Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.926
Filtrar
1.
Sci Rep ; 14(1): 22806, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354019

RESUMEN

The microbiota of medicinal plants is known to be highly specific and can contribute to medicinal activity. However, the majority of plant species have not yet been studied. Here, we investigated the phyllosphere composition of two common Nigerian medicinal plants, Euphorbia lateriflora and Ficus thonningii, by a polyphasic approach combining analyses of metagenomic DNA and isolates. Microbial abundance estimated via qPCR using specific marker gene primers showed that all leaf samples were densely colonized, with up to 108 per gram of leaf, with higher bacterial and fungal abundance than Archaea. While no statistically significant differences between both plant species were found for abundance, amplicon sequencing of 16S rRNA and ITS genes revealed distinct microbiota compositions. Only seven of the 27 genera isolated were represented on both plants, e.g. dominant Sphingomonas spp., and numerous members of Xanthomonadaceae and Enterobacteriaceae. The most dominant fungal families on both plants were Cladosporiaceae, Mycosphaerellaceae and Trichosphaeriaceae. In addition, 225 plant-specific isolates were identified, with Pseudomonadota and Enterobacteriaceae being dominant. Interestingly, 29 isolates are likely species previously unknown, and 14 of these belong to Burkholderiales. However, a high proportion, 56% and 40% of the isolates from E. lateriflora and F. thonningii, respectively, were characterized as various Escherichia coli. The growth of most of the bacterial isolates was not influenced by extractable secondary metabolites of plants. Our results suggest that a specific and diverse microbial community inhabits the leaves of both E. lateriflora and F. thonningii, including potentially new species and producers of antimicrobials.


Asunto(s)
Bacterias , Euphorbia , Ficus , Hongos , Microbiota , Hojas de la Planta , Plantas Medicinales , ARN Ribosómico 16S , Ficus/microbiología , Microbiota/genética , Plantas Medicinales/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Hojas de la Planta/microbiología , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Nigeria , Filogenia
2.
BMC Plant Biol ; 24(1): 922, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358696

RESUMEN

Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.


Asunto(s)
Bacterias , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Eslovenia , Microbiología del Suelo , Rizosfera , Rizoma/microbiología , Rizoma/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Brassicaceae/microbiología , Brassicaceae/metabolismo , Hongos/genética , Hongos/metabolismo
3.
BMC Microbiol ; 24(1): 385, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358715

RESUMEN

BACKGROUND BURKHOLDERIA: is a phosphorus solubilizing microorganism discovered in recent years, which can dissolve insoluble phosphorus compounds into soluble phosphorus. To investigate the effects of Burkholderia and calcium phosphate on the composting of Torreya grandis branches and leaves, as well as to explain the nutritional and metabolic markers related to the composting process. METHODS: In this study, we employed amplicon sequencing and untargeted metabolomics analysis to examine the interplay among phosphorus (P) components, microbial communities, and metabolites during T. grandis branch and leaf waste composting that underwent treatment with calcium phosphate and phosphate-solubilizing bacteria (Burkholderia). There were four composting treatments, 10% calcium phosphate (CaP) or 5 ml/kg (1 × 108/ml Burkholderia) microbial inoculum (WJP) or both (CaP + WJP), and the control group (CK). RESULTS: The results indicated that Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, pH, EC, and nitrogen content. Furthermore, these treatments significantly affected the diversity and structure of bacterial and fungal communities, altering microbial and metabolite interactions. The differential metabolites associated with lipids and organic acids and derivatives treated with calcium phosphate treatment are twice as high as those treated with Burkholderia in both 21d and 42d. The results suggest that calcium phosphate treatment alters the formation of some biological macromolecules. CONCLUSION: Both Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, nitrogen content and metabolites of T. grandis branch and leaf waste compost.These results extend our comprehension of the coupling of matter transformation and community succession in composting with the addition of calcium phosphate and phosphate-solubilizing bacteria.


Asunto(s)
Burkholderia , Fosfatos de Calcio , Compostaje , Fósforo , Microbiología del Suelo , Fosfatos de Calcio/metabolismo , Fósforo/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/efectos de los fármacos , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Nitrógeno/metabolismo , Suelo/química , Hojas de la Planta/microbiología , Hongos/metabolismo , Hongos/efectos de los fármacos , Hongos/genética , Hongos/clasificación , Concentración de Iones de Hidrógeno
4.
PLoS One ; 19(10): e0310929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39361671

RESUMEN

Continuous cropping is a common cultivation practice in lavender cultivation, and the structure of the soil microbial community is one of the main reasons affecting the continuous cropping disorder in lavender; however, the relationship between the number of years of cultivation and inter-root microbial composition has not yet been investigated; using Illumina high-throughput sequencing we detected fungal community structure of rhizosphere soil under 1 (L1), 3 (L3), 5 (L5) and 0 (L0) years' of lavender cultivation in Yili, Xinjiang China. The results showed that with the extension of planting years, the physical-chemical characteristics of the soil shifted, and the diversity of the fungal communities shrank, the abundance and richness of species decreased and then increased, and the phylogenetic diversity increased, The structure of the soil fungal communities varied greatly. At phylum level, dominant fungal phyla were Ascomycetes, Basidiomycetes, etc. At genus level, dominant genera were Gibberella, Mortierella, etc, whose absolute abundance all increased with increasing planting years (P < 0.05); redundancy analysis showed that thesoil physicochemical characteristics significantly correlated with dominant bacterial genera. The FUN Guild prediction showed that six groups of plant pathogens and plant saprotrophs changed significantly (P < 0.05), the amount of harmful bacteria in the soil increased while the amount of arbuscular mycorrhizal fungui (AMF) decreased, leading to a continuous cropping obstacle of lavender. The findings of this study provida theoretical foundation for the management of continuous cropping and the prevention fungus-related diseases in lavender.


Asunto(s)
Hongos , Secuenciación de Nucleótidos de Alto Rendimiento , Lavandula , Rizosfera , Microbiología del Suelo , Lavandula/microbiología , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Filogenia , Biodiversidad , China , Micobioma/genética , Raíces de Plantas/microbiología
5.
Science ; 386(6717): 105-110, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39361762

RESUMEN

Fungus-farming ants cultivate multiple lineages of fungi for food, but, because fungal cultivar relationships are largely unresolved, the history of fungus-ant coevolution remains poorly known. We designed probes targeting >2000 gene regions to generate a dated evolutionary tree for 475 fungi and combined it with a similarly generated tree for 276 ants. We found that fungus-ant agriculture originated ~66 million years ago when the end-of-Cretaceous asteroid impact temporarily interrupted photosynthesis, causing global mass extinctions but favoring the proliferation of fungi. Subsequently, ~27 million years ago, one ancestral fungal cultivar population became domesticated, i.e., obligately mutualistic, when seasonally dry habitats expanded in South America, likely isolating the cultivar population from its free-living, wet forest-dwelling conspecifics. By revealing these and other major transitions in fungus-ant coevolution, our results clarify the historical processes that shaped a model system for nonhuman agriculture.


Asunto(s)
Hormigas , Coevolución Biológica , Hongos , Simbiosis , Animales , Agricultura , Hormigas/microbiología , Hormigas/genética , Domesticación , Hongos/genética , Hongos/clasificación , Fotosíntesis , Filogenia , América del Sur
6.
Adv Appl Microbiol ; 129: 189-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389706

RESUMEN

Copper homeostasis in fungi is a tightly regulated process crucial for cellular functions. Fungi acquire copper from their environment, with transporters facilitating its uptake into the cell. Once inside, copper is utilized in various metabolic pathways, including respiration and antioxidant defense. However, excessive copper can be toxic by promoting cell damage mainly due to oxidative stress and metal displacements. Fungi employ intricate regulatory mechanisms to maintain optimal copper levels. These involve transcription factors that control the expression of genes involved in copper transport, storage, and detoxification. Additionally, chaperone proteins assist in copper trafficking within the cell, ensuring its delivery to specific targets. Furthermore, efflux pumps help remove excess copper from the cell. Altogether, these mechanisms enable fungi to balance copper levels, ensuring proper cellular function while preventing toxicity. Understanding copper homeostasis in fungi is not only essential for fungal biology but also holds implications for various applications, including biotechnology and antifungal drug development.


Asunto(s)
Cobre , Hongos , Homeostasis , Cobre/metabolismo , Hongos/metabolismo , Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transporte Biológico , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
7.
Adv Appl Microbiol ; 129: 171-187, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389705

RESUMEN

Anthropogenic activities have dramatically accelerated the release of toxic metal(loid)s into soil and water, which can be subsequently accumulated in plants and animals, threatening biodiversity, human health, and food security. Compared to physical and chemical remediation, bioremediation of metal(loid)-polluted soil using plants and/or plant symbiotic fungi is usually low-cost and environmentally friendly. Mycorrhizal fungi and endophytic fungi are two major plant fungal symbionts. Mycorrhizal fungi can immobilize metal(loid)s via constitutive mechanisms, including intracellular sequestration with vacuoles and vesicles and extracellular immobilization by cell wall components and extracellular polymeric substances such as glomalin. Mycorrhizal fungi can improve the efficacy of phytoremediation by promoting plant symplast and apoplast pathways. Endophytic fungi also use constitutive cellular components to immobilize metal(loid)s and to reduce the accumulation of metal(loid)s in plants by modifying plant physiological status. However, a specific mechanism for the removal of methylmercury pollution was recently discovered in the endophytic fungi Metarhizium, which could be acquired from bacteria via horizontal gene transfer. In contrast to mycorrhizal fungi that are obligate biotrophs, some endophytic fungi, such as Metarhizium and Trichoderma, can be massively and cost-effectively produced, so they seem to be well-placed for remediation of metal(loid)-polluted soil on a large scale.


Asunto(s)
Biodegradación Ambiental , Hongos , Metaloides , Micorrizas , Plantas , Contaminantes del Suelo , Simbiosis , Plantas/microbiología , Metaloides/metabolismo , Metaloides/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Hongos/metabolismo , Hongos/genética , Micorrizas/metabolismo , Micorrizas/fisiología , Endófitos/metabolismo , Endófitos/fisiología , Endófitos/aislamiento & purificación , Endófitos/genética , Metales/metabolismo , Metales/toxicidad , Microbiología del Suelo
8.
Adv Appl Microbiol ; 129: 35-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389707

RESUMEN

Filamentous entomopathogenic fungi (EPF) function as important biotic factors regulating the arthropod population in natural ecosystems and have great potential as biocontrol agents in modern agriculture. In the infection cycle, EPF undergo a plethora of physiological processes, including metabolism (e.g., cuticle hydrolysis and nutrient utilization), development (e.g., dimorphism and conidiation), stress response (e.g., oxidative and osmotic stresses), and immune evasion from the host. In-depth explorations of the mechanisms involved in the lifecycle of EPF offer excellent opportunities to increase their virulence and stability, which increases the efficacy of EPF in biocontrol programs. This review discusses the current state of knowledge relating to the biological roles and regulatory mechanisms of organelles and subcellular structures in the physiology of EPF, as well as some suggestions for future investigation.


Asunto(s)
Hongos , Animales , Hongos/metabolismo , Hongos/patogenicidad , Hongos/genética , Hongos/fisiología , Insectos/microbiología , Control Biológico de Vectores , Artrópodos/microbiología , Virulencia , Orgánulos/metabolismo
9.
Adv Appl Microbiol ; 129: 59-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39389708

RESUMEN

Molecular mechanisms underlying insect-pathogenic fungal tolerance to solar ultraviolet (UV) damage have been increasingly understood. This chapter reviews the methodology established to quantify fungal response to solar UV radiation, which consists of UVB and UVA, and characterize a pattern of the solar UV dose (damage) accumulated from sunrise to sunset on sunny summer days. An emphasis is placed on anti-UV mechanisms of fungal insect pathogens in comparison to those well documented in model yeast. Principles are discussed for properly timing the application of a fungal pesticide to improve pest control during summer months. Fungal UV tolerance depends on either nucleotide excision repair (NER) or photorepair of UV-induced DNA lesions to recover UV-impaired cells in the darkness or the light. NER is a slow process independent of light and depends on a large family of anti-UV radiation (RAD) proteins studied intensively in model yeast but rarely in non-yeast fungi. Photorepair is a rapid process that had long been considered to depend on only one or two photolyases in filamentous fungi. However, recent studies have greatly expanded a genetic/molecular basis for photorepair-dependent photoreactivation that serves as a primary anti-UV mechanism in insect-pathogenic fungi, in which photolyase regulators required for photorepair and multiple RAD homologs have higher or much higher photoreactivation activities than do photolyases. The NER activities of those homologs in dark reactivation cannot recover the severe UV damage recovered by their activities in photoreactivation. Future studies are expected to further expand the genetic/molecular basis of photoreactivation and enrich principles for the recovery of insect-pathogenic fungi from solar UV damage.


Asunto(s)
Reparación del ADN , Hongos , Insectos , Rayos Ultravioleta , Animales , Insectos/microbiología , Hongos/efectos de la radiación , Hongos/genética , Hongos/metabolismo , Daño del ADN , Luz Solar
10.
PLoS One ; 19(10): e0311906, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39392823

RESUMEN

Microbial succession has been suggested to supplement established postmortem interval (PMI) estimation methods for human remains. Due to limitations of entomological and morphological PMI methods, microbes are an intriguing target for forensic applications as they are present at all stages of decomposition. Previous machine learning models from soil necrobiome data have produced PMI error rates from two and a half to six days; however, these models are built solely on amplicon sequencing of biomarkers (e.g., 16S, 18S rRNA genes) and do not consider environmental factors that influence the presence and abundance of microbial decomposers. This study builds upon current research by evaluating the inclusion of environmental data on microbial-based PMI estimates from decomposition soil samples. Random forest regression models were built to predict PMI using relative taxon abundances obtained from different biological markers (bacterial 16S, fungal ITS, 16S-ITS combined) and taxonomic levels (phylum, class, order, OTU), both with and without environmental predictors (ambient temperature, soil pH, soil conductivity, and enzyme activities) from 19 deceased human individuals that decomposed on the soil surface (Tennessee, USA). Model performance was evaluated by calculating the mean absolute error (MAE). MAE ranged from 804 to 997 accumulated degree hours (ADH) across all models. 16S models outperformed ITS models (p = 0.006), while combining 16S and ITS did not improve upon 16S models alone (p = 0.47). Inclusion of environmental data in PMI prediction models had varied effects on MAE depending on the biological marker and taxonomic level conserved. Specifically, inclusion of the measured environmental features reduced MAE for all ITS models, but improved 16S models at higher taxonomic levels (phylum and class). Overall, we demonstrated some level of predictability in soil microbial succession during human decomposition, however error rates were high when considering a moderate population of donors.


Asunto(s)
Cambios Post Mortem , Microbiología del Suelo , Humanos , Suelo/química , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Masculino , Microbiota/genética , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Femenino , Persona de Mediana Edad , Aprendizaje Automático
11.
World J Microbiol Biotechnol ; 40(11): 345, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39394504

RESUMEN

The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.


Asunto(s)
Agricultura , Bacterias , Biotecnología , Hongos , Metagenómica , Microbiología del Suelo , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Suelo/química , Filogenia , Nitrógeno/metabolismo , Microbiota
12.
Sci Rep ; 14(1): 23367, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-39375368

RESUMEN

Seed microbial communities have been known to have a crucial role in the life cycle of a plant. In this study, we examined the distribution of the fungal communities in three compartments (husk, brown rice, and milled rice) of the fourteen rice seed samples. Ten fungal genera distributed throughout the three compartments of the rice seeds were identified as the core mycobiome of the rice seeds, regardless of collecting regions or cultivars. Based on the diversity analysis, the distribution of the fungal community in milled rice was found to be more diversified, evenly distributed, and differently clustered from the other two compartments. Among the core mycobiome, Moesziomyces dominated almost 80% of the fungal communities in the outer compartments of rice seeds, whereas the abundances of other endophytic pathogenic fungi declined. Our results provide that antagonistic yeast Moesziomyces may be able to control the endogenous pathogenic fungal communities in rice seeds, hence maintaining the quality of rice seeds. In addition, the distribution of fungal communities differs depending on the rice seed's compartment, indicating that the compartment can affect the distribution of the seed microbial community.


Asunto(s)
Endófitos , Hongos , Micobioma , Oryza , Semillas , Oryza/microbiología , Semillas/microbiología , Endófitos/genética , Hongos/genética , Hongos/clasificación
13.
Microb Ecol ; 87(1): 126, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382725

RESUMEN

Phyllosphere microorganisms are essential for plant growth and health. Although there are an increasing number of studies showing that the composition of phyllosphere communities varies among different plant species, it remains unclear whether and how their bacterial and fungal community composition predictably varies with plant traits and leaf age. In this study, we used high-throughput sequencing to explore the diversity and composition of phyllosphere communities in needles of different ages (originating from different cohorts) for three evergreen coniferous species (Pinus koraiensis, Picea koraiensis, and Abies nephrolepis). Our results indicated that Gammaproteobacteria (bacteria) and Dothideomycetes (fungi) were dominant in newly formed needles, whereas Actinobacteria (bacteria) and Eurotiomycetes (fungi) were dominant in perennial needles. Tree species identity and needle age were the main factors explaining the variations of the α diversity (species richness of phyllosphere communities) and ß diversity (dissimilarity among phyllosphere communities). In particular, we found that leaf dry matter content, leaf mass per area, and total phosphorus content emerged as key predictors of composition and diversity of phyllosphere microbial communities, underscoring the major influence of tree species identity and needle age on phyllosphere communities through changes in plant functional traits. Finally, we found that the interaction between tree species identity and needle age also contributed significantly to explaining the diversity and composition of phyllosphere communities, probably because differences in plant functional traits or environmental conditions between new and perennial needles depend on tree growth rates and resource acquisition strategies. These findings provide new insights into the mechanisms of community assembly among different evergreen tree species and offer a better understanding of the interactions between plant traits and phyllosphere microorganisms during needle aging.


Asunto(s)
Bacterias , Microbiota , Hojas de la Planta , Árboles , Hojas de la Planta/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Árboles/microbiología , Árboles/crecimiento & desarrollo , Hongos/clasificación , Hongos/genética , Hongos/fisiología , Hongos/aislamiento & purificación , Pinus/microbiología , Pinus/crecimiento & desarrollo , Abies/microbiología , Picea/microbiología , Picea/crecimiento & desarrollo , Biodiversidad , Tracheophyta/microbiología
14.
PLoS One ; 19(10): e0311781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39388424

RESUMEN

Mixed tree plantations containing nitrogen (N2)-fixing species have the potential to enhance C sequestration, soil biodiversity and forest productivity. Here, we investigated the impact of Acacia mangium and Eucalyptus urophilla x E. grandis mixed plantations in the Congolese coastal plains on soil mycobiota community structure and diversity by ITS metabarcoding sequencing and bioinformatic analysis. Higher Faith's phylogenetic diversity and Evenness' was found in Eucalyptus monoculture relative to stands containing Acacia. Differences in beta diversity were found among Eucalyptus and Acacia monoculture, and mixed-species stands highlight the effects of plant species on fungal community structure. Ascomycota, Basidiomycota and Rozellomycota phyla were predominant in all stands, with both Dikarya (Ascomycota and Basidiomycota) accounting for more than 70% in all stands. Correlation analysis revealed that sulfur (S) was the most correlated soil attribute with the three predominant phyla but also with Mucoromycota and Calcarisporiellomycota phyla, although mostly negatively correlated (4 out of 5). Phosphorus was mostly positively correlated to soil attributes (3 out of 4) and nitrogen was correlated twice, positively and negatively. Distance-based redundancy analysis revealed a positive correlation of nitrogen (p-value = 0.0019, contribution = 22%) and phosphorus (p-value = 0.0017, contribution = 19%) with soil mycobiota. A high prevalence of generalists (28% to 38%) than specialists (9% to 24%) were found among the different sites. In stands containing Acacia (pure and mixed species) the soil mycobiota harbor the prevalence of generalist strategies with the potential to withstand environmental stresses and utilize a higher number of resources against specialists in Eucalyptus stands. Stronger positive correlation between soil attributes and main fungal taxa, higher generalists' strategies and lower Faith's phylogenetic diversity and Evenness were reported in stands containing Acacia. This highlights the potential of mixed-species in preserving community stability following environmental disturbances and increasing the number of resources confirming their important ecological role in boosting the resilience of the forest ecosystems to climate and land-use (plant species as shown by PCA analysis) changes.


Asunto(s)
Biodiversidad , Bosques , Microbiología del Suelo , Micobioma , Suelo/química , Congo , Filogenia , Acacia/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Eucalyptus/microbiología , Nitrógeno/análisis
15.
Water Sci Technol ; 89(2): 319-332, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39219132

RESUMEN

Marine fungi communities play a crucial role in the recycling of nutrients, restoration of biological systems, and the overall functioning of ecosystems. While aquatic fungal communities do react to pollution, there is a significant lack of information regarding the changes in the fungal community's structure, caused by marine pollution. In this study, we aim to address this gap in knowledge by investigating the range and makeup of fungal species present in marine environments in a polluted bay in Tunisia, spanning a biodiversity hotspot (Monastir Bay). Sequence analysis of the internal transcribed spacer region from culturable mycobiome and physicochemical parameters were investigated at seven sites in the bay. A total of 32 fungal taxa were identified at the genus and/or species levels and were assigned to four major groups (Aspergillacae 37.5%, Dothiomyceta 21.87%, Sordariamyceta 28.12%, and Yeasts 12.5%) with a remarkable predominance of Aspergillus genus. Assessment of the Shannon-Wiener diversity index and the Simpson dominance index revealed that the highest species diversity index (0.84) was recorded at the Kheniss site. Our results suggest the existence of diverse fungal communities, can be considered a useful community model for further ecological and evolutionary study of fungi in the bay.


Asunto(s)
Bahías , Biodiversidad , Hongos , Túnez , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Bahías/microbiología , Micobioma , Mar Mediterráneo , Agua de Mar/microbiología , Monitoreo del Ambiente
16.
Food Microbiol ; 124: 104615, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244367

RESUMEN

Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.


Asunto(s)
Bacterias , Hongos , Hordeum , Microbiota , Enfermedades de las Plantas , Semillas , Hordeum/microbiología , Semillas/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hongos/aislamiento & purificación , Hongos/clasificación , Hongos/genética , China , Cuarentena
17.
Food Microbiol ; 124: 104618, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244370

RESUMEN

Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of Phyllostachys purpurea (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography-mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified Lactobacillus and Candida as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of Lactococcus to Lactobacillus and Pediococcus, whereas soluble proteins facilitated fungal succession from Candida to Kazachstania and Issatchenkia. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.


Asunto(s)
Bacterias , Fermentación , Microbiota , Brotes de la Planta , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Brotes de la Planta/química , Brotes de la Planta/microbiología , Brotes de la Planta/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Hongos/metabolismo , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Aromatizantes/metabolismo , Alimentos Fermentados/microbiología , Alimentos Fermentados/análisis , Odorantes/análisis , Bambusa/microbiología , Bambusa/metabolismo , Bambusa/química , Microextracción en Fase Sólida
18.
Sci Rep ; 14(1): 20658, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39232047

RESUMEN

Due to its nutritional value and health benefits, the date palm (Phoenix dactylifera L.) is an essential dietary food crop throughout Middle Eastern and African countries. Consumers are concerned about the possible microbial contamination of dates, especially since most dates arriving in local markets are unprocessed. The absence of processing increases the possibility of microbial contamination, which raises the probability of microbial contamination. This study aims to analyze and evaluate the variability of fungal and bacterial microbiota identified in the most popular date palm fruits in Saudi Arabia. The study assessed ten date variety fruits from the most popular date palm varieties for consumption in Saudi Arabia and analyzed the microbial count. Morphological and molecular characterization and comparison of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences identified 78 fungi, including 36 distinct species across 15 fungal genera. Alternaria, Fusarium, Curvilaria, Aspergillus, and Penicillium were the most frequent genera among the ten fruit cultivars studied, according to ITS-rDNA sequence analysis. Furthermore, 36 bacterial isolates were obtained from ten date varieties studied, each with a unique colony morphology. These isolates were identified based on sequence alignment and comparison of their 16S rDNA internal spacer regions to those available in public databases. The results showed that the bacterial isolates included 15 species from five bacterial genera. The results suggested that Bacillus, Stenotrophomonas, and Brucella were the prevailing genera among the ten tested fruit varieties. Some bacterial genera, such as Brucella, Achromobacter, and Stenotrophomonas, are well-known potential human pathogens. Chaetomium globosum was also recognized as air pollution causing adverse health effects such as allergies and as the causal agent of human fungal infections among the tested date varieties; the Rashodiah type exhibited the highest fungal contamination, whereas the Sagai variety displayed the lowest fungal contamination. Conversely, the Sukkari, Barhi, and Mejdool varieties were the most contaminated with bacteria among the ten tested varieties, while the Khalas variety showed the least bacterial contamination. To the best of the authors' knowledge, this study provides the initial comprehensive account of the molecular and morphological identification of all fungal and bacterial genera associated with date palm (P. dactylifera) fruits.


Asunto(s)
Bacterias , Biodiversidad , Frutas , Hongos , Microbiota , Phoeniceae , Phoeniceae/microbiología , Phoeniceae/genética , Frutas/microbiología , Microbiota/genética , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Arabia Saudita , Filogenia , ARN Ribosómico 16S/genética , ADN Espaciador Ribosómico/genética
19.
BMC Microbiol ; 24(1): 346, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277720

RESUMEN

BACKGROUND: Pseudomonas eucalypticola, a new species of the P. fluorescens group that generates most Pseudomonas-based biocontrol agents, has not been found in any plants other than Eucalyptus dunnii leaves. Except for antagonism to the growth of a few fungi, its features in plant growth promotion and disease control have not been evaluated. Here, we identified a similar species of P. eucalypticola, 1021Bp, from endophyte cultures of healthy leaves of English boxwood (Buxus sempervirens 'Suffruticosa') and investigated its antifungal activity, plant growth promotion traits, and potential for boxwood blight control. RESULTS: Colorimetric or plate assays showed the properties of 1021Bp in nitrogen fixation, phosphate solubilization, and production of indole-3-acetic acid (IAA) and siderophores, as well as the growth suppression of all five plant fungal pathogens, including causal agents of widespread plant diseases, gray mold, and anthracnose. Boxwood plant leaves received 87.4% and 65.8% protection from infection when sprayed with cell-free cultural supernatant (CFS) but not the resuspended bacterial cells at 108-9/mL of 1021Bp at one and seven days before inoculation (dbi) with boxwood blight pathogen, Calonectria pseudonaviculata, at 5 × 104 spores/mL. They also received similarly high protection with the 1021Bp cell culture without separation of cells and CFS at 14 dbi (67.5%), suggesting a key role of 1021Bp metabolites in disease control. CONCLUSIONS: Given the features of plant growth and health and its similarity to P. eucalypticola with the P. fluorescens lineage, 1021Bp has great potential to be developed as a safe and environmentally friendly biofungicide and biofertilizer. However, its metabolites are the major contributors to 1021Bp activity for plant growth and health. Application with the bacterial cells alone, especially with nonionic surfactants, may result in poor performance unless survival conditions are present.


Asunto(s)
Enfermedades de las Plantas , Hojas de la Planta , Pseudomonas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo , Pseudomonas/metabolismo , Hojas de la Planta/microbiología , Antibiosis , Ácidos Indolacéticos/metabolismo , Hongos/crecimiento & desarrollo , Hongos/genética , Hongos/clasificación , Hongos/efectos de los fármacos , Sideróforos/metabolismo , Endófitos/metabolismo , Endófitos/genética , Desarrollo de la Planta , Agentes de Control Biológico , Antifúngicos/farmacología , Antifúngicos/metabolismo
20.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273455

RESUMEN

The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas , Zea mays , Zea mays/microbiología , Zea mays/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hongos/genética , Agricultura/métodos , Genómica/métodos , Genoma Bacteriano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA