Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.976
Filtrar
1.
Nucleic Acids Res ; 52(W1): W182-W186, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747341

RESUMEN

AlphaFind is a web-based search engine that provides fast structure-based retrieval in the entire set of AlphaFold DB structures. Unlike other protein processing tools, AlphaFind is focused entirely on tertiary structure, automatically extracting the main 3D features of each protein chain and using a machine learning model to find the most similar structures. This indexing approach and the 3D feature extraction method used by AlphaFind have both demonstrated remarkable scalability to large datasets as well as to large protein structures. The web application itself has been designed with a focus on clarity and ease of use. The searcher accepts any valid UniProt ID, Protein Data Bank ID or gene symbol as input, and returns a set of similar protein chains from AlphaFold DB, including various similarity metrics between the query and each of the retrieved results. In addition to the main search functionality, the application provides 3D visualizations of protein structure superpositions in order to allow researchers to instantly analyze the structural similarity of the retrieved results. The AlphaFind web application is available online for free and without any registration at https://alphafind.fi.muni.cz.


Asunto(s)
Bases de Datos de Proteínas , Proteoma , Programas Informáticos , Proteoma/química , Proteoma/genética , Internet , Motor de Búsqueda , Aprendizaje Automático , Conformación Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Pliegue de Proteína , Modelos Moleculares , Homología Estructural de Proteína
2.
Biochem Biophys Res Commun ; 712-713: 149933, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640730

RESUMEN

BEND family transcription factors directly interact with DNA through BEN domains and have been found across metazoan species. Interestingly, certain insect and mammalian viruses have also hijacked Bend genes into their genome. However, the phylogenetic classification and evolution of these viral BEN domains remain unclear. Building on our previous finding that in silico method accurately determine the 3D model of BEN domains, we used AlphaFold2 to predict the tertiary structures of poxviral BEN domains for comprehensive homologous comparison. We revealed that the majority of poxviral BEN modules exhibit characteristics of type II BEN. Additionally, electrostatic surface potential analysis found various poxviral BEN domains, including the first BEN of OPG067 in Orthopoxvirus, the third BEN of OPG067 in Yatapoxvirus and the third BEN of MC036R in MCV, have positively charged protein surfaces, indicating a structural basis for DNA loading. Notably, MC036R shares structural resemblance with human BEND3, as they both contain four BEN domains and an intrinsically disordered region. In summary, our discoveries provide deeper insights into the functional roles of BEN proteins within poxviruses.


Asunto(s)
Poxviridae , Dominios Proteicos , Proteínas Virales , Poxviridae/genética , Poxviridae/química , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Humanos , Homología Estructural de Proteína , Filogenia , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Biol Chem ; 300(5): 107248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556082

RESUMEN

P2X receptors are a family of ligand gated ion channels found in a range of eukaryotic species including humans but are not naturally present in the yeast Saccharomyces cerevisiae. We demonstrate the first recombinant expression and functional gating of the P2X2 receptor in baker's yeast. We leverage the yeast host for facile genetic screens of mutant P2X2 by performing site saturation mutagenesis at residues of interest, including SNPs implicated in deafness and at residues involved in native binding. Deep mutational analysis and rounds of genetic engineering yield mutant P2X2 F303Y A304W, which has altered ligand selectivity toward the ATP analog AMP-PNP. The F303Y A304W variant shows over 100-fold increased intracellular calcium amplitudes with AMP-PNP compared to the WT receptor and has a much lower desensitization rate. Since AMP-PNP does not naturally activate P2X receptors, the F303Y A304W P2X2 may be a starting point for downstream applications in chemogenetic cellular control. Interestingly, the A304W mutation selectively destabilizes the desensitized state, which may provide a mechanistic basis for receptor opening with suboptimal agonists. The yeast system represents an inexpensive, scalable platform for ion channel characterization and engineering by circumventing the more expensive and time-consuming methodologies involving mammalian hosts.


Asunto(s)
Receptores Purinérgicos P2X2 , Saccharomyces cerevisiae , Humanos , Sustitución de Aminoácidos , Ligandos , Ingeniería de Proteínas/métodos , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X2/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Estructura Terciaria de Proteína , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína , Mutación
4.
Nature ; 622(7983): 637-645, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704730

RESUMEN

Proteins are key to all cellular processes and their structure is important in understanding their function and evolution. Sequence-based predictions of protein structures have increased in accuracy1, and over 214 million predicted structures are available in the AlphaFold database2. However, studying protein structures at this scale requires highly efficient methods. Here, we developed a structural-alignment-based clustering algorithm-Foldseek cluster-that can cluster hundreds of millions of structures. Using this method, we have clustered all of the structures in the AlphaFold database, identifying 2.30 million non-singleton structural clusters, of which 31% lack annotations representing probable previously undescribed structures. Clusters without annotation tend to have few representatives covering only 4% of all proteins in the AlphaFold database. Evolutionary analysis suggests that most clusters are ancient in origin but 4% seem to be species specific, representing lower-quality predictions or examples of de novo gene birth. We also show how structural comparisons can be used to predict domain families and their relationships, identifying examples of remote structural similarity. On the basis of these analyses, we identify several examples of human immune-related proteins with putative remote homology in prokaryotic species, illustrating the value of this resource for studying protein function and evolution across the tree of life.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Proteínas , Homología Estructural de Proteína , Humanos , Bases de Datos de Proteínas , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo , Alineación de Secuencia , Anotación de Secuencia Molecular , Células Procariotas/química , Filogenia , Especificidad de la Especie , Evolución Molecular
5.
Nature ; 622(7983): 646-653, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704037

RESUMEN

We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database1. These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this 'dark matter' of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4 . By searching for novelties from sequence, structure and semantic perspectives, we uncovered the ß-flower fold, added several protein families to Pfam database2 and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin-antitoxin systems, TumE-TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.


Asunto(s)
Bases de Datos de Proteínas , Aprendizaje Profundo , Anotación de Secuencia Molecular , Pliegue de Proteína , Proteínas , Homología Estructural de Proteína , Secuencia de Aminoácidos , Internet , Proteínas/química , Proteínas/clasificación , Proteínas/metabolismo
6.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589594

RESUMEN

MOTIVATION: Sphagnum-dominated peatlands store a substantial amount of terrestrial carbon. The genus is undersampled and under-studied. No experimental crystal structure from any Sphagnum species exists in the Protein Data Bank and fewer than 200 Sphagnum-related genes have structural models available in the AlphaFold Protein Structure Database. Tools and resources are needed to help bridge these gaps, and to enable the analysis of other structural proteomes now made possible by accurate structure prediction. RESULTS: We present the predicted structural proteome (25 134 primary transcripts) of Sphagnum divinum computed using AlphaFold, structural alignment results of all high-confidence models against an annotated nonredundant crystallographic database of over 90,000 structures, a structure-based classification of putative Enzyme Commission (EC) numbers across this proteome, and the computational method to perform this proteome-scale structure-based annotation. AVAILABILITY AND IMPLEMENTATION: All data and code are available in public repositories, detailed at https://github.com/BSDExabio/SAFA. The structural models of the S. divinum proteome have been deposited in the ModelArchive repository at https://modelarchive.org/doi/10.5452/ma-ornl-sphdiv.


Asunto(s)
Proteínas de Plantas , Proteoma , Sphagnopsida , Sphagnopsida/química , Sphagnopsida/enzimología , Proteínas de Plantas/química , Flujo de Trabajo , Homología Estructural de Proteína
7.
Methods Mol Biol ; 2627: 83-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959443

RESUMEN

Homology modeling is the most common technique to build structural models of a target protein based on the structure of proteins with high-sequence identity and available high-resolution structures. This technique is based on the idea that protein structure shows fewer changes than sequence through evolution. While in this scenario single mutations would minimally perturb the structure, experimental evidence shows otherwise: proteins with high conformational diversity impose a limit of the paradigm of comparative modeling as the same protein sequence can adopt dissimilar three-dimensional structures. These cases present challenges for modeling; at first glance, they may seem to be easy cases, but they have a complexity that is not evident at the sequence level. In this chapter, we address the following questions: Why should we care about conformational diversity? How to consider conformational diversity when doing template-based modeling in a practical way?


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/genética , Proteínas/química , Secuencia de Aminoácidos , Homología Estructural de Proteína , Conformación Proteica
8.
Methods Mol Biol ; 2627: 141-166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959446

RESUMEN

Structures of membrane proteins are challenging to determine experimentally and currently represent only about 2% of the structures in the Protein Data Bank. Because of this disparity, methods for modeling membrane proteins are fewer and of lower quality than those for modeling soluble proteins. However, better expression, crystallization, and cryo-EM techniques have prompted a recent increase in experimental structures of membrane proteins, which can act as templates to predict the structure of closely related proteins through homology modeling. Because homology modeling relies on a structural template, it is easier and more accurate than fold recognition methods or de novo modeling, which are used when the sequence similarity between the query sequence and the sequence of related proteins in structural databases is below 25%. In homology modeling, a query sequence is mapped onto the coordinates of a single template and refined. With the increase in available templates, several templates often cover overlapping segments of the query sequence. Multi-template modeling can be used to identify the best template for local segments and join them into a single model. Here we provide a protocol for modeling membrane proteins from multiple templates in the Rosetta software suite. This approach takes advantage of several integrated frameworks, namely, RosettaScripts, RosettaCM, and RosettaMP with the membrane scoring function.


Asunto(s)
Proteínas de la Membrana , Programas Informáticos , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Modelos Químicos , Conformación Proteica , Homología Estructural de Proteína
9.
Methods Mol Biol ; 2627: 247-264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959452

RESUMEN

Membrane transporter proteins are divided into channels/pores and carriers and constitute protein families of physiological and pharmacological importance. Several presently used therapeutic compounds elucidate their effects by targeting membrane transporter proteins, including anti-arrhythmic, anesthetic, antidepressant, anxiolytic and diuretic drugs. The lack of three-dimensional structures of human transporters hampers experimental studies and drug discovery. In this chapter, the use of homology modeling for generating structural models of membrane transporter proteins is reviewed. The increasing number of atomic resolution structures available as templates, together with improvements in methods and algorithms for sequence alignments, secondary structure predictions, and model generation, in addition to the increase in computational power have increased the applicability of homology modeling for generating structural models of transporter proteins. Different pitfalls and hints for template selection, multiple-sequence alignments, generation and optimization, validation of the models, and the use of transporter homology models for structure-based virtual ligand screening are discussed.


Asunto(s)
Proteínas Portadoras , Simulación de Dinámica Molecular , Humanos , Proteínas de Transporte de Membrana , Alineación de Secuencia , Estructura Secundaria de Proteína , Homología Estructural de Proteína
10.
Methods Mol Biol ; 2627: 329-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959456

RESUMEN

The effective drug design, especially for combating the multi-drug-resistant bacterial pathogens, requires more and more sophisticated procedures to obtain novel lead-like compounds. New classes of enzymes should be explored, especially those that help bacteria overcome existing treatments. The homology modeling is useful in obtaining the models of new enzymes; however, the active sites of them are sometimes present in closed conformations in the crystal structures, not suitable for drug design purposes. In such difficult cases, the combination of homology modeling, molecular dynamics simulations, and fragment screening can give satisfactory results.


Asunto(s)
Diseño de Fármacos , Simulación de Dinámica Molecular , Homología Estructural de Proteína , Modelos Químicos , Dominio Catalítico , Conformación Proteica
11.
Methods Mol Biol ; 2627: 349-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959458

RESUMEN

The recent advances in structural biology, combined with continuously increasing computational capabilities and development of advanced softwares, have drastically simplified the workflow for protein homology modeling. Modeling of individual proteins is nowadays quick and straightforward for a large variety of protein targets, thanks to guided pipelines relying on advanced computational tools and user-friendly interfaces, which have extended and promoted the use of modeling also to scientists not focusing on molecular structures of proteins. Nevertheless, construction of models of multi-protein complexes remains quite challenging for the non-experts, often due to the usage of specific procedures depending on the system under investigation and the need for experimental validation approaches to strengthen the generated output.In this chapter, we provide a brief overview of the approaches enabling generation of multi-protein complex models starting from homology models of individual protein components. Using real-life examples, we include two examples to guide the reader in the generation of homomeric and heteromeric protein models.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Simulación de Dinámica Molecular , Conformación Proteica , Biología Computacional/métodos , Homología Estructural de Proteína
12.
Annu Rev Biophys ; 52: 275-300, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36737602

RESUMEN

ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Humanos , Adenosina Trifosfato/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/ultraestructura , Microscopía por Crioelectrón , Transporte Iónico , Modelos Moleculares , Dominios Proteicos , Homología Estructural de Proteína , Animales
13.
Microb Genom ; 8(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214662

RESUMEN

The adaptive potential of plant fungal pathogens is largely governed by the gene content of a species, consisting of core and accessory genes across the pathogen isolate repertoire. To approximate the complete gene repertoire of a globally significant crop fungal pathogen, a pan genomic analysis was undertaken for Pyrenophora tritici-repentis (Ptr), the causal agent of tan (or yellow) spot disease in wheat. In this study, 15 new Ptr genomes were sequenced, assembled and annotated, including isolates from three races not previously sequenced. Together with 11 previously published Ptr genomes, a pangenome for 26 Ptr isolates from Australia, Europe, North Africa and America, representing nearly all known races, revealed a conserved core-gene content of 57 % and presents a new Ptr resource for searching natural homologues (orthologues not acquired by horizontal transfer from another species) using remote protein structural homology. Here, we identify for the first time a non-synonymous mutation in the Ptr necrotrophic effector gene ToxB, multiple copies of the inactive toxb within an isolate, a distant natural Pyrenophora homologue of a known Parastagonopora nodorum necrotrophic effector (SnTox3), and clear genomic break points for the ToxA effector horizontal transfer region. This comprehensive genomic analysis of Ptr races includes nine isolates sequenced via long read technologies. Accordingly, these resources provide a more complete representation of the species, and serve as a resource to monitor variations potentially involved in pathogenicity.


Asunto(s)
Micotoxinas , Triticum , Ascomicetos , Interacciones Huésped-Patógeno/genética , Micotoxinas/genética , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Homología Estructural de Proteína , Triticum/genética , Triticum/metabolismo , Triticum/microbiología
14.
PLoS One ; 17(6): e0258173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704640

RESUMEN

Antibody engineering is becoming increasingly popular in medicine for the development of diagnostics and immunotherapies. Antibody function relies largely on the recognition and binding of antigenic epitopes via the loops in the complementarity determining regions. Hence, accurate high-resolution modeling of these loops is essential for effective antibody engineering and design. Deep learning methods have previously been shown to effectively predict antibody backbone structures described as a set of inter-residue distances and orientations. However, antigen binding is also dependent on the specific conformations of surface side-chains. To address this shortcoming, we created DeepSCAb: a deep learning method that predicts inter-residue geometries as well as side-chain dihedrals of the antibody variable fragment. The network requires only sequence as input, rendering it particularly useful for antibodies without any known backbone conformations. Rotamer predictions use an interpretable self-attention layer, which learns to identify structurally conserved anchor positions across several species. We evaluate the performance of the model for discriminating near-native structures from sets of decoys and find that DeepSCAb outperforms similar methods lacking side-chain context. When compared to alternative rotamer repacking methods, which require an input backbone structure, DeepSCAb predicts side-chain conformations competitively. Our findings suggest that DeepSCAb improves antibody structure prediction with accurate side-chain modeling and is adaptable to applications in docking of antibody-antigen complexes and design of new therapeutic antibody sequences.


Asunto(s)
Aprendizaje Profundo , Complejo Antígeno-Anticuerpo , Conformación Proteica , Homología Estructural de Proteína
15.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163448

RESUMEN

The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant "scaffold" shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics-mutation frequency, its uniformity, and row-by-row cladistic congruence-imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP- and amino acid- binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I "protozyme" roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Mutación , Benchmarking , Sitios de Unión , Evolución Molecular , Código Genético , Modelos Moleculares , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína
16.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163774

RESUMEN

Human dipeptidyl peptidase I (DPPI) belongs to the family of papain-like cysteine peptidases. Its distinctive features are the unique exclusion domain which enables the eponymous activity and homotetramerization of DPPI, and its dependence on chloride ions for enzymatic activity. The oligomeric state of DPPI is unique in this family of predominantly monomeric peptidases. However, a distant DPPI ortholog from Plasmodium falciparum has been shown to be monomeric, indicating that the oligomeric state of DPPI varies between lineages. The aim of this work was to study the evolution of DPPI, with particular attention to the structural features that determine its characteristic enzymatic activity and preferences, and to reconstruct the evolution of its oligomerization. We analyzed fifty-seven selected sequences of DPPI and confirmed its presence in three lineages, namely, Amorphea (including animals and Amoebozoa), Alveolates and the metamonad Giardia. The amino acid residues that bind the chloride ion are highly conserved in all species, indicating that the dependence on chloride ions for activity is an evolutionarily conserved feature of DPPI. The number of N-glycosylation sites is significantly increased in animals, particularly vertebrates. Analysis of homology models and subunit contacts suggests that oligomerization is likely restricted to DPPIs in the Amorphea group.


Asunto(s)
Catepsina C/química , Catepsina C/genética , Alveolados/enzimología , Amebozoos/enzimología , Evolución Molecular , Giardia/enzimología , Glicosilación , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Multimerización de Proteína , Homología Estructural de Proteína
17.
Biochem Biophys Res Commun ; 591: 76-81, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999257

RESUMEN

Proteases are enzymes that are not only essential for life but also industrially important. Understanding the substrate recognition mechanisms of proteases is important to enhance the use of proteases. The fungus Aspergillus produces a wide variety of proteases, including PEP, which is a prolyl endoprotease from A. niger. Although PEP exhibits amino acid sequence similarity to the serine peptidase family S28 proteins (PRCP and DPP7) that recognize Pro-X bonds in the terminal regions of peptides, PEP recognizes Pro-X bonds not only in peptides but also in proteins. To reveal the structural basis of the prolyl endoprotease activity of PEP, we determined the structure of PEP by X-ray crystallography at a resolution of 1.75 Å. The PEP structure shows that PEP has a wide-open catalytic pocket compared to its homologs. The characteristic catalytic pocket structure of PEP is predicted to be important for the recognition of protein substrates.


Asunto(s)
Aspergillus niger/enzimología , Cristalografía por Rayos X , Prolil Oligopeptidasas/química , Prolil Oligopeptidasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Modelos Moleculares , Homología Estructural de Proteína , Especificidad por Sustrato
18.
PLoS One ; 17(1): e0262241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986163

RESUMEN

O-methylation of small molecules is a common modification widely present in most organisms. Type III polyketides undergo O-methylation at hydroxyl end to play a wide spectrum of roles in bacteria, plants, algae, and fungi. Mycobacterium marinum harbours a distinctive genomic cluster with a type III pks gene and genes for several polyketide modifiers including a methyltransferase gene, mmar_2193. This study reports functional analyses of MMAR_2193 and reveals multi-methylating potential of the protein. Comparative sequence analyses revealed conservation of catalytically important motifs in MMAR_2193 protein. Homology-based structure-function and molecular docking studies suggested type III polyketide cores as possible substrates for MMAR_2193 catalysis. In vitro enzymatic characterization revealed the capability of MMAR_2193 protein to utilize diverse polyphenolic substrates to methylate several hydroxyl positions on a single substrate molecule. High-resolution mass spectrometric analyses identified multi-methylations of type III polyketides in cell-free reconstitution assays. Notably, our metabolomics analyses identified some of these methylated molecules in biofilms of wild type Mycobacterium marinum. This study characterizes a novel mycobacterial O-methyltransferase protein with multi-methylating enzymatic ability that could be exploited to generate a palette of structurally distinct bioactive molecules.


Asunto(s)
Metiltransferasas/genética , Metiltransferasas/metabolismo , Mycobacterium marinum/crecimiento & desarrollo , Policétidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Clonación Molecular , Secuencia Conservada , Espectrometría de Masas , Metabolómica , Metilación , Metiltransferasas/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mycobacterium marinum/enzimología , Mycobacterium marinum/genética , Conformación Proteica , Homología Estructural de Proteína
19.
Biochem Biophys Res Commun ; 592: 51-53, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35026605

RESUMEN

Omicron is a new variant of SARS-CoV-2, which is currently infecting people around the world. Spike glycoprotein, an important molecule in pathogenesis of infection has been modeled and the interaction of its Receptor Binding Domain with human ACE-receptor has been analysed by simulation studies. Structural analysis of Omicron spike glycoprotein shows the 30 mutations to be distributed over all domains of the trimeric protein, wherein the mutant residues are seen to be participating in higher number of intra-molecular interactions including two salt bridges emanating from mutant residues thereby stabilizing their conformation, as compared to wild type. Complex of Receptor Binding Domain (RBD) with human ACE-2 receptor shows seven mutations at interacting interface comprising of two ionic interactions, eight hydrogen bonds and seven Van der Waals interactions. The number and quality of these interactions along with other binding biophysical parameters suggests more potency of RBD domain to the receptor as compared to the wild type counterpart. Results of this study explains the high transmissibility of Omicron variant of SARS-CoV-2 that is currently observed across the world.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/transmisión , COVID-19/virología , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Fenómenos Biofísicos , COVID-19/metabolismo , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Simulación de Dinámica Molecular , Mutación , Pandemias , Dominios y Motivos de Interacción de Proteínas/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Homología Estructural de Proteína
20.
Cell ; 185(4): 630-640.e10, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35093192

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues worldwide with many variants arising, some of which are variants of concern (VOCs). A recent VOC, omicron (B.1.1.529), which obtains a large number of mutations in the receptor-binding domain (RBD) of the spike protein, has risen to intense scientific and public attention. Here, we studied the binding properties between the human receptor ACE2 (hACE2) and the VOC RBDs and resolved the crystal and cryoelectron microscopy structures of the omicron RBD-hACE2 complex as well as the crystal structure of the delta RBD-hACE2 complex. We found that, unlike alpha, beta, and gamma, omicron RBD binds to hACE2 at a similar affinity to that of the prototype RBD, which might be due to compensation of multiple mutations for both immune escape and transmissibility. The complex structures of omicron RBD-hACE2 and delta RBD-hACE2 reveal the structural basis of how RBD-specific mutations bind to hACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Receptores Virales/química , SARS-CoV-2/química , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Mutación/genética , Filogenia , Unión Proteica , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Electricidad Estática , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA