate a hemorrhage state in vitro and adopted a collagenase-induced ICH rat model in vivo to assess the effect of the HDAC6 inhibition. We found a significant increase in HDAC6 during the early stages of ICH. As expected, the acetylated α-tubulin significantly decreased in correlation with the expression of HDAC6. Medium and high doses (25, 40 mg/kg) of TubA, a selective inhibitor of HDAC6, both reduced neurological impairments, histological impairments, and ipsilateral brain edema in vivo. TubA or HDAC6 siRNA both alleviated neuronal apoptosis in vivo and in vitro. Finally, HDAC6 inhibition increased the level of acetylated α-tubulin and Bcl-2 and lowered the expression of Bax and cleaved caspase-3 post-ICH. In general, these results suggested that the pharmacological inhibition of HDAC6 may act as a novel and promising therapeutic target for ICH therapy by up-regulating acetylated α-tubulin and reducing neuronal apoptosis.


Asunto(s)
Histona Desacetilasa 6 , Neuroblastoma , Animales , Humanos , Ratas , Apoptosis , Hemorragia Cerebral/tratamiento farmacológico , Histona Desacetilasa 6/antagonistas & inhibidores , Neuroprotección
17.
J Enzyme Inhib Med Chem ; 38(1): 2201408, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096557

RESUMEN

In this study, a novel series of histone deacetylases 6 (HDAC6) inhibitors containing polycyclic aromatic rings were discovered and evaluated for their pharmacological activities. The most potent compound 10c exhibited high HDAC6 inhibitory activity (IC50 = 261 nM) and excellent HDAC6 selectivity (SI = 109 for HDAC6 over HDAC3). 10c also showed decent antiproliferative activity in vitro with IC50 of 7.37-21.84 µM against four cancer cell lines, comparable to that of tubastatin A (average IC50 = 6.10 µM). Further mechanism studies revealed that 10c efficiently induced apoptosis and S-phase arrest in B16-F10 cells. In addition, 10c markedly increased the expression of acetylated-α-tubulin both in vitro and in vivo, without affecting the levels of acetylated-H3 (marker of HDAC1 inhibition). Furthermore, 10c (80 mg/kg) exhibited moderate antitumor efficacy in a melanoma tumour model with a tumour growth inhibition (TGI) of 32.9%, comparable to that (TGI = 31.3%) of tubastatin A. Importantly, the combination of 10c with NP19 (a small molecule PD-L1 inhibitor discovered by us before) decreased tumour burden substantially (TGI% = 60.1%) as compared to monotherapy groups. Moreover, the combination of 10c with NP19 enhanced the anti-tumour immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of anti-tumour CD8+ T cells in tumour tissues. Collectively, 10c represents a novel HDAC6 inhibitor deserving further investigation as a potential anti-cancer agent.


Asunto(s)
Linfocitos T CD8-positivos , Inhibidores de Histona Desacetilasas , Melanoma , Humanos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Melanoma/tratamiento farmacológico
18.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902164

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Oxadiazoles , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Procesamiento Proteico-Postraduccional , Acetilación , Oxadiazoles/química , Oxadiazoles/farmacología , Línea Celular Tumoral
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(6): 1097-1104, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38162083

RESUMEN

Objective: To investigate the role of histone deacetylase 6 (HDAC6) in podocyte injury in diabetic kidney disease (DKD) in mice. Methods: 1) The 8-week-old male CD-1 mice were selected to construct the model of DKD with streptozocin (STZ). After the model was established, the mice were intraperitoneally injected with HDAC6 inhibitor CAY10603 (5mg/kg/daily) or same volume vehicle as control. The mice were divided into four groups, control (CTL)+vehicle (Veh) (n=5), CLT+CAY10603 (n=3), STZ+Veh (n=9), and STZ+CAY10603 (n=7). Mice in STZ+Veh and STZ+CAY10603 groups developed DKD, while mice in the CTL+Veh and CTL+CAY10603 groups were served as normal controls. The therapeutic effect was evaluated through urine albumin-to-creatinine ratio (uACR) and renal pathology after the 2-week treatment with CAY10603. 2) Human podocytes were cultured in vitro and were divided into four groups as follows: CTL, transforming growth factor-ß (TGFß), TGFß+CAY10603 (250 nmol/L), and TGFß+CAY10603 (500 nmol/L) groups. The control group did not receive any treatment, the last three groups were given 36-h TGFß treatment at 5 ng/µL, with or without CAY10603 as indicated for an additional 12 h. Western blot was performed to determine the inhibitory effect of CAY10603 on NLRP3 inflammasome. 3) HDAC6 knockout (KO) mice were generated and used to create STZ-induced model of DKD. The mice were divided into four groups: C57BL/6J wild type (WT) (n=6), HDAC6 KO (n=6), WT+STZ (n=10), and HDAC6 KO+STZ (n=9). Samples were collected 16 weeks after successful modeling and changes in uACR and renal pathology were evaluated accordingly. Results: After 2 weeks of treatment, mice in the STZ+CAY10603 group exhibited reduction in uACR (P<0.05) and inhibition of glomerular mesangium expansion (P<0.05) compared with those of the mice in the STZ+Veh group. There was no statistically significant difference in the indicators between the CTL+Veh group and the CTL+CAY10603 group. In vitro cultured podocytes, compared with the control group, NLRP3 inflammasome activation was seen in the TGFß group. CAY10603 treatment significantly inhibited the activation of NLRP3 in the dosage-dependent manner (P<0.05). Compared with those of the WT group, the WT+STZ group showed increased uACR (P<0.05), obvious glomerulosclerosis and loss of podocytes numbers. Compared with those of the WT+STZ group, the HDAC6 KO+STZ group showed effectively reduction of uACR (P<0.05) and improvement in the renal pathological changes in mice. There was no significant difference in these aspects between the WT and HDAC6 KO groups. Conclusion: Inhibition of HDAC6 alleviates proteinuria and podocyte injury in the mouse model of DKD by suppressing the activation of NLRP3 inflammasome.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Histona Desacetilasa 6 , Podocitos , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Histona Desacetilasa 6/antagonistas & inhibidores , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Crecimiento Transformador beta
20.
J Oral Pathol Med ; 51(6): 529-537, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35678235

RESUMEN

BACKGROUND: Chemoresistance is associated with recurrence and metastasis in oral squamous cell carcinoma (OSCC). The cancer stem cell (CSC) subpopulation is highly resistant to therapy, and they are regulated by epigenetic mechanisms. HDACs are histone deacetylase enzymes that epigenetically regulate gene expression. HDAC6 acts on several physiological processes, including oxidative stress, autophagy and DNA damage response, and its accumulation is associated with cancer. Here, we investigate the role of HDAC6 in CSC-mediated chemoresistance in oral carcinoma in addition to its application as a therapeutic target to reverse chemoresistance. METHODS: Wild-type oral carcinoma cell lines (CAL27 WT and SCC9 WT), cisplatin-resistant (CAL27 CisR and SCC9 CisR), and the subpopulations of cancer stem cells (CSC+) and non-stem (CSC-) derived from CisR cells were investigated. HDAC6 accumulation was analyzed by Western blot and immunofluorescence; DNA damage was evaluated by immunofluorescence of phospho-H2A.X; the qPCR for PRDX2, PRDX6, SOD2, and TXN and ROS assay assessed oxidative stress. Apoptosis and CSC accumulation were investigated by flow cytometry. RESULTS: We identified the accumulation of HDAC6 in CisR cell lines and CSC. Cisplatin-resistant cell lines and CSC demonstrated a reduction in DNA damage and ROS and elevated expression of PRDX2. The administration of tubastatin A (a specific HDAC6 inhibitor) increased oxidative stress and DNA damage and decreased PRDX2. Tubastatin A as a monotherapy induced apoptosis in CisR and CSC and reduced the stemness phenotype. CONCLUSION: High levels of HDAC6 sustain CSC subpopulation and chemoresistance in OSCC, suggesting HDAC6 as a pharmacological target to overcome resistance and perhaps prevent recurrence in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de Cabeza y Cuello/patología , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Neoplasias de la Boca/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA