Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669246

RESUMEN

The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1's dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.


Asunto(s)
Envejecimiento/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/metabolismo , Contracción Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Debilidad Muscular/metabolismo , Transducción de Señal/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Autofagosomas/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Unión Neuromuscular/metabolismo , Fosforilación/genética , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
2.
Sci Immunol ; 5(52)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33067381

RESUMEN

Multiple sclerosis (MS) is a leading cause of incurable progressive disability in young adults caused by inflammation and neurodegeneration in the central nervous system (CNS). The capacity of microglia to clear tissue debris is essential for maintaining and restoring CNS homeostasis. This capacity diminishes with age, and age strongly associates with MS disease progression, although the underlying mechanisms are still largely elusive. Here, we demonstrate that the recovery from CNS inflammation in a murine model of MS is dependent on the ability of microglia to clear tissue debris. Microglia-specific deletion of the autophagy regulator Atg7, but not the canonical macroautophagy protein Ulk1, led to increased intracellular accumulation of phagocytosed myelin and progressive MS-like disease. This impairment correlated with a microglial phenotype previously associated with neurodegenerative pathologies. Moreover, Atg7-deficient microglia showed notable transcriptional and functional similarities to microglia from aged wild-type mice that were also unable to clear myelin and recover from disease. In contrast, induction of autophagy in aged mice using the disaccharide trehalose found in plants and fungi led to functional myelin clearance and disease remission. Our results demonstrate that a noncanonical form of autophagy in microglia is responsible for myelin degradation and clearance leading to recovery from MS-like disease and that boosting this process has a therapeutic potential for age-related neuroinflammatory conditions.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/deficiencia , Encefalomielitis Autoinmune Experimental/inmunología , Microglía/inmunología , Esclerosis Múltiple/inmunología , Fagocitosis/inmunología , Animales , Autofagia/inmunología , Proteína 7 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Encéfalo/citología , Encéfalo/inmunología , Encéfalo/patología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Cultivo Primario de Células , Médula Espinal/citología , Médula Espinal/inmunología , Médula Espinal/patología
3.
FASEB J ; 34(10): 13561-13572, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32844451

RESUMEN

In insects, synthesis and deposition of the chorion (eggshell) are performed by the professional secretory follicle cells (FCs) that surround the oocytes in the course of oogenesis. Here, we found that ULK1/ATG1, an autophagy-related protein, is highly expressed in the FCs of the Chagas-Disease vector Rhodnius prolixus, and that parental RNAi silencing of ULK1/ATG1 results in oocytes with abnormal chorion ultrastructure and FCs presenting expanded rough ER membranes as well as increased expression of the ER chaperone BiP3, both indicatives of ER stress. Silencing of LC3/ATG8, another essential autophagy protein, did not replicate the ULK1/ATG1 phenotypes, whereas silencing of SEC16A, a known partner of the noncanonical ULK1/ATG1 function in the ER exit sites phenocopied the silencing of ULK1/ATG1. Our findings point to a cooperated function of ULK1/ATG1 and SEC16A in the FCs to complete choriogenesis and provide additional in vivo phenotype-based evidence to the literature of the role of ULK1/ATG1 in the ER in a professional secretory cell.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Corion/fisiología , Proteínas de Insectos/fisiología , Folículo Ovárico/fisiología , Rhodnius/fisiología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Enfermedad de Chagas , Retículo Endoplásmico/fisiología , Femenino , Proteínas de Insectos/deficiencia , Chaperonas Moleculares/fisiología
4.
FASEB J ; 34(5): 7144-7159, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275117

RESUMEN

Disrupted mitochondrial function and reactive oxygen species (ROS) generation cause cellular damage and oxidative stress-induced macrophage inflammatory cell death. It remains unclear how mitochondrial dysfunction relates to inflammasome activation and pyroptotic cell death. In this study, we demonstrated that tumor necrosis factor receptor-associated factor 3 (TRAF3) regulates mitochondrial ROS production and promotes TLR agonist LPS plus nigericin (LPS/Ng)-induced inflammasome and pyroptosis in mouse primary macrophages and human monocyte THP-1 cells. Co-IP assays confirmed that TRAF3 forms a complex with TRAF2 and cIAP1 and mediates ubiquitin and degradation of Unc-51 like autophagy activating kinase 1 (ULK1). Moreover, knockdown of ULK1 in THP-1 cells significantly promoted LPS/Ng-induced inflammasome by activating caspase 1 and mature IL-1ß. Apoptosis inducing factor (AIF) translocation from mitochondrial to nuclear was observed in ULK1-deficient THP-1 cells under LPS/Ng stimulation, which mediates LPS/Ng-induced cell death in ULK1 deficient macrophages. In conclusion, this study identified a novel role of TRAF3 in regulation of ULK1 ubiquitination and inflammasome signaling and provided molecular mechanisms by which ubiquitination of ULK1 controls mitochondrial ROS production, inflammasome activity, and AIF-dependent pyroptosis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Inflamasomas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos/farmacología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Monocitos/citología , Monocitos/metabolismo , Nigericina/farmacología , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células THP-1 , Factor 3 Asociado a Receptor de TNF/deficiencia , Factor 3 Asociado a Receptor de TNF/genética , Ubiquitinación/efectos de los fármacos
5.
Nature ; 567(7747): 262-266, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842662

RESUMEN

Cyclic GMP-AMP (cGAMP) synthase (cGAS) detects infections or tissue damage by binding to microbial or self DNA in the cytoplasm1. Upon binding DNA, cGAS produces cGAMP that binds to and activates the adaptor protein STING, which then activates the kinases IKK and TBK1 to induce interferons and other cytokines2-6. Here we report that STING also activates autophagy through a mechanism that is independent of TBK1 activation and interferon induction. Upon binding cGAMP, STING translocates to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and the Golgi in a process that is dependent on the COP-II complex and ARF GTPases. STING-containing ERGIC serves as a membrane source for LC3 lipidation, which is a key step in autophagosome biogenesis. cGAMP induced LC3 lipidation through a pathway that is dependent on WIPI2 and ATG5 but independent of the ULK and VPS34-beclin kinase complexes. Furthermore, we show that cGAMP-induced autophagy is important for the clearance of DNA and viruses in the cytosol. Interestingly, STING from the sea anemone Nematostella vectensis induces autophagy but not interferons in response to stimulation by cGAMP, which suggests that induction of autophagy is a primordial function of the cGAS-STING pathway.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Animales , Autofagosomas/metabolismo , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Beclina-1/deficiencia , Beclina-1/genética , Beclina-1/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Citosol/virología , Virus ADN/genética , Virus ADN/metabolismo , ADN Viral/metabolismo , Retículo Endoplásmico/metabolismo , Evolución Molecular , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Interferones/biosíntesis , Interferones/inmunología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos Cíclicos/inmunología , Nucleótidos Cíclicos/metabolismo , Proteínas de Unión a Fosfato , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Anémonas de Mar , Proteínas de Transporte Vesicular/metabolismo
6.
Hepatology ; 67(6): 2397-2413, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29272037

RESUMEN

unc-51-like autophagy activating kinase 1 and 2 (Ulk1/2) regulate autophagy initiation under various stress conditions. However, the physiological functions of these Ser/Thr kinases are not well characterized. Here, we show that mice with liver-specific double knockout (LDKO) of Ulk1 and Ulk2 (Ulk1/2 LDKO) are viable, but exhibit overt hepatomegaly phenotype. Surprisingly, Ulk1/2 LDKO mice display normal autophagic activity in hepatocytes upon overnight fasting, but are strongly resistant to acetaminophen (APAP)-induced liver injury. Further studies revealed that Ulk1/2 are also dispensable for APAP-induced autophagy process, but are essential for the maximum activation of c-Jun N-terminal kinase (JNK) signaling both in vivo and in isolated primary hepatocytes during APAP treatment. Mechanistically, APAP-induced inhibition of mechanistic target of rapamycin complex 1 releases Ulk1 from an inactive state. Activated Ulk1 then directly phosphorylates and increases the kinase activity of mitogen-activated protein kinase kinase 4 and 7 (MKK4/7), the upstream kinases and activator of JNK, and mediates APAP-induced liver injury. Ulk1-dependent phosphorylation of MKK7 was further confirmed by a context-dependent phosphorylation antibody. Moreover, activation of JNK and APAP-induced cell death was markedly attenuated in Mkk4/7 double knockdown hepatocytes reconstituted with an Ulk1-unphosphorylatable mutant of MKK7 compared to those in cells rescued with wild-type MKK7. CONCLUSION: Together, these findings reveal an important role of Ulk1/2 for APAP-induced JNK activation and liver injury, and understanding of this regulatory mechanism may offer us new strategies for prevention and treatment of human APAP hepatotoxicity. (Hepatology 2018;67:2397-2413).


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Antipiréticos/efectos adversos , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Masculino , Ratones
7.
Autophagy ; 14(5): 796-811, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29099309

RESUMEN

Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Orientación del Axón , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia , Axones/metabolismo , Axones/ultraestructura , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Corteza Somatosensorial/metabolismo , Proteínas Ubiquitinadas/metabolismo
8.
Cardiovasc Res ; 113(10): 1137-1147, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430962

RESUMEN

AIMS: Autophagy is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Whereas many studies support the importance of autophagy in the mechanisms underlying obesity-related cardiac dysfunction, the role of autophagy in cardiac lipid metabolism remains unclear. In the heart, lipotoxicity is exacerbated by cardiac lipoprotein lipase (LPL), which mediates accumulation of fatty acids to the heart through intravascular triglyceride (TG) hydrolysis. METHODS AND RESULTS: In both genetic and dietary models of obesity, we observed a substantial increase in cardiac LPL protein levels without any change in messenger ribonucleic acid (mRNA). This was accompanied by a dramatic down-regulation of autophagy in the heart, as revealed by reduced levels of unc-51 like kinase-1 (ULK1) protein. To further explore the relationship between cardiac LPL and autophagy, we generated cardiomyocyte-specific knockout mice for ulk1 (Myh6-cre/ulk1fl/fl), Lpl (Myh6-cre/Lplfl/fl), and mice with a combined deficiency (Myh6-cre/ulk1fl/flLplfl/fl). Similar to genetic and dietary models of obesity, Myh6-cre/ulk1fl/fl mice had a substantial increase in cardiac LPL levels. When these mice were fed a high-fat diet (HFD), they showed elevated cardiac TG levels and deterioration in heart function. However, with combined deletion of LPL and ULK1 in Myh6-cre/ulk1fl/flLplfl/fl mice, HFD feeding did not lead to alterations in levels of TG or diacylglycerol, or in cardiac function. To further elucidate the role of autophagy in cardiac lipid metabolism, we infused a peptide that enhanced autophagy (D-Tat-beclin1). This effectively lowered LPL levels at the coronary lumen by restoring autophagy in the genetic model of obesity. This decrease in cardiac luminal LPL was associated with a reduction in TG levels and recovery of cardiac function. CONCLUSION: These results provide clear evidence of the critical role of modulating cardiac LPL activity through autophagy-mediated proteolytic clearance as a potential novel strategy to overcome obesity-related cardiomyopathy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Ácidos Grasos/metabolismo , Cardiopatías/prevención & control , Contracción Miocárdica , Miocitos Cardíacos/enzimología , Obesidad/complicaciones , Triglicéridos/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Beclina-1/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Predisposición Genética a la Enfermedad , Cardiopatías/enzimología , Cardiopatías/patología , Cardiopatías/fisiopatología , Hidrólisis , Preparación de Corazón Aislado , Lipólisis , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Obesidad/enzimología , Obesidad/patología , Obesidad/fisiopatología , Fenotipo , Proteolisis , Transducción de Señal , Factores de Tiempo
9.
Am J Physiol Cell Physiol ; 312(6): C724-C732, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356270

RESUMEN

Autophagy is a conserved cellular process for degrading aggregate proteins and dysfunctional organelle. It is still debatable if autophagy and mitophagy (a specific process of autophagy of mitochondria) play important roles in myogenic differentiation and functional regeneration of skeletal muscle. We tested the hypothesis that autophagy is critical for functional regeneration of skeletal muscle. We first observed time-dependent increases (3- to 6-fold) of autophagy-related proteins (Atgs), including Ulk1, Beclin1, and LC3, along with reduced p62 expression during C2C12 differentiation, suggesting increased autophagy capacity and flux during myogenic differentiation. We then used cardiotoxin (Ctx) or ischemia-reperfusion (I/R) to induce muscle injury and regeneration and observed increases in Atgs between days 2 and 7 in adult skeletal muscle followed by increased autophagy flux after day 7 Since Ulk1 has been shown to be essential for mitophagy, we asked if Ulk1 is critical for functional regeneration in skeletal muscle. We subjected skeletal muscle-specific Ulk1 knockout mice (MKO) to Ctx or I/R. MKO mice had significantly impaired recovery of muscle strength and mitochondrial protein content post-Ctx or I/R. Imaging analysis showed that MKO mice have significantly attenuated recovery of mitochondrial network at 7 and 14 days post-Ctx. These findings suggest that increased autophagy protein and flux occur during muscle regeneration and Ulk1-mediated mitophagy is critical for recovery for the mitochondrial network and hence functional regeneration.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Mitocondrias/metabolismo , Mitofagia/fisiología , Músculo Esquelético/metabolismo , Regeneración/fisiología , Daño por Reperfusión/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Beclina-1/genética , Beclina-1/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteínas Cardiotóxicas de Elápidos/toxicidad , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitofagia/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Regeneración/efectos de los fármacos , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal
10.
EMBO Rep ; 17(11): 1552-1564, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27670885

RESUMEN

Autophagy is an evolutionary conserved process that degrades subcellular constituents. Unlike starvation-induced autophagy, the molecular mechanism of genotoxic stress-induced autophagy has not yet been fully elucidated. In this study, we analyze the molecular mechanism of genotoxic stress-induced autophagy and identify an essential role of dephosphorylation of the Unc51-like kinase 1 (Ulk1) at Ser637, which is catalyzed by the protein phosphatase 1D magnesium-dependent delta isoform (PPM1D). We show that after exposure to genotoxic stress, PPM1D interacts with and dephosphorylates Ulk1 at Ser637 in a p53-dependent manner. The PPM1D-dependent Ulk1 dephosphorylation triggers Ulk1 puncta formation and induces autophagy. This happens not only in mouse embryonic fibroblasts but also in primary thymocytes, where the genetic ablation of PPM1D reduces the dephosphorylation of Ulk1 at Ser637, inhibits autophagy, and accelerates apoptosis induced by X-ray irradiation. This acceleration of apoptosis is caused mainly by the inability of the autophagic machinery to degrade the proapoptotic molecule Noxa. These findings indicate that the PPM1D-Ulk1 axis plays a pivotal role in genotoxic stress-induced autophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia/genética , Daño del ADN , Proteína Fosfatasa 2C/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Biocatálisis , Fibroblastos , Genes p53 , Magnesio/metabolismo , Ratones , Fosforilación , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 2C/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Timocitos
11.
Mol Cell ; 62(4): 491-506, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203176

RESUMEN

ULK1 and ULK2 are thought to be essential for initiating autophagy, and Ulk1/2-deficient mice die perinatally of autophagy-related defects. Therefore, we used a conditional knockout approach to investigate the roles of ULK1/2 in the brain. Although the mice showed neuronal degeneration, the neurons showed no accumulation of P62(+)/ubiquitin(+) inclusions or abnormal membranous structures, which are observed in mice lacking other autophagy genes. Rather, neuronal death was associated with activation of the unfolded protein response (UPR) pathway. An unbiased proteomics approach identified SEC16A as an ULK1/2 interaction partner. ULK-mediated phosphorylation of SEC16A regulated the assembly of endoplasmic reticulum (ER) exit sites and ER-to-Golgi trafficking of specific cargo, and did not require other autophagy proteins (e.g., ATG13). The defect in ER-to-Golgi trafficking activated the UPR pathway in ULK-deficient cells; both processes were reversed upon expression of SEC16A with a phosphomimetic substitution. Thus, the regulation of ER-to-Golgi trafficking by ULK1/2 is essential for cellular homeostasis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Encéfalo/enzimología , Retículo Endoplásmico/enzimología , Fibroblastos/enzimología , Aparato de Golgi/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autofagia , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Encéfalo/patología , Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/patología , Femenino , Genotipo , Aparato de Golgi/patología , Células HEK293 , Homeostasis , Humanos , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Mol Cell ; 62(3): 359-370, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27153534

RESUMEN

Metabolic reprogramming is fundamental to biological homeostasis, enabling cells to adjust metabolic routes after sensing altered availability of fuels and growth factors. ULK1 and ULK2 represent key integrators that relay metabolic stress signals to the autophagy machinery. Here, we demonstrate that, during deprivation of amino acid and growth factors, ULK1/2 directly phosphorylate key glycolytic enzymes including hexokinase (HK), phosphofructokinase 1 (PFK1), enolase 1 (ENO1), and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP1). Phosphorylation of these enzymes leads to enhanced HK activity to sustain glucose uptake but reduced activity of FBP1 to block the gluconeogenic route and reduced activity of PFK1 and ENO1 to moderate drop of glucose-6-phosphate and to repartition more carbon flux to pentose phosphate pathway (PPP), maintaining cellular energy and redox homeostasis at cellular and organismal levels. These results identify ULK1/2 as a bifurcate-signaling node that sustains glucose metabolic fluxes besides initiation of autophagy in response to nutritional deprivation.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Glucosa/metabolismo , Glucólisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Vía de Pentosa Fosfato , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Biomarcadores de Tumor/metabolismo , Muerte Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Fructosa-Bifosfatasa/metabolismo , Genotipo , Células HCT116 , Hexoquinasa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Masculino , Ratones Noqueados , Fenotipo , Fosfofructoquinasa-1/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA