Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.214
Filtrar
1.
Cell Death Dis ; 15(10): 751, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414799

RESUMEN

Radiotherapy represents a major curative treatment for prostate cancer (PCa), but some patients will develop radioresistance (RR) and relapse. The underlying mechanisms remain poorly understood, and miRNAs might be key players in the acquisition and maintenance of RR. Through their encapsulation in small extracellular vesicles (EVs), they can also be relevant biomarkers of radiation response. Using next-generation sequencing, we found that miR-200c-3p was downregulated in PCa RR cells and in their small EVs due to a gain of methylation on its promoter during RR acquisition. We next showed that its exogenous overexpression restores the radiosensitivity of RR cells by delaying DNA repair through the targeting of HP1α. Interestingly, we also observed downregulation of miR-200c-3p expression by DNA methylation in radiation-resistant lung and breast cancer cell lines. In summary, our study demonstrates that the downregulation of miR-200c-3p expression in PCa cells and in their small EVs could help distinguish radioresistant from sensitive tumor cells. This miRNA targets HP1α to delay DNA repair and promote cell death.


Asunto(s)
Metilación de ADN , Reparación del ADN , MicroARNs , Neoplasias de la Próstata , Tolerancia a Radiación , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Masculino , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Reparación del ADN/genética , Tolerancia a Radiación/genética , Línea Celular Tumoral , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Homólogo de la Proteína Chromobox 5 , Regulación hacia Abajo/genética
2.
Nat Commun ; 15(1): 6815, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122718

RESUMEN

Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Metilación de ADN , Proteínas Fúngicas , Heterocromatina , Histonas , Heterocromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Histonas/metabolismo , Histonas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Unión Proteica , Neurospora crassa/genética , Neurospora crassa/metabolismo
3.
EMBO J ; 43(20): 4542-4577, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39192031

RESUMEN

Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.


Asunto(s)
Senescencia Celular , Homólogo de la Proteína Chromobox 5 , Heterocromatina , Heterocromatina/metabolismo , Heterocromatina/genética , Humanos , Homólogo de la Proteína Chromobox 5/metabolismo , Ratones , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Ensamble y Desensamble de Cromatina , Transducción de Señal
4.
Nucleic Acids Res ; 52(18): 10731-10746, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39142658

RESUMEN

Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1-protein complexes in living cells.


Visualizing molecular-scale interactions in living cells is challenging, but advances in single-molecule super-resolution microscopy enable high-resolution imaging of molecular positions of proteins and their motions within cells. HP1 proteins bind to H3K9 methylated histones to form complexes that silence gene expression. Here, we tracked single HP1 proteins and their binding partners to measure when and where they form complexes in live fission yeast cells. Genetic perturbations enabled us to connect their motions to specific changes in their cellular properties. Surprisingly, we noted that HP1 proteins preferentially form ternary complexes with their binding partners at sites of H3K9me. This work proposes a novel function for chromatin and shows how H3K9 methylation spatially restricts HP1-associated complex formation while suppressing off-chromatin binding.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Unión Proteica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Imagen Individual de Molécula , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Histonas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Imagen Individual de Molécula/métodos , Homólogo de la Proteína Chromobox 5/metabolismo , Metilación , Cromatina/metabolismo , Núcleo Celular/metabolismo
5.
Nucleic Acids Res ; 52(18): 10918-10933, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193905

RESUMEN

Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Nucleosomas , Multimerización de Proteína , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Humanos , Nucleosomas/metabolismo , Nucleosomas/química , Nucleosomas/genética , Histonas/metabolismo , Histonas/química , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Transferencia Resonante de Energía de Fluorescencia , Microscopía Fluorescente , Cromatina/metabolismo , Cromatina/química , Cromatina/genética , Metilación
6.
Genes Dev ; 38(11-12): 554-568, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38960717

RESUMEN

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.


Asunto(s)
Retroelementos , Animales , Humanos , Ratones , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Retrovirus Endógenos/genética , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Histonas/genética , Elementos de Nucleótido Esparcido Largo/genética , Unión Proteica , Retroelementos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejos Multiproteicos/metabolismo
7.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029934

RESUMEN

HP1α/CBX5 is an epigenetic regulator with a suspected role in multiple sclerosis (MS). Here, using high-depth RNA sequencing on monocytes, we identified a subset of MS patients with reduced CBX5 expression, correlating with progressive stages of the disease and extensive transcriptomic alterations. Examination of rare non-coding RNA species in these patients revealed impaired maturation/degradation of U snRNAs and enhancer RNAs, indicative of reduced activity of the Integrator, a complex with suspected links to increased MS risk. At protein-coding genes, compromised Integrator activity manifested in reduced pre-mRNA splicing efficiency and altered expression of genes regulated by RNA polymerase II pause-release. Inactivation of Cbx5 in the mouse mirrored most of these transcriptional defects and resulted in hypersensitivity to experimental autoimmune encephalomyelitis. Collectively, our observations suggested a major contribution of the Integrator complex in safeguarding against transcriptional anomalies characteristic of MS, with HP1α/CBX5 emerging as an unexpected regulator of this complex's activity. These findings bring novel insights into the transcriptional aspects of MS and provide potential new criteria for patient stratification.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Transcriptoma , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Animales , Ratones , Transcriptoma/genética , Femenino , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Masculino , Adulto , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Persona de Mediana Edad , Empalme del ARN/genética , Regulación de la Expresión Génica , Monocitos/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica/métodos
8.
Elife ; 132024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995818

RESUMEN

Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino's chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino's chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.


Asunto(s)
Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromatina/metabolismo , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Filogenia , Unión Proteica , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Histonas/metabolismo , Histonas/genética , ADN/metabolismo , ADN/genética
9.
Nat Commun ; 15(1): 6276, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054315

RESUMEN

HP1 proteins are essential for establishing and maintaining transcriptionally silent heterochromatin. They dimerize, forming a binding interface to recruit diverse chromatin-associated factors. Although HP1 proteins are known to rapidly evolve, the extent of variation required to achieve functional specialization is unknown. To investigate how changes in amino acid sequence impacts heterochromatin formation, we performed a targeted mutagenesis screen of the S. pombe HP1 homolog, Swi6. Substitutions within an auxiliary surface adjacent to the HP1 dimerization interface produce Swi6 variants with divergent maintenance properties. Remarkably, substitutions at a single amino acid position lead to the persistent gain or loss of epigenetic inheritance. These substitutions increase Swi6 chromatin occupancy in vivo and altered Swi6-protein interactions that reprogram H3K9me maintenance. We show how relatively minor changes in Swi6 amino acid composition in an auxiliary surface can lead to profound changes in epigenetic inheritance providing a redundant mechanism to evolve HP1-effector specificity.


Asunto(s)
Proteínas Cromosómicas no Histona , Epigénesis Genética , Heterocromatina , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Homólogo de la Proteína Chromobox 5 , Histonas/metabolismo , Histonas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Unión Proteica , Cromatina/metabolismo , Memoria Epigenética
10.
Nature ; 631(8021): 678-685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961301

RESUMEN

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.


Asunto(s)
Centrómero , Evolución Molecular , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Motivos de Nucleótidos , Animales , Humanos , Ratones , Centrómero/genética , Centrómero/metabolismo , Pollos , Homólogo de la Proteína Chromobox 5 , Silenciador del Gen , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/química , Histonas/metabolismo , Histonas/química , Anfioxos , Metilación , Petromyzon , Proteínas Represoras/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Serpientes , Xenopus laevis , Pez Cebra , Dedos de Zinc
11.
EMBO J ; 43(13): 2685-2714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831123

RESUMEN

Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina , Histonas , Animales , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Metilación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Homólogo de la Proteína Chromobox 5 , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/metabolismo , Genoma de los Insectos , Desarrollo Embrionario/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética
12.
Cell Rep ; 43(7): 114373, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900638

RESUMEN

Biomolecular condensates have emerged as major drivers of cellular organization. It remains largely unexplored, however, whether these condensates can impart mechanical function(s) to the cell. The heterochromatin protein HP1α (Swi6 in Schizosaccharomyces pombe) crosslinks histone H3K9 methylated nucleosomes and has been proposed to undergo condensation to drive the liquid-like clustering of heterochromatin domains. Here, we leverage the genetically tractable S. pombe model and a separation-of-function allele to elucidate a mechanical function imparted by Swi6 condensation. Using single-molecule imaging, force spectroscopy, and high-resolution live-cell imaging, we show that Swi6 is critical for nuclear resistance to external force. Strikingly, it is the condensed yet dynamic pool of Swi6, rather than the chromatin-bound molecules, that is essential to imparting mechanical stiffness. Our findings suggest that Swi6 condensates embedded in the chromatin meshwork establish the emergent mechanical behavior of the nucleus as a whole, revealing that biomolecular condensation can influence organelle and cell mechanics.


Asunto(s)
Núcleo Celular , Proteínas Cromosómicas no Histona , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas Cromosómicas no Histona/metabolismo , Núcleo Celular/metabolismo , Homólogo de la Proteína Chromobox 5 , Heterocromatina/metabolismo , Cromatina/metabolismo
13.
Pathol Res Pract ; 260: 155391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850878

RESUMEN

BACKGROUND: Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS: DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS: Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS: Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.


Asunto(s)
Daño del ADN , Hepatitis B Crónica , Hepatocitos , Histonas , Humanos , Hepatocitos/patología , Hepatocitos/metabolismo , Hepatitis B Crónica/patología , Histonas/metabolismo , Masculino , Persona de Mediana Edad , Adulto , Femenino , Inflamación/patología , Inflamación/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Cirrosis Hepática/metabolismo , Homólogo de la Proteína Chromobox 5 , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/metabolismo , Reparación del ADN , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo
14.
Protein Sci ; 33(7): e5079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895997

RESUMEN

Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown. Using a combination of NMR spectroscopy and structure predictions by AlphaFold2 we provide evidence that the chromo and chromoshadow domain of HP1α engage in direct contacts resulting in a compact chromo/chromoshadow domain arrangement. We further show that HP1ß and HP1γ have increased interdomain dynamics when compared to HP1α which may contribute to the distinct roles of different Hp1 isoforms in gene silencing and activation.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Homólogo de la Proteína Chromobox 5/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Conformación Proteica
15.
Cell Death Dis ; 15(5): 380, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816370

RESUMEN

Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.


Asunto(s)
Quinasa de la Caseína II , Senescencia Celular , Daño del ADN , Longevidad , Proteínas de la Membrana , Metaloendopeptidasas , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Senescencia Celular/efectos de los fármacos , Homólogo de la Proteína Chromobox 5/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Histonas/metabolismo , Longevidad/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/deficiencia , Ratones Noqueados , Fosforilación/efectos de los fármacos
16.
Hepatol Int ; 18(5): 1499-1515, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38769286

RESUMEN

BACKGROUND: Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated. METHODS: Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice. RESULTS: CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. CONCLUSIONS: The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.


Asunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factores de Transcripción de la Familia Snail , Sorafenib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Humanos , Animales , Ratones , Sorafenib/farmacología , Sorafenib/uso terapéutico , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Resistencia a Antineoplásicos/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Masculino , Femenino , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Persona de Mediana Edad , Homólogo de la Proteína Chromobox 5
17.
Nat Genet ; 56(6): 1213-1224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802567

RESUMEN

During mitosis, condensin activity is thought to interfere with interphase chromatin structures. To investigate genome folding principles in the absence of chromatin loop extrusion, we codepleted condensin I and condensin II, which triggered mitotic chromosome compartmentalization in ways similar to that in interphase. However, two distinct euchromatic compartments, indistinguishable in interphase, emerged upon condensin loss with different interaction preferences and dependencies on H3K27ac. Constitutive heterochromatin gradually self-aggregated and cocompartmentalized with facultative heterochromatin, contrasting with their separation during interphase. Notably, some cis-regulatory element contacts became apparent even in the absence of CTCF/cohesin-mediated structures. Heterochromatin protein 1 (HP1) proteins, which are thought to partition constitutive heterochromatin, were absent from mitotic chromosomes, suggesting, surprisingly, that constitutive heterochromatin can self-aggregate without HP1. Indeed, in cells traversing from M to G1 phase in the combined absence of HP1α, HP1ß and HP1γ, constitutive heterochromatin compartments are normally re-established. In sum, condensin-deficient mitotic chromosomes illuminate forces of genome compartmentalization not identified in interphase cells.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Heterocromatina , Mitosis , Complejos Multiproteicos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mitosis/genética , Humanos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Interfase/genética , Cromosomas/genética , Homólogo de la Proteína Chromobox 5 , Cromatina/metabolismo , Cromatina/genética
18.
Mol Cell ; 84(11): 2017-2035.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38795706

RESUMEN

Whether and how histone post-translational modifications and the proteins that bind them drive 3D genome organization remains unanswered. Here, we evaluate the contribution of H3K9-methylated constitutive heterochromatin to 3D genome organization in Drosophila tissues. We find that the predominant organizational feature of wild-type tissues is the segregation of euchromatic chromosome arms from heterochromatic pericentromeres. Reciprocal perturbation of HP1a⋅H3K9me binding, using a point mutation in the HP1a chromodomain or replacement of the replication-dependent histone H3 with H3K9R mutant histones, revealed that HP1a binding to methylated H3K9 in constitutive heterochromatin is required to limit contact frequency between pericentromeres and chromosome arms and regulate the distance between arm and pericentromeric regions. Surprisingly, the self-association of pericentromeric regions is largely preserved despite the loss of H3K9 methylation and HP1a occupancy. Thus, the HP1a⋅H3K9 interaction contributes to but does not solely drive the segregation of euchromatin and heterochromatin inside the nucleus.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Proteínas de Drosophila , Drosophila melanogaster , Heterocromatina , Histonas , Heterocromatina/metabolismo , Heterocromatina/genética , Animales , Histonas/metabolismo , Histonas/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metilación , Eucromatina/metabolismo , Eucromatina/genética , Centrómero/metabolismo , Centrómero/genética , Unión Proteica , Genoma de los Insectos , Segregación Cromosómica , Procesamiento Proteico-Postraduccional
19.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38781028

RESUMEN

Maintenance of ploidy depends on the mitotic kinase Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC) whose proficient activity is supported by HP1 enriched at inner centromeres. HP1 is known to associate with INCENP of the CPC in a manner that depends on the PVI motif conserved across HP1 interactors. Here, we found that the interaction of INCENP with HP1 requires not only the PVI motif but also its C-terminally juxtaposed domain. Remarkably, these domains conditionally fold the ß-strand (PVI motif) and the α-helix from a disordered sequence upon HP1 binding and render INCENP with high affinity to HP1. This bipartite binding domain termed SSH domain (Structure composed of Strand and Helix) is necessary and sufficient to attain a predominant interaction of HP1 with INCENP. These results identify a unique HP1-binding module in INCENP that ensures enrichment of HP1 at inner centromeres, Aurora B activity, and thereby mitotic fidelity.


Asunto(s)
Aurora Quinasa B , Centrómero , Homólogo de la Proteína Chromobox 5 , Unión Proteica , Humanos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/genética , Sitios de Unión , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5/genética , Homólogo de la Proteína Chromobox 5/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , Mitosis
20.
J Exp Clin Cancer Res ; 43(1): 152, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812060

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS: The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS: HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS: HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Homólogo de la Proteína Chromobox 5 , Histona Desacetilasa 1 , Factor de Transcripción STAT1 , Animales , Femenino , Humanos , Masculino , Ratones , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Homólogo de la Proteína Chromobox 5/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Factor de Transcripción STAT1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA