RESUMEN
Over the past two decades, epigenetic regulation has become a rapidly growing and influential field in biology and medicine. One key mechanism involves the acetylation and deacetylation of lysine residues on histone core proteins and other critical proteins that regulate gene expression and cellular signaling. Although histone deacetylases (HDACs) have received significant attention, the roles of individual HDAC isoforms in the pathogenesis of psychiatric diseases still require further research. This is particularly true with regard to the sirtuins, class III HDACs. Sirtuins have unique functional activity and significant roles in normal neurophysiology, as well as in the mechanisms of addiction, mood disorders, and other neuropsychiatric abnormalities. This review aims to elucidate the differences in catalytic structure and function of the seven sirtuins as they relate to psychiatry.
Asunto(s)
Histona Desacetilasas , Trastornos Mentales , Sirtuinas , Humanos , Trastornos Mentales/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Sirtuinas/metabolismo , Sirtuinas/química , Animales , Acetilación , Epigénesis GenéticaRESUMEN
The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.
Asunto(s)
Membrana Celular , Histona Desacetilasas , Proteína 2 de Unión a Metil-CpG , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/genética , Células HEK293 , Transporte de Proteínas , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/genéticaRESUMEN
Epigenetics involves reversible modifications in gene expression without altering the genetic code itself. Among these modifications, histone deacetylases (HDACs) play a key role by removing acetyl groups from lysine residues on histones. Overexpression of HDACs is linked to the proliferation and survival of tumor cells. To combat this, HDAC inhibitors (HDACi) are commonly used in cancer treatments. However, pan-HDAC inhibition can lead to numerous side effects. Therefore, isoform-selective HDAC inhibitors, such as HDAC3i, could be advantageous for treating various medical conditions while minimizing off-target effects. To date, computational approaches that use only the SMILES notation without any experimental evidence have become increasingly popular and necessary for the initial discovery of novel potential therapeutic drugs. In this study, we develop an innovative and high-precision stacked-ensemble framework, called Stack-HDAC3i, which can directly identify HDAC3i using only the SMILES notation. Using an up-to-date benchmark dataset, we first employed both molecular descriptors and Mol2Vec embeddings to generate feature representations that cover multi-view information embedded in HDAC3i, such as structural and contextual information. Subsequently, these feature representations were used to train baseline models using nine popular ML algorithms. Finally, the probabilistic features derived from the selected baseline models were fused to construct the final stacked model. Both cross-validation and independent tests showed that Stack-HDAC3i is a high-accuracy prediction model with great generalization ability for identifying HDAC3i. Furthermore, in the independent test, Stack-HDAC3i achieved an accuracy of 0.926 and Matthew's correlation coefficient of 0.850, which are 0.44-6.11% and 0.83-11.90% higher than its constituent baseline models, respectively.
Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/química , Humanos , Aprendizaje Automático , Descubrimiento de Drogas/métodosRESUMEN
In this Perspective, we have brought together available biological evidence on hydrazides as histone deacetylase inhibitors (HDACis) and as a distinct type of Zn-binding group (ZBG) to be reviewed for the first time in the literature. N-Alkyl hydrazides have transformed the field, providing innovative and practical chemical tools for selective and effective inhibition of specific histone deacetylase (HDAC) enzymes, in addition to the usual hydroxamic acid and o-aminoanilide ZBG-bearing HDACis. This has enabled efficient targeting of neurodegenerative diseases such as Alzheimer's disease, cancer, cardiovascular diseases, and protozoal pathologies.
Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Hidrazinas , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Hidrazinas/química , Hidrazinas/farmacología , Hidrazinas/síntesis química , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Animales , Zinc/química , Relación Estructura-ActividadRESUMEN
Self-assembled materials capable of modulating their assembly properties in response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation platforms for biotechnological applications. Here, we introduce a previously unreported class of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides comprising poly(acetyl L-lysine) and poly(ethylene glycol) blocks. Under neutral pH conditions, they self-assemble into particles. The hydrodynamic diameters of particles were typically withing the range of 108-190 nm, depending on degree of acetylation of the hydrophobic block. However, their stability is compromised upon exposure to HDACs, depending on enzyme concentration and exposure time. Our investigation, utilizing HDAC8 as the model enzyme, revealed that the primary mechanism behind disassembly involves a decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine residues within the particles' hydrophobic domains. To elucidate the response mechanism, we encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably, this release was not triggered by denatured HDAC8, other proteolytic enzymes like trypsin, or the co-presence of HDAC8 and its inhibitor. We also demonstrated the biocompatibility and cellular effects of these materials in the context of drug delivery in different types of anticancer cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor, Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released over 3 h under the influence of HDAC8 enzyme in a controlled fashion. Further, we conducted a comprehensive computational study to unveil the possible interaction mechanism between enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone proteins, this research represents a pioneering step toward developing functional materials capable of harnessing the activity of epigenetic enzymes such as HDACs.
Asunto(s)
Histona Desacetilasas , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Humanos , Tamaño de la Partícula , Nanopartículas/química , Nanoestructuras/química , Epigénesis Genética/efectos de los fármacos , Línea Celular Tumoral , Propiedades de Superficie , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Polietilenglicoles/química , Proteínas RepresorasRESUMEN
Histone deacetylases constitute a group of enzymes that participate in several biological processes. Notably, inhibiting HDAC8 has become a therapeutic strategy for various diseases. The current inhibitors for HDAC8 lack selectivity and target multiple HDACs. Consequently, there is a growing recognition of the need for selective HDAC8 inhibitors to enhance the effectiveness of therapeutic interventions. In our current study, we have utilized a multi-faceted approach, including Quantitative Structure-Activity Relationship (QSAR) combined with Quantitative Read-Across Structure-Activity Relationship (q-RASAR) modeling, pharmacophore mapping, molecular docking, and molecular dynamics (MD) simulations. The developed q-RASAR model has a high statistical significance and predictive ability (Q2F1:0.778, Q2F2:0.775). The contributions of important descriptors are discussed in detail to gain insight into the crucial structural features in HDAC8 inhibition. The best pharmacophore hypothesis exhibits a high regression coefficient (0.969) and a low root mean square deviation (0.944), highlighting the importance of correctly orienting hydrogen bond acceptor (HBA), ring aromatic (RA), and zinc-binding group (ZBG) features in designing potent HDAC8 inhibitors. To confirm the results of q-RASAR and pharmacophore mapping, molecular docking analysis of the five potent compounds (44, 54, 82, 102, and 118) was performed to gain further insights into these structural features crucial for interaction with the HDAC8 enzyme. Lastly, MD simulation studies of the most active compound (54, mapped correctly with the pharmacophore hypothesis) and the least active compound (34, mapped poorly with the pharmacophore hypothesis) were carried out to validate the observations of the studies above. This study not only refines our understanding of essential structural features for HDAC8 inhibition but also provides a robust framework for the rational design of novel selective HDAC8 inhibitors which may offer insights to medicinal chemists and researchers engaged in the development of HDAC8-targeted therapeutics.
Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Humanos , Diseño de Fármacos , FarmacóforoRESUMEN
AIMS: Validating the docking procedure and maintaining the structural water molecules at HDAC8 catalytic site. BACKGROUND: Molecular docking simulations play a significant role in Computer-Aided Drug Design, contributing to the development of new molecules. To ensure the reliability of these simulations, a validation process called "self-docking or re-docking" is employed, focusing on the binding mode of a ligand co-crystallized with the protein of interest. OBJECTIVE: In this study, several molecular docking studies were conducted using five X-ray structures of HDAC8-ligand complexes from the PDB. METHODS: Ligands initially complexed with HDAC8 were removed and re-docked onto the free protein, revealing a poor reproduction of the expected binding mode. In response to this, we observed that most HDAC8-ligand complexes contained one to two water molecules in the catalytic site, which were crucial for maintaining the cocrystallized ligand. RESULTS: These water molecules enhance the binding mode of the co-crystallized ligand by stabilizing the proteinligand complex through hydrogen bond interactions between ligand and water molecules. Notably, these interactions are lost if water molecules are removed, as is often done in classical docking methodologies. Considering this, molecular docking simulations were repeated, both with and without one or two conserved water molecules near Zn+2 in the catalytic cavity. Simulations indicated that replicating the native binding pose of co-crystallized ligands on free HDAC8 without these water molecules was challenging, showing greater coordinate displacements (RMSD) compared to those including conserved water molecules from crystals. CONCLUSION: The study highlighted the importance of conserved water molecules within the active site, as their presence significantly influenced the successful reproduction of the ligands' native binding modes. The results suggest an optimal molecular docking procedure for validating methods suitable for filtering new HDAC8 inhibitors for future experimental assays.
Asunto(s)
Antineoplásicos , Diseño de Fármacos , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Simulación del Acoplamiento Molecular , Proteínas Represoras , Agua , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Agua/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Estructura Molecular , Relación Estructura-Actividad , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos XRESUMEN
The kinetics and mechanism of drug binding to its target are critical to pharmacological efficacy. A high throughput (HTS) screen often results in hundreds of hits, of which usually only simple IC50 values are determined during reconfirmation. However, kinetic parameters such as residence time for reversible inhibitors and the kinact/KI ratio, which is the critical measure for evaluating covalent inactivators, are early predictive measures to assess the chances of success of the hits in the clinic. Using the promising cancer target human histone deacetylase 8 as an example, we present a robust method that calculates concentration-dependent apparent rate constants for the inhibition or inactivation of HDAC8 from dose-response curves recorded after different pre-incubation times. With these data, hit compounds can be classified according to their mechanism of action, and the relevant kinetic parameters can be calculated in a highly parallel fashion. HDAC8 inhibitors with known modes of action were correctly assigned to their mechanism, and the binding mechanisms of some hits from an internal HDAC8 screening campaign were newly determined. The oxonitriles SVE04 and SVE27 were classified as fast reversible HDAC8 inhibitors with moderate time-constant IC50 values of 4.2 and 2.6 µM, respectively. The hit compound TJ-19-24 and SAH03 behave like slow two-step inactivators or reversible inhibitors, with a very low reverse isomerization rate.
Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Proteínas Represoras , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Cinética , Proteínas Represoras/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Unión Proteica , Ensayos Analíticos de Alto Rendimiento/métodosRESUMEN
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Asunto(s)
Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Humanos , Cristalografía por Rayos X , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Estereoisomerismo , Solventes/químicaRESUMEN
Histone deacetylase 11 (HDAC11), a member of the HDAC family, has emerged as a critical regulator in numerous physiological as well as pathological processes. Due to its diverse roles, HDAC11 has been a focal point of research in recent times. Different non-selective inhibitors are already approved, and research is going on to find selective HDAC11 inhibitors. The objective of this review is to comprehensively explore the role of HDAC11 as a pivotal regulator in a multitude of physiological and pathological processes. It aims to delve into the intricate details of HDAC11's structural and functional aspects, elucidating its molecular interactions and implications in different disease contexts. With a primary focus on elucidating the structure-activity relationships (SARs) of HDAC11 inhibitors, this review also aims to provide a holistic understanding of how its molecular architecture influences its inhibition. Additionally, by integrating both established knowledge and recent research, the review seeks to contribute novel insights into the potential therapeutic applications of HDAC11 inhibitors. Overall, the scope of this review spans from fundamental research elucidating the complexities of HDAC11 biology to the potential of targeting HDAC11 in therapeutic interventions.
Asunto(s)
Diseño de Fármacos , Epigénesis Genética , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Humanos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Histona Desacetilasas/genética , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Animales , Epigénesis Genética/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Histone deacetylase 3 (HDAC3), a Zn2+-dependent class I HDACs, contributes to numerous disorders such as neurodegenerative disorders, diabetes, cardiovascular disease, kidney disease and several types of cancers. Therefore, the development of novel and selective HDAC3 inhibitors might be promising to combat such diseases. Here, different classification-based molecular modelling studies such as Bayesian classification, recursive partitioning (RP), SARpy and linear discriminant analysis (LDA) were conducted on a set of HDAC3 inhibitors to pinpoint essential structural requirements contributing to HDAC3 inhibition followed by molecular docking study and molecular dynamics (MD) simulation analyses. The current study revealed the importance of hydroxamate function for Zn2+ chelation as well as hydrogen bonding interaction with Tyr298 residue. The importance of hydroxamate function for higher HDAC3 inhibition was noticed in the case of Bayesian classification, recursive partitioning and SARpy models. Also, the importance of substituted thiazole ring was revealed, whereas the presence of linear alkyl groups with carboxylic acid function, any type of ester function, benzodiazepine moiety and methoxy group in the molecular structure can be detrimental to HDAC3 inhibition. Therefore, this study can aid in the design and discovery of effective novel HDAC3 inhibitors in the future.
Asunto(s)
Teorema de Bayes , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Análisis Discriminante , Estructura MolecularRESUMEN
BACKGROUND: Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy. OBJECTIVES: The objective of the study is to synthesize and assess the anti-cancer properties of a 1,10-phenanthroline-based hydroxamate derivative, characterizing it as a novel dual HDAC/RR inhibitor. METHODS: The N1-hydroxy-N8-(1,10-phenanthrolin-5-yl)octanediamide (PA), a 1,10-phenanthroline-based hydroxamate derivative, was synthesized and structurally characterized. The compound was subjected to in vitro assessments of its anti-cancer, HDAC, and RR inhibitory activities. In silico docking and molecular dynamics simulations were further studied to explore its interactions with HDACs and RRM2. RESULTS: The structurally confirmed PA exhibited antiproliferative activity in SiHa cells with an IC50 of 16.43 µM. It displayed potent inhibitory activity against HDAC and RR with IC50 values of 10.80 µM and 9.34 µM, respectively. Co-inhibition of HDAC and RR resulted in apoptosis-induced cell death in SiHa cells, mediated by the accumulation of reactive oxygen species (ROS). In silico docking studies demonstrated that PA can effectively bind to the active sites of HDAC isoforms and RRM2. Furthermore, PA demonstrated a more favorable interaction with HDAC7, displaying a docking score of -9.633 kcal/mol, as compared to the standard HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), which exhibited a docking score of -8.244 kcal/mol against HDAC7. CONCLUSION: The present study emphasizes the prospect of designing a potential 1,10-phenanthroline hydroxamic acid derivative as a novel dual HDAC and RR-inhibiting anti-cancer molecule.
Asunto(s)
Antineoplásicos , Proliferación Celular , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Simulación del Acoplamiento Molecular , Fenantrolinas , Humanos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Fenantrolinas/química , Fenantrolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/química , Apoptosis/efectos de los fármacosRESUMEN
Histone deacetylase 4 (HDAC4) contributes to gene repression by complex formation with HDAC3 and the corepressor silencing mediator for retinoid or thyroid hormone receptors (SMRT). We hypothesized that peptides derived from the class IIa specific binding site of SMRT would stabilize a specific conformation of its target protein and modulate its activity. Based on the SMRT-motif 1 (SM1) involved in the interaction of SMRT with HDAC4, we systematically developed cyclic peptides that exhibit Ki values that are 9 to 56 times lower than that of the linear SMRT peptide. The peptide macrocycles stabilize the wildtype of the catalytic domain of HDAC4 (cHDAC4) considerably better than its thermally more stable 'gain-of-function' (GOF) variant, cHDAC4-H976Y. Molecular docking and mutagenesis studies indicated that the cyclic peptides bind in a similar but not identical manner as the linear SMRT peptide to a discontinuous binding site. Ion mobility mass spectrometry showed no major changes in the protein fold upon peptide binding. Consistent with these results, preliminary hydrogen-deuterium exchange mass spectrometry measurements indicated only minor conformational changes. Taken together, the cyclic SMRT peptides most likely stabilize the apo form of cHDAC4.
Asunto(s)
Histona Desacetilasas , Proteínas Represoras , Histona Desacetilasas/metabolismo , Histona Desacetilasas/química , Humanos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Simulación del Acoplamiento Molecular , Estabilidad Proteica , Péptidos/química , Péptidos/síntesis química , Péptidos/metabolismo , Co-Represor 2 de Receptor Nuclear/química , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Diseño de Fármacos , Sitios de UniónRESUMEN
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Asunto(s)
Teoría Funcional de la Densidad , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento MolecularRESUMEN
Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.
Asunto(s)
ADN , Histona Desacetilasas , Factores de Transcripción MEF2 , Péptidos , Humanos , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/metabolismo , ADN/química , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de ProteínaRESUMEN
Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.
Asunto(s)
Histona Desacetilasas , Zinc , Humanos , Dominio Catalítico , Ligandos , Fosforilación , Histona Desacetilasas/químicaRESUMEN
Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.
Asunto(s)
ADN , Histona Desacetilasas , Factores de Transcripción MEF2 , Proteínas Represoras , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/metabolismo , Factores Reguladores Miogénicos/química , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Humanos , Histona Desacetilasas/química , Histona Desacetilasas/metabolismoRESUMEN
Histone deacetylase 11 (HDAC11), an enzyme that cleaves acyl groups from acylated lysine residues, is the sole member of class IV of HDAC family with no reported crystal structure so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms which complicates the conventional template-based homology modeling. AlphaFold is a neural network machine learning approach for predicting the 3D structures of proteins with atomic accuracy even in absence of similar structures. However, the structures predicted by AlphaFold are missing small molecules as ligands and cofactors. In our study, we first optimized the HDAC11 AlphaFold model by adding the catalytic zinc ion followed by assessment of the usability of the model by docking of the selective inhibitor FT895. Minimization of the optimized model in presence of transplanted inhibitors, which have been described as HDAC11 inhibitors, was performed. Four complexes were generated and proved to be stable using three replicas of 50 ns MD simulations and were successfully utilized for docking of the selective inhibitors FT895, MIR002 and SIS17. For SIS17, The most reasonable pose was selected based on structural comparison between HDAC6, HDAC8 and the HDAC11 optimized AlphaFold model. The manually optimized HDAC11 model is thus able to explain the binding behavior of known HDAC11 inhibitors and can be used for further structure-based optimization.
Asunto(s)
Descubrimiento de Drogas , Histona Desacetilasas , Estudios de Factibilidad , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/químicaRESUMEN
Polyamine deacetylase activity was discovered more than 40 years ago, but the responsible histone deacetylase 10 (HDAC10) was described only recently. HDAC10 is a class IIb HDAC, as is its closest relative, the α-tubulin deacetylase HDAC6. HDAC10 has attracted attention over the last 2 years due to its role in diseases, especially cancer. This review summarises chemical and structural biology approaches to the study of HDAC10. Light will be shed on recent advances in understanding the complex structural biology of HDAC10 and the discovery of the first highly selective HDAC10 inhibitors.
Asunto(s)
Histona Desacetilasas , Poliaminas , Histona Desacetilasas/química , Dominio CatalíticoRESUMEN
Many populations worldwide are suffering from central nervous system (CNS) diseases such as brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease) and stroke. There is a shortage of effective drugs for most CNS diseases. As one of the regulatory mechanisms of epigenetics, the particular role and therapeutic benefits of histone deacetylases (HDACs) in the CNS have been extensively studied. In recent years, HDACs have attracted increasing attention as potential drug targets for CNS diseases. In this review, we summarize the recent applications of representative histone deacetylases inhibitors (HDACis) in CNS diseases and discuss the challenges in developing HDACis with different structures and better blood-brain barrier (BBB) permeability, hoping to promote the development of more effective bioactive HDACis for the treatment of CNS diseases.