Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Hum Genomics ; 18(1): 56, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831447

RESUMEN

BACKGROUND: Several lines of evidence suggest that leukocyte telomere length (LTL) can affect the development of prostate cancer (PC). METHODS: Here, we employed single nucleoside polymorphisms (SNPs) as instrumental variables (IVs) for LTL (n = 472,174) and conducted Mendelian randomization analysis to estimate their causal impact on PCs (79,148 patients/61,106 controls and 6311 patients/88,902 controls). RESULTS: Every 1-s.d extension of LTL increased the risk of PCs by 34%. Additionally, the analysis of candidate mediators between LTL and PCs via two-step Mendelian randomization revealed that among the 23 candidates, Alzheimer's disease, liver iron content, sex hormone binding global levels, naive CD4-CD8-T cell% T cell, and circulating leptin levels played substantial mediating roles. There is no robust evidence to support the reverse causal relationship between LTL and the selected mediators of PCs. Adjusting for the former four mediators, rather than adjusting for circulating leptin levels, decreased the impact of LTL on PCs. CONCLUSION: This study provides potential intervention measures for preventing LTL-induced PCs.


Asunto(s)
Leucocitos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata , Telómero , Población Blanca , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Leucocitos/metabolismo , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Telómero/genética , Homeostasis del Telómero/genética , Leptina/genética , Leptina/sangre , Predisposición Genética a la Enfermedad , Anciano , Persona de Mediana Edad
2.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824190

RESUMEN

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Asunto(s)
Linaje , Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Complejo Shelterina/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Masculino , Femenino , Homeostasis del Telómero/genética , Secuencia de Bases , Adulto
3.
Am J Hum Genet ; 111(5): 927-938, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701745

RESUMEN

Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.


Asunto(s)
Malaria Falciparum , Telómero , Humanos , Malaria Falciparum/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Femenino , Adulto , África del Sur del Sahara/epidemiología , Telómero/genética , Enfermedades Endémicas , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Población Negra/genética , Persona de Mediana Edad , Leucocitos/metabolismo , Homeostasis del Telómero/genética , Adulto Joven , Pueblo Africano Subsahariano
4.
PLoS One ; 19(5): e0303357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743757

RESUMEN

Short telomeres are associated with cardiovascular disease (CVD). We aimed to investigate, if genetically determined telomere-length effects CVD-risk in the Heinz-Nixdorf-Recall study (HNRS) population. We selected 14 single-nucleotide polymorphisms (SNPs) associated with telomere-length (p<10-8) from the literature and after exclusion 9 SNPs were included in the analyses. Additionally, a genetic risk score (GRS) using these 9 SNPs was calculated. Incident CVD was defined as fatal and non-fatal myocardial infarction, stroke, and coronary death. We included 3874 HNRS participants with available genetic data and had no known history of CVD at baseline. Cox proportional-hazards regression was used to test the association between the SNPs/GRS and incident CVD-risk adjusting for common CVD risk-factors. The analyses were further stratified by CVD risk-factors. During follow-up (12.1±4.31 years), 466 participants experienced CVD-events. No association between SNPs/GRS and CVD was observed in the adjusted analyses. However, the GRS, rs10936599, rs2487999 and rs8105767 increase the CVD-risk in current smoker. Few SNPs (rs10936599, rs2487999, and rs7675998) showed an increased CVD-risk, whereas rs10936599, rs677228 and rs4387287 a decreased CVD-risk, in further strata. The results of our study suggest different effects of SNPs/GRS on CVD-risk depending on the CVD risk-factor strata, highlighting the importance of stratified analyses in CVD risk-factors.


Asunto(s)
Enfermedades Cardiovasculares , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Telómero , Humanos , Enfermedades Cardiovasculares/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Telómero/genética , Factores de Riesgo , Homeostasis del Telómero/genética
5.
Nat Commun ; 15(1): 4417, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789417

RESUMEN

Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Homeostasis del Telómero , Telómero , Humanos , Telómero/genética , Telómero/metabolismo , Células K562 , Homeostasis del Telómero/genética , Polimorfismo de Nucleótido Simple , Regulación de la Expresión Génica , Sistemas CRISPR-Cas
6.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816532

RESUMEN

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Telomerasa , Telómero , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Telómero/genética , Telómero/metabolismo , División Celular/genética , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proliferación Celular/genética , Meristema/genética , Meristema/metabolismo
7.
Aging (Albany NY) ; 16(8): 7387-7404, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663933

RESUMEN

Mitochondrial DNA (mtDNA) copy number and telomere length (TL) are dynamic factors that have been linked to the aging process in organisms. However, the causal relationship between these variables remains uncertain. In this research, instrumental variables (IVs) related to mtDNA copy number and TL were obtained from publicly available genome-wide association studies (GWAS). Through bidirectional Mendelian randomization (MR) analysis, we examined the potential causal relationship between these factors. The forward analysis, with mtDNA copy number as the exposure and TL as the outcome, did not reveal a significant effect (B=-0.004, P>0.05). On the contrary, upon conducting a reverse analysis, it was found that there exists a positive causal relationship (B=0.054, P<0.05). Sensitivity analyses further confirmed the reliability of these results. The outcomes of this study indicate a one-way positive causal relationship, indicating that telomere shortening in the aging process may lead to a decrease in mtDNA copy number, providing new perspectives on their biological mechanisms.


Asunto(s)
Envejecimiento , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Telómero , Humanos , ADN Mitocondrial/genética , Envejecimiento/genética , Telómero/genética , Biomarcadores , Homeostasis del Telómero/genética , Acortamiento del Telómero/genética
8.
Science ; 384(6695): 533-539, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38603523

RESUMEN

Short telomeres cause age-related disease, and long telomeres contribute to cancer; however, the mechanisms regulating telomere length are unclear. We developed a nanopore-based method, which we call Telomere Profiling, to determine telomere length at nearly single-nucleotide resolution. Mapping telomere reads to chromosome ends showed chromosome end-specific length distributions that could differ by more than six kilobases. Examination of telomere lengths in 147 individuals revealed that certain chromosome ends were consistently longer or shorter. The same rank order was found in newborn cord blood, suggesting that telomere length is determined at birth and that chromosome end-specific telomere length differences are maintained as telomeres shorten with age. Telomere Profiling makes precision investigation of telomere length widely accessible for laboratory, clinical, and drug discovery efforts and will allow deeper insights into telomere biology.


Asunto(s)
Mapeo Cromosómico , Secuenciación de Nanoporos , Homeostasis del Telómero , Acortamiento del Telómero , Telómero , Humanos , Masculino , Cromosomas Humanos/genética , Sangre Fetal , Secuenciación de Nanoporos/métodos , Telómero/genética , Homeostasis del Telómero/genética , Acortamiento del Telómero/genética , Mapeo Cromosómico/métodos
9.
Biochem Biophys Res Commun ; 707: 149768, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38489874

RESUMEN

DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Telomerasa , Humanos , Reparación de la Incompatibilidad de ADN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo
10.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461301

RESUMEN

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Asunto(s)
Neoplasias , Estructuras R-Loop , ARN Largo no Codificante , Homeostasis del Telómero , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Separación de Fases , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Humanos
11.
Cancer Genet ; 284-285: 20-29, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503134

RESUMEN

INTRODUCTION: Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC. METHODS: We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters. RESULTS: Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC. CONCLUSION: The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.


Asunto(s)
Neoplasias de la Próstata , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Regulación hacia Arriba , Humanos , Masculino , Proteínas de Unión a Telómeros/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Telómero/genética , Regulación Neoplásica de la Expresión Génica , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Biomarcadores de Tumor/genética , Anciano , Homeostasis del Telómero/genética , Tripeptidil Peptidasa 1
12.
Nat Commun ; 15(1): 82, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167290

RESUMEN

Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Homeostasis del Telómero/genética , Telomerasa/genética , Telomerasa/metabolismo , Neoplasias/genética , Telómero/genética , Telómero/metabolismo , Genómica
13.
Thorax ; 79(3): 274-278, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38238005

RESUMEN

We investigated phenotypic leucocyte telomere length (LTL), genetically predicted LTL (gTL), and lung cancer risk among 371 890 participants, including 2829 incident cases, from the UK Biobank. Using multivariable Cox regression, we found dose-response relationships between longer phenotypic LTL (p-trendcontinuous=2.6×10-5), longer gTL predicted using a polygenic score with 130 genetic instruments (p-trendcontinuous=4.2×10-10), and overall lung cancer risk, particularly for adenocarcinoma. The associations were prominent among never smokers. Mendelian Randomization analyses supported causal associations between longer telomere length and lung cancer (HRper 1 SD gTL=1.87, 95% CI: 1.49 to 2.36, p=4.0×10-7), particularly adenocarcinoma (HRper 1 SD gTL=2.45, 95%CI: 1.69 to 3.57, p=6.5×10-6).


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Bancos de Muestras Biológicas , Estudios Prospectivos , Biobanco del Reino Unido , Homeostasis del Telómero/genética , Leucocitos , Telómero/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-38134301

RESUMEN

Telomere shortening is an important sign and driving factor of aging, but its association mechanisms and causal effects with other aging-related biochemical hallmarks are largely unknown. This study first performed comprehensive genetic analyses (eg, shared genetic analysis, pleiotropic analysis, and gene enrichment analysis) to detect the underlying molecular mechanisms for the associations between telomere length (TL) and aging-related biochemical hallmarks. Then, further bidirectional Mendelian randomization (MR) analyses investigated the causal effects between TL and other biochemical hallmarks. The genetic correlations were negative between TL and growth differentiation factor-15 (GDF15) (p = .024), C-reactive protein (p = .007), hemoglobin A1c (p = .007), and red blood cell (RBC) (p = .022), but positive between TL and insulin-like growth factor 1 (IGF-1) (p = .002) and white blood cell counts (p = .007). The increased TL has causal effects on the low levels of GDF15 (p = 3.73E-06), sex hormone binding globulin (p = 6.30E-06), testosterone (p = 5.56E-07), fasting insulin (p = 2.67E-05), and RBC (p = 1.54E-05), but the higher levels of IGF-1 (p = 3.24E-07). In conclusion, the observed phenotypic correlations between TL and aging-related biochemical hallmarks may arise from a combination of shared genetic components and causal effects. Telomere length is regarded as a driving hallmark for aging-related biochemical hallmarks.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Homeostasis del Telómero , Homeostasis del Telómero/genética , Factor I del Crecimiento Similar a la Insulina/genética , Acortamiento del Telómero/genética , Telómero/genética , Estudio de Asociación del Genoma Completo
15.
Nat Commun ; 14(1): 7086, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925537

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.


Asunto(s)
Telomerasa , Homeostasis del Telómero , Homeostasis del Telómero/genética , Replicación del ADN , ARN , Supervivencia Celular/genética , Telómero/genética , Telómero/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
16.
Cancer Epidemiol Biomarkers Prev ; 32(12): 1734-1737, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721487

RESUMEN

BACKGROUND: The complex relationship between measured leukocyte telomere length (LTL), genetically predicted LTL (gTL), and carcinogenesis is exemplified by lung cancer. We previously reported associations between longer pre-diagnostic LTL, gTL, and increased lung cancer risk among European and East Asian populations. However, we had limited statistical power to examine the associations among never smokers by gender and histology. METHODS: To investigate further, we conducted nested case-control analyses on an expanded sample of never smokers from the prospective Shanghai Women's Health Studies (798 cases and 792 controls) and Shanghai Men's Health Studies (161 cases and 162 controls). We broke the case-control matching and used multivariable unconditional logistic regression models to estimate the ORs and 95% confidence intervals (CI) of incident lung cancer and adenocarcinoma (LUAD), in relation to LTL measured using quantitative PCR and gTL determined using a polygenic score. In addition, we conducted Mendelian randomization (MR) using MR-PRESSO. RESULTS: We found striking dose-response relationships between longer LTL and gTL, and increased lung cancer risk among never-smoking women (P trendLTL = 4×10-6; P trendgTL = 3×10-4). Similarly, among never-smoking men, longer measured LTL was associated with over triple the risk compared with those with the shortest (OR, 3.48; 95% CI, 1.85-6.57). The overall results were similar for LUAD among women and men. MR analyses supported causal associations with LUAD among women (OR1 SD gTL, 1.19; 95% CI, 1.03-1.37; P = 0.03). CONCLUSIONS: Longer pre-diagnostic LTL is associated with increased lung cancer risk among never smokers. IMPACT: Our findings firmly support the role of longer telomeres in lung carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , Masculino , Humanos , Femenino , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Estudios Prospectivos , China/epidemiología , Fumadores , Homeostasis del Telómero/genética , Leucocitos , Pulmón , Telómero/genética , Carcinogénesis
17.
J Biol Chem ; 299(9): 105053, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37454741

RESUMEN

Alternative lengthening of telomeres (ALTs) mechanism is activated in some somatic, germ cells, and human cancer cells. However, the key regulators and mechanisms of the ALT pathway remain elusive. Here we demonstrated that ZBTB40 is a novel telomere-associated protein and binds to telomeric dsDNA through its N-terminal BTB (BR-C, ttk and bab) or POZ (Pox virus and Zinc finger) domain in ALT cells. Notably, the knockout or knockdown of ZBTB40 resulted in the telomere dysfunction-induced foci and telomere lengthening in the ALT cells. The results also show that ZBTB40 is associated with ALT-associated promyelocytic leukemia nuclear bodies, and the loss of ZBTB40 induces the accumulation of the ALT-associated promyelocytic leukemia nuclear bodies in U2OS cells. Taken together, our results implicate that ZBTB40 is a key player of telomere protection and telomere lengthening regulation in human ALT cells.


Asunto(s)
Proteínas de Unión al ADN , Telómero , Humanos , Línea Celular Tumoral , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Unión Proteica , ADN/metabolismo , Cuerpos Nucleares/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Apoptosis/genética
18.
J Assist Reprod Genet ; 40(8): 1845-1854, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37382785

RESUMEN

PURPOSE: Unlike other cells in the body, in sperm, telomere length (TL) increases with age. TL can regulate nearby genes, and the subtelomeric region is rich in retrotransposons. We hypothesized that age-related telomere lengthening in sperm might suppress Long Interspersed Element 1 (LINE-1/L1), the only competent retrotransposon in humans. METHODS: We measured L1 copy number (L1-CN) and sperm telomere length (STL) from young and older men to evaluate the relationship between age, TL and L1-CN. We also evaluated L1-CN and TL in individual sperm to determine whether these variables influence sperm morphology. STL was assayed by Multiplex quantitative polymerase chain reaction method (mmqPCR) and L1-CN by Quantitative polymerase chain reaction (qPCR). RESULTS: We found that STL increased, and L1-CN decreased significantly with paternal age. STL in normal single sperm was significantly higher than in abnormal sperm. L1-CN did not differ between normal and abnormal sperm. Furthermore, morphologically normal sperm have longer telomeres than abnormal sperm. CONCLUSIONS: Elongation of telomeres in the male germline could repress retrotransposition, which tends to increase with cellular aging. More studies in larger cohorts across a wide age span are needed to confirm our conclusions and explore their biological and clinical significance.


Asunto(s)
Variaciones en el Número de Copia de ADN , Semen , Humanos , Masculino , Anciano , Proyectos Piloto , Espermatozoides/fisiología , Telómero/genética , Homeostasis del Telómero/genética
19.
Genes (Basel) ; 14(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372458

RESUMEN

Telomeres play an essential role in protecting the ends of linear chromosomes and maintaining the integrity of the human genome. One of the key hallmarks of cancers is their replicative immortality. As many as 85-90% of cancers activate the expression of telomerase (TEL+) as the telomere maintenance mechanism (TMM), and 10-15% of cancers utilize the homology-dependent repair (HDR)-based Alternative Lengthening of Telomere (ALT+) pathway. Here, we performed statistical analysis of our previously reported telomere profiling results from Single Molecule Telomere Assay via Optical Mapping (SMTA-OM), which is capable of quantifying individual telomeres from single molecules across all chromosomes. By comparing the telomeric features from SMTA-OM in TEL+ and ALT+ cancer cells, we demonstrated that ALT+ cancer cells display certain unique telomeric profiles, including increased fusions/internal telomere-like sequence (ITS+), fusions/internal telomere-like sequence loss (ITS-), telomere-free ends (TFE), super-long telomeres, and telomere length heterogeneity, compared to TEL+ cancer cells. Therefore, we propose that ALT+ cancer cells can be differentiated from TEL+ cancer cells using the SMTA-OM readouts as biomarkers. In addition, we observed variations in SMTA-OM readouts between different ALT+ cell lines that may potentially be used as biomarkers for discerning subtypes of ALT+ cancer and monitoring the response to cancer therapy.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Homeostasis del Telómero/genética , Telomerasa/genética , Telomerasa/metabolismo , Línea Celular , Neoplasias/genética , Replicación del ADN
20.
Gene ; 873: 147460, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150235

RESUMEN

Genetic and epigenetic alterations of the telomere maintenance machinery like telomere length and telomerase reverse transcriptase (encoded by TERT gene) are reported in several human malignancies. However, there is limited knowledge on the status of the telomere machinery in periampullary carcinomas (PAC) which are rare and heterogeneous groups of cancers arising from different anatomic sites around the ampulla of Vater. In the current study, we investigated the relative telomere length (RTL) and the most frequent genetic and epigenetic alterations in the TERT promoter in PAC and compared it with tumor-adjacent nonpathological duodenum (NDu). We found shorter RTLs (1.27 vs 1.33, P = 0.01) and lower TERT protein expression (p = 0.04) in PAC tissues as compared to the NDu. Although we did not find any mutation at two reactivating hotspot mutation sites of the TERT promoter, we detected polymorphism in 45% (9/20) of the cases at rs2853669 (T > C). Also, we found a hypermethylated region in the TERT promoter of PACs consisting of four CpGs (cg10896616 with Δß 7%; cg02545192 with Δß 9%; cg03323598 with Δß 19%; and cg07285213 with Δß 15%). In conclusion, we identified shorter telomeres with DNA hypermethylation in the TERT promoter region and lower TERT protein expression in PAC tissues. These results could be used further to investigate molecular pathology and develop theranostics for PAC.


Asunto(s)
Carcinoma , Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Carcinoma/genética , Acortamiento del Telómero , Regiones Promotoras Genéticas , Telómero/genética , Telómero/metabolismo , Mutación , Homeostasis del Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA